File size: 18,302 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
"""
Unit test for Mixed Integer Linear Programming
"""
import re
import sys

import numpy as np
from numpy.testing import assert_allclose, assert_array_equal
import pytest

from .test_linprog import magic_square
from scipy.optimize import milp, Bounds, LinearConstraint
from scipy import sparse


_IS_32BIT = (sys.maxsize < 2**32)

def test_milp_iv():

    message = "`c` must be a dense array"
    with pytest.raises(ValueError, match=message):
        milp(sparse.coo_array([0, 0]))

    message = "`c` must be a one-dimensional array of finite numbers with"
    with pytest.raises(ValueError, match=message):
        milp(np.zeros((3, 4)))
    with pytest.raises(ValueError, match=message):
        milp([])
    with pytest.raises(ValueError, match=message):
        milp(None)

    message = "`bounds` must be convertible into an instance of..."
    with pytest.raises(ValueError, match=message):
        milp(1, bounds=10)

    message = "`constraints` (or each element within `constraints`) must be"
    with pytest.raises(ValueError, match=re.escape(message)):
        milp(1, constraints=10)
    with pytest.raises(ValueError, match=re.escape(message)):
        milp(np.zeros(3), constraints=([[1, 2, 3]], [2, 3], [2, 3]))
    with pytest.raises(ValueError, match=re.escape(message)):
        milp(np.zeros(2), constraints=([[1, 2]], [2], sparse.coo_array([2])))

    message = "The shape of `A` must be (len(b_l), len(c))."
    with pytest.raises(ValueError, match=re.escape(message)):
        milp(np.zeros(3), constraints=([[1, 2]], [2], [2]))

    message = "`integrality` must be a dense array"
    with pytest.raises(ValueError, match=message):
        milp([1, 2], integrality=sparse.coo_array([1, 2]))

    message = ("`integrality` must contain integers 0-3 and be broadcastable "
               "to `c.shape`.")
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], integrality=[1, 2])
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], integrality=[1, 5, 3])

    message = "Lower and upper bounds must be dense arrays."
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], bounds=([1, 2], sparse.coo_array([3, 4])))

    message = "`lb`, `ub`, and `keep_feasible` must be broadcastable."
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], bounds=([1, 2], [3, 4, 5]))
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], bounds=([1, 2, 3], [4, 5]))

    message = "`bounds.lb` and `bounds.ub` must contain reals and..."
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], bounds=([1, 2], [3, 4]))
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], bounds=([1, 2, 3], ["3+4", 4, 5]))
    with pytest.raises(ValueError, match=message):
        milp([1, 2, 3], bounds=([1, 2, 3], [set(), 4, 5]))


@pytest.mark.xfail(run=False,
                   reason="Needs to be fixed in `_highs_wrapper`")
def test_milp_options(capsys):
    # run=False now because of gh-16347
    message = "Unrecognized options detected: {'ekki'}..."
    options = {'ekki': True}
    with pytest.warns(RuntimeWarning, match=message):
        milp(1, options=options)

    A, b, c, numbers, M = magic_square(3)
    options = {"disp": True, "presolve": False, "time_limit": 0.05}
    res = milp(c=c, constraints=(A, b, b), bounds=(0, 1), integrality=1,
               options=options)

    captured = capsys.readouterr()
    assert "Presolve is switched off" in captured.out
    assert "Time Limit Reached" in captured.out
    assert not res.success


def test_result():
    A, b, c, numbers, M = magic_square(3)
    res = milp(c=c, constraints=(A, b, b), bounds=(0, 1), integrality=1)
    assert res.status == 0
    assert res.success
    msg = "Optimization terminated successfully. (HiGHS Status 7:"
    assert res.message.startswith(msg)
    assert isinstance(res.x, np.ndarray)
    assert isinstance(res.fun, float)
    assert isinstance(res.mip_node_count, int)
    assert isinstance(res.mip_dual_bound, float)
    assert isinstance(res.mip_gap, float)

    A, b, c, numbers, M = magic_square(6)
    res = milp(c=c*0, constraints=(A, b, b), bounds=(0, 1), integrality=1,
               options={'time_limit': 0.05})
    assert res.status == 1
    assert not res.success
    msg = "Time limit reached. (HiGHS Status 13:"
    assert res.message.startswith(msg)
    assert (res.fun is res.mip_dual_bound is res.mip_gap
            is res.mip_node_count is res.x is None)

    res = milp(1, bounds=(1, -1))
    assert res.status == 2
    assert not res.success
    msg = "The problem is infeasible. (HiGHS Status 8:"
    assert res.message.startswith(msg)
    assert (res.fun is res.mip_dual_bound is res.mip_gap
            is res.mip_node_count is res.x is None)

    res = milp(-1)
    assert res.status == 3
    assert not res.success
    msg = "The problem is unbounded. (HiGHS Status 10:"
    assert res.message.startswith(msg)
    assert (res.fun is res.mip_dual_bound is res.mip_gap
            is res.mip_node_count is res.x is None)


def test_milp_optional_args():
    # check that arguments other than `c` are indeed optional
    res = milp(1)
    assert res.fun == 0
    assert_array_equal(res.x, [0])


def test_milp_1():
    # solve magic square problem
    n = 3
    A, b, c, numbers, M = magic_square(n)
    A = sparse.csc_array(A)  # confirm that sparse arrays are accepted
    res = milp(c=c*0, constraints=(A, b, b), bounds=(0, 1), integrality=1)

    # check that solution is a magic square
    x = np.round(res.x)
    s = (numbers.flatten() * x).reshape(n**2, n, n)
    square = np.sum(s, axis=0)
    np.testing.assert_allclose(square.sum(axis=0), M)
    np.testing.assert_allclose(square.sum(axis=1), M)
    np.testing.assert_allclose(np.diag(square).sum(), M)
    np.testing.assert_allclose(np.diag(square[:, ::-1]).sum(), M)


def test_milp_2():
    # solve MIP with inequality constraints and all integer constraints
    # source: slide 5,
    # https://www.cs.upc.edu/~erodri/webpage/cps/theory/lp/milp/slides.pdf
    # also check that `milp` accepts all valid ways of specifying constraints
    c = -np.ones(2)
    A = [[-2, 2], [-8, 10]]
    b_l = [1, -np.inf]
    b_u = [np.inf, 13]
    linear_constraint = LinearConstraint(A, b_l, b_u)

    # solve original problem
    res1 = milp(c=c, constraints=(A, b_l, b_u), integrality=True)
    res2 = milp(c=c, constraints=linear_constraint, integrality=True)
    res3 = milp(c=c, constraints=[(A, b_l, b_u)], integrality=True)
    res4 = milp(c=c, constraints=[linear_constraint], integrality=True)
    res5 = milp(c=c, integrality=True,
                constraints=[(A[:1], b_l[:1], b_u[:1]),
                             (A[1:], b_l[1:], b_u[1:])])
    res6 = milp(c=c, integrality=True,
                constraints=[LinearConstraint(A[:1], b_l[:1], b_u[:1]),
                             LinearConstraint(A[1:], b_l[1:], b_u[1:])])
    res7 = milp(c=c, integrality=True,
                constraints=[(A[:1], b_l[:1], b_u[:1]),
                             LinearConstraint(A[1:], b_l[1:], b_u[1:])])
    xs = np.array([res1.x, res2.x, res3.x, res4.x, res5.x, res6.x, res7.x])
    funs = np.array([res1.fun, res2.fun, res3.fun,
                     res4.fun, res5.fun, res6.fun, res7.fun])
    np.testing.assert_allclose(xs, np.broadcast_to([1, 2], xs.shape))
    np.testing.assert_allclose(funs, -3)

    # solve relaxed problem
    res = milp(c=c, constraints=(A, b_l, b_u))
    np.testing.assert_allclose(res.x, [4, 4.5])
    np.testing.assert_allclose(res.fun, -8.5)


def test_milp_3():
    # solve MIP with inequality constraints and all integer constraints
    # source: https://en.wikipedia.org/wiki/Integer_programming#Example
    c = [0, -1]
    A = [[-1, 1], [3, 2], [2, 3]]
    b_u = [1, 12, 12]
    b_l = np.full_like(b_u, -np.inf, dtype=np.float64)
    constraints = LinearConstraint(A, b_l, b_u)

    integrality = np.ones_like(c)

    # solve original problem
    res = milp(c=c, constraints=constraints, integrality=integrality)
    assert_allclose(res.fun, -2)
    # two optimal solutions possible, just need one of them
    assert np.allclose(res.x, [1, 2]) or np.allclose(res.x, [2, 2])

    # solve relaxed problem
    res = milp(c=c, constraints=constraints)
    assert_allclose(res.fun, -2.8)
    assert_allclose(res.x, [1.8, 2.8])


def test_milp_4():
    # solve MIP with inequality constraints and only one integer constraint
    # source: https://www.mathworks.com/help/optim/ug/intlinprog.html
    c = [8, 1]
    integrality = [0, 1]
    A = [[1, 2], [-4, -1], [2, 1]]
    b_l = [-14, -np.inf, -np.inf]
    b_u = [np.inf, -33, 20]
    constraints = LinearConstraint(A, b_l, b_u)
    bounds = Bounds(-np.inf, np.inf)

    res = milp(c, integrality=integrality, bounds=bounds,
               constraints=constraints)
    assert_allclose(res.fun, 59)
    assert_allclose(res.x, [6.5, 7])


def test_milp_5():
    # solve MIP with inequality and equality constraints
    # source: https://www.mathworks.com/help/optim/ug/intlinprog.html
    c = [-3, -2, -1]
    integrality = [0, 0, 1]
    lb = [0, 0, 0]
    ub = [np.inf, np.inf, 1]
    bounds = Bounds(lb, ub)
    A = [[1, 1, 1], [4, 2, 1]]
    b_l = [-np.inf, 12]
    b_u = [7, 12]
    constraints = LinearConstraint(A, b_l, b_u)

    res = milp(c, integrality=integrality, bounds=bounds,
               constraints=constraints)
    # there are multiple solutions
    assert_allclose(res.fun, -12)


@pytest.mark.xslow
def test_milp_6():
    # solve a larger MIP with only equality constraints
    # source: https://www.mathworks.com/help/optim/ug/intlinprog.html
    integrality = 1
    A_eq = np.array([[22, 13, 26, 33, 21, 3, 14, 26],
                     [39, 16, 22, 28, 26, 30, 23, 24],
                     [18, 14, 29, 27, 30, 38, 26, 26],
                     [41, 26, 28, 36, 18, 38, 16, 26]])
    b_eq = np.array([7872, 10466, 11322, 12058])
    c = np.array([2, 10, 13, 17, 7, 5, 7, 3])

    res = milp(c=c, constraints=(A_eq, b_eq, b_eq), integrality=integrality)

    np.testing.assert_allclose(res.fun, 1854)


def test_infeasible_prob_16609():
    # Ensure presolve does not mark trivially infeasible problems
    # as Optimal -- see gh-16609
    c = [1.0, 0.0]
    integrality = [0, 1]

    lb = [0, -np.inf]
    ub = [np.inf, np.inf]
    bounds = Bounds(lb, ub)

    A_eq = [[0.0, 1.0]]
    b_eq = [0.5]
    constraints = LinearConstraint(A_eq, b_eq, b_eq)

    res = milp(c, integrality=integrality, bounds=bounds,
               constraints=constraints)
    np.testing.assert_equal(res.status, 2)


_msg_time = "Time limit reached. (HiGHS Status 13:"
_msg_iter = "Iteration limit reached. (HiGHS Status 14:"

@pytest.mark.thread_unsafe
# See https://github.com/scipy/scipy/pull/19255#issuecomment-1778438888
@pytest.mark.xfail(reason="Often buggy, revisit with callbacks, gh-19255")
@pytest.mark.skipif(np.intp(0).itemsize < 8,
                    reason="Unhandled 32-bit GCC FP bug")
@pytest.mark.slow
@pytest.mark.parametrize(["options", "msg"], [({"time_limit": 0.1}, _msg_time),
                                              ({"node_limit": 1}, _msg_iter)])
def test_milp_timeout_16545(options, msg):
    # Ensure solution is not thrown away if MILP solver times out
    # -- see gh-16545
    rng = np.random.default_rng(5123833489170494244)
    A = rng.integers(0, 5, size=(100, 100))
    b_lb = np.full(100, fill_value=-np.inf)
    b_ub = np.full(100, fill_value=25)
    constraints = LinearConstraint(A, b_lb, b_ub)
    variable_lb = np.zeros(100)
    variable_ub = np.ones(100)
    variable_bounds = Bounds(variable_lb, variable_ub)
    integrality = np.ones(100)
    c_vector = -np.ones(100)
    res = milp(
        c_vector,
        integrality=integrality,
        bounds=variable_bounds,
        constraints=constraints,
        options=options,
    )

    assert res.message.startswith(msg)
    assert res["x"] is not None

    # ensure solution is feasible
    x = res["x"]
    tol = 1e-8  # sometimes needed due to finite numerical precision
    assert np.all(b_lb - tol <= A @ x) and np.all(A @ x <= b_ub + tol)
    assert np.all(variable_lb - tol <= x) and np.all(x <= variable_ub + tol)
    assert np.allclose(x, np.round(x))


def test_three_constraints_16878():
    # `milp` failed when exactly three constraints were passed
    # Ensure that this is no longer the case.
    rng = np.random.default_rng(5123833489170494244)
    A = rng.integers(0, 5, size=(6, 6))
    bl = np.full(6, fill_value=-np.inf)
    bu = np.full(6, fill_value=10)
    constraints = [LinearConstraint(A[:2], bl[:2], bu[:2]),
                   LinearConstraint(A[2:4], bl[2:4], bu[2:4]),
                   LinearConstraint(A[4:], bl[4:], bu[4:])]
    constraints2 = [(A[:2], bl[:2], bu[:2]),
                    (A[2:4], bl[2:4], bu[2:4]),
                    (A[4:], bl[4:], bu[4:])]
    lb = np.zeros(6)
    ub = np.ones(6)
    variable_bounds = Bounds(lb, ub)
    c = -np.ones(6)
    res1 = milp(c, bounds=variable_bounds, constraints=constraints)
    res2 = milp(c, bounds=variable_bounds, constraints=constraints2)
    ref = milp(c, bounds=variable_bounds, constraints=(A, bl, bu))
    assert res1.success and res2.success
    assert_allclose(res1.x, ref.x)
    assert_allclose(res2.x, ref.x)


@pytest.mark.xslow
def test_mip_rel_gap_passdown():
    # Solve problem with decreasing mip_gap to make sure mip_rel_gap decreases
    # Adapted from test_linprog::TestLinprogHiGHSMIP::test_mip_rel_gap_passdown
    # MIP taken from test_mip_6 above
    A_eq = np.array([[22, 13, 26, 33, 21, 3, 14, 26],
                     [39, 16, 22, 28, 26, 30, 23, 24],
                     [18, 14, 29, 27, 30, 38, 26, 26],
                     [41, 26, 28, 36, 18, 38, 16, 26]])
    b_eq = np.array([7872, 10466, 11322, 12058])
    c = np.array([2, 10, 13, 17, 7, 5, 7, 3])

    mip_rel_gaps = [0.25, 0.01, 0.001]
    sol_mip_gaps = []
    for mip_rel_gap in mip_rel_gaps:
        res = milp(c=c, bounds=(0, np.inf), constraints=(A_eq, b_eq, b_eq),
                   integrality=True, options={"mip_rel_gap": mip_rel_gap})
        # assert that the solution actually has mip_gap lower than the
        # required mip_rel_gap supplied
        assert res.mip_gap <= mip_rel_gap
        # check that `res.mip_gap` is as defined in the documentation
        assert res.mip_gap == (res.fun - res.mip_dual_bound)/res.fun
        sol_mip_gaps.append(res.mip_gap)

    # make sure that the mip_rel_gap parameter is actually doing something
    # check that differences between solution gaps are declining
    # monotonically with the mip_rel_gap parameter.
    assert np.all(np.diff(sol_mip_gaps) < 0)

@pytest.mark.xfail(reason='Upstream / Wrapper issue, see gh-20116')
def test_large_numbers_gh20116():
    h = 10 ** 12
    A = np.array([[100.4534, h], [100.4534, -h]])
    b = np.array([h, 0])
    constraints = LinearConstraint(A=A, ub=b)
    bounds = Bounds([0, 0], [1, 1])
    c = np.array([0, 0])
    res = milp(c=c, constraints=constraints, bounds=bounds, integrality=1)
    assert res.status == 0
    assert np.all(A @ res.x < b)


def test_presolve_gh18907():
    from scipy.optimize import milp
    import numpy as np
    inf = np.inf

    # set up problem
    c = np.array([-0.85850509, -0.82892676, -0.80026454, -0.63015535, -0.5099006,
                  -0.50077193, -0.4894404, -0.47285865,  -0.39867774, -0.38069646,
                  -0.36733012, -0.36733012, -0.35820411, -0.31576141, -0.20626091,
                  -0.12466144, -0.10679516, -0.1061887, -0.1061887, -0.1061887,
                  -0., -0., -0., -0., 0., 0., 0., 0.])

    A = np.array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
                   1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0.],
                  [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                   1., 0., 0., 0., 0., 0., 1., 0., 0., 0., -25., -0., -0., -0.],
                  [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                   -1., 0., 0., 0., 0., 0., -1., 0., 0., 0., 2., 0., 0., 0.],
                  [0., 0., 0., 0., 1., 1., 1., 1., 0., 1., 0., 0., 0., 0., 0.,
                   0., 0., 0., 0., 0., 0., 0., 0., 0., -0., -25., -0., -0.],
                  [0., 0., 0., 0., -1., -1., -1., -1., 0., -1., 0., 0., 0.,
                   0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0.],
                  [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                   0., 0., 1., 1., 1., 0., 0., 0., 0., -0., -0., -25., -0.],
                  [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
                   0., 0., -1., -1., -1., 0., 0., 0., 0., 0., 0., 2., 0.],
                  [1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 1., 0.,
                   1., 1., 0., 0., 0., 0., 1., 1., 1., -0., -0., -0., -25.],
                  [-1., -1., -1., -1., 0., 0., 0., 0., -1., 0., -1., -1., -1., -1.,
                   0., -1., -1., 0., 0., 0., 0., -1., -1., -1., 0., 0., 0., 2.]])
    bl = np.array([-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf])
    bu = np.array([100., 0., 0., 0., 0., 0., 0., 0., 0.])
    constraints = LinearConstraint(A, bl, bu)
    integrality = 1
    bounds = (0, 1)
    r1 = milp(c=c, constraints=constraints, integrality=integrality, bounds=bounds,
              options={'presolve': True})
    r2 = milp(c=c, constraints=constraints, integrality=integrality, bounds=bounds,
              options={'presolve': False})
    assert r1.status == r2.status
    assert_allclose(r1.x, r2.x)

    # another example from the same issue
    bounds = Bounds(lb=0, ub=1)
    integrality = [1, 1, 0, 0]
    c = [10, 9.52380952, -1000, -952.38095238]
    A = [[1, 1, 0, 0], [0, 0, 1, 1], [200, 0, 0, 0], [0, 200, 0, 0],
         [0, 0, 2000, 0], [0, 0, 0, 2000], [-1, 0, 1, 0], [-1, -1, 0, 1]]
    ub = [1, 1, 200, 200, 1000, 1000, 0, 0]
    constraints = LinearConstraint(A, ub=ub)
    r1 = milp(c=c, constraints=constraints,  bounds=bounds,
              integrality=integrality, options={"presolve": False})
    r2 = milp(c=c, constraints=constraints,  bounds=bounds,
              integrality=integrality, options={"presolve": False})
    assert r1.status == r2.status
    assert_allclose(r1.x, r2.x)