File size: 9,408 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import pytest
import numpy as np
from numpy.testing import TestCase, assert_array_equal
import scipy.sparse as sps
from scipy.optimize._constraints import (
    Bounds, LinearConstraint, NonlinearConstraint, PreparedConstraint,
    new_bounds_to_old, old_bound_to_new, strict_bounds)


class TestStrictBounds(TestCase):
    def test_scalarvalue_unique_enforce_feasibility(self):
        m = 3
        lb = 2
        ub = 4
        enforce_feasibility = False
        strict_lb, strict_ub = strict_bounds(lb, ub,
                                             enforce_feasibility,
                                             m)
        assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
        assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])

        enforce_feasibility = True
        strict_lb, strict_ub = strict_bounds(lb, ub,
                                             enforce_feasibility,
                                             m)
        assert_array_equal(strict_lb, [2, 2, 2])
        assert_array_equal(strict_ub, [4, 4, 4])

    def test_vectorvalue_unique_enforce_feasibility(self):
        m = 3
        lb = [1, 2, 3]
        ub = [4, 5, 6]
        enforce_feasibility = False
        strict_lb, strict_ub = strict_bounds(lb, ub,
                                              enforce_feasibility,
                                              m)
        assert_array_equal(strict_lb, [-np.inf, -np.inf, -np.inf])
        assert_array_equal(strict_ub, [np.inf, np.inf, np.inf])

        enforce_feasibility = True
        strict_lb, strict_ub = strict_bounds(lb, ub,
                                              enforce_feasibility,
                                              m)
        assert_array_equal(strict_lb, [1, 2, 3])
        assert_array_equal(strict_ub, [4, 5, 6])

    def test_scalarvalue_vector_enforce_feasibility(self):
        m = 3
        lb = 2
        ub = 4
        enforce_feasibility = [False, True, False]
        strict_lb, strict_ub = strict_bounds(lb, ub,
                                             enforce_feasibility,
                                             m)
        assert_array_equal(strict_lb, [-np.inf, 2, -np.inf])
        assert_array_equal(strict_ub, [np.inf, 4, np.inf])

    def test_vectorvalue_vector_enforce_feasibility(self):
        m = 3
        lb = [1, 2, 3]
        ub = [4, 6, np.inf]
        enforce_feasibility = [True, False, True]
        strict_lb, strict_ub = strict_bounds(lb, ub,
                                             enforce_feasibility,
                                             m)
        assert_array_equal(strict_lb, [1, -np.inf, 3])
        assert_array_equal(strict_ub, [4, np.inf, np.inf])


def test_prepare_constraint_infeasible_x0():
    lb = np.array([0, 20, 30])
    ub = np.array([0.5, np.inf, 70])
    x0 = np.array([1, 2, 3])
    enforce_feasibility = np.array([False, True, True], dtype=bool)
    bounds = Bounds(lb, ub, enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, bounds, x0)

    pc = PreparedConstraint(Bounds(lb, ub), [1, 2, 3])
    assert (pc.violation([1, 2, 3]) > 0).any()
    assert (pc.violation([0.25, 21, 31]) == 0).all()

    x0 = np.array([1, 2, 3, 4])
    A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]])
    enforce_feasibility = np.array([True, True, True], dtype=bool)
    linear = LinearConstraint(A, -np.inf, 0, enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, linear, x0)

    pc = PreparedConstraint(LinearConstraint(A, -np.inf, 0),
                            [1, 2, 3, 4])
    assert (pc.violation([1, 2, 3, 4]) > 0).any()
    assert (pc.violation([-10, 2, -10, 4]) == 0).all()

    def fun(x):
        return A.dot(x)

    def jac(x):
        return A

    def hess(x, v):
        return sps.csr_matrix((4, 4))

    nonlinear = NonlinearConstraint(fun, -np.inf, 0, jac, hess,
                                    enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, nonlinear, x0)

    pc = PreparedConstraint(nonlinear, [-10, 2, -10, 4])
    assert (pc.violation([1, 2, 3, 4]) > 0).any()
    assert (pc.violation([-10, 2, -10, 4]) == 0).all()


def test_violation():
    def cons_f(x):
        return np.array([x[0] ** 2 + x[1], x[0] ** 2 - x[1]])

    nlc = NonlinearConstraint(cons_f, [-1, -0.8500], [2, 2])
    pc = PreparedConstraint(nlc, [0.5, 1])

    assert_array_equal(pc.violation([0.5, 1]), [0., 0.])

    np.testing.assert_almost_equal(pc.violation([0.5, 1.2]), [0., 0.1])

    np.testing.assert_almost_equal(pc.violation([1.2, 1.2]), [0.64, 0])

    np.testing.assert_almost_equal(pc.violation([0.1, -1.2]), [0.19, 0])

    np.testing.assert_almost_equal(pc.violation([0.1, 2]), [0.01, 1.14])


def test_new_bounds_to_old():
    lb = np.array([-np.inf, 2, 3])
    ub = np.array([3, np.inf, 10])

    bounds = [(None, 3), (2, None), (3, 10)]
    assert_array_equal(new_bounds_to_old(lb, ub, 3), bounds)

    bounds_single_lb = [(-1, 3), (-1, None), (-1, 10)]
    assert_array_equal(new_bounds_to_old(-1, ub, 3), bounds_single_lb)

    bounds_no_lb = [(None, 3), (None, None), (None, 10)]
    assert_array_equal(new_bounds_to_old(-np.inf, ub, 3), bounds_no_lb)

    bounds_single_ub = [(None, 20), (2, 20), (3, 20)]
    assert_array_equal(new_bounds_to_old(lb, 20, 3), bounds_single_ub)

    bounds_no_ub = [(None, None), (2, None), (3, None)]
    assert_array_equal(new_bounds_to_old(lb, np.inf, 3), bounds_no_ub)

    bounds_single_both = [(1, 2), (1, 2), (1, 2)]
    assert_array_equal(new_bounds_to_old(1, 2, 3), bounds_single_both)

    bounds_no_both = [(None, None), (None, None), (None, None)]
    assert_array_equal(new_bounds_to_old(-np.inf, np.inf, 3), bounds_no_both)


def test_old_bounds_to_new():
    bounds = ([1, 2], (None, 3), (-1, None))
    lb_true = np.array([1, -np.inf, -1])
    ub_true = np.array([2, 3, np.inf])

    lb, ub = old_bound_to_new(bounds)
    assert_array_equal(lb, lb_true)
    assert_array_equal(ub, ub_true)

    bounds = [(-np.inf, np.inf), (np.array([1]), np.array([1]))]
    lb, ub = old_bound_to_new(bounds)

    assert_array_equal(lb, [-np.inf, 1])
    assert_array_equal(ub, [np.inf, 1])


class TestBounds:
    def test_repr(self):
        # so that eval works
        from numpy import array, inf  # noqa: F401
        for args in (
            (-1.0, 5.0),
            (-1.0, np.inf, True),
            (np.array([1.0, -np.inf]), np.array([2.0, np.inf])),
            (np.array([1.0, -np.inf]), np.array([2.0, np.inf]),
             np.array([True, False])),
        ):
            bounds = Bounds(*args)
            bounds2 = eval(repr(Bounds(*args)))
            assert_array_equal(bounds.lb, bounds2.lb)
            assert_array_equal(bounds.ub, bounds2.ub)
            assert_array_equal(bounds.keep_feasible, bounds2.keep_feasible)

    def test_array(self):
        # gh13501
        b = Bounds(lb=[0.0, 0.0], ub=[1.0, 1.0])
        assert isinstance(b.lb, np.ndarray)
        assert isinstance(b.ub, np.ndarray)

    def test_defaults(self):
        b1 = Bounds()
        b2 = Bounds(np.asarray(-np.inf), np.asarray(np.inf))
        assert b1.lb == b2.lb
        assert b1.ub == b2.ub

    def test_input_validation(self):
        message = "Lower and upper bounds must be dense arrays."
        with pytest.raises(ValueError, match=message):
            Bounds(sps.coo_array([1, 2]), [1, 2])
        with pytest.raises(ValueError, match=message):
            Bounds([1, 2], sps.coo_array([1, 2]))

        message = "`keep_feasible` must be a dense array."
        with pytest.raises(ValueError, match=message):
            Bounds([1, 2], [1, 2], keep_feasible=sps.coo_array([True, True]))

        message = "`lb`, `ub`, and `keep_feasible` must be broadcastable."
        with pytest.raises(ValueError, match=message):
            Bounds([1, 2], [1, 2, 3])

    def test_residual(self):
        bounds = Bounds(-2, 4)
        x0 = [-1, 2]
        np.testing.assert_allclose(bounds.residual(x0), ([1, 4], [5, 2]))


class TestLinearConstraint:
    def test_defaults(self):
        A = np.eye(4)
        lc = LinearConstraint(A)
        lc2 = LinearConstraint(A, -np.inf, np.inf)
        assert_array_equal(lc.lb, lc2.lb)
        assert_array_equal(lc.ub, lc2.ub)

    def test_input_validation(self):
        A = np.eye(4)
        message = "`lb`, `ub`, and `keep_feasible` must be broadcastable"
        with pytest.raises(ValueError, match=message):
            LinearConstraint(A, [1, 2], [1, 2, 3])

        message = "Constraint limits must be dense arrays"
        with pytest.raises(ValueError, match=message):
            LinearConstraint(A, sps.coo_array([1, 2]), [2, 3])
        with pytest.raises(ValueError, match=message):
            LinearConstraint(A, [1, 2], sps.coo_array([2, 3]))

        message = "`keep_feasible` must be a dense array"
        with pytest.raises(ValueError, match=message):
            keep_feasible = sps.coo_array([True, True])
            LinearConstraint(A, [1, 2], [2, 3], keep_feasible=keep_feasible)

        A = np.empty((4, 3, 5))
        message = "`A` must have exactly two dimensions."
        with pytest.raises(ValueError, match=message):
            LinearConstraint(A)

    def test_residual(self):
        A = np.eye(2)
        lc = LinearConstraint(A, -2, 4)
        x0 = [-1, 2]
        np.testing.assert_allclose(lc.residual(x0), ([1, 4], [5, 2]))