File size: 39,020 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
import math
import pytest
import numpy as np

from scipy import stats, special
import scipy._lib._elementwise_iterative_method as eim
from scipy.conftest import array_api_compatible
from scipy._lib._array_api import array_namespace, is_cupy, is_numpy, xp_ravel, xp_size
from scipy._lib._array_api_no_0d import (xp_assert_close, xp_assert_equal,
                                         xp_assert_less)

from scipy.optimize.elementwise import find_minimum, find_root
from scipy.optimize._tstutils import _CHANDRUPATLA_TESTS

from itertools import permutations
from .test_zeros import TestScalarRootFinders


def _vectorize(xp):
    # xp-compatible version of np.vectorize
    # assumes arguments are all arrays of the same shape
    def decorator(f):
        def wrapped(*arg_arrays):
            shape = arg_arrays[0].shape
            arg_arrays = [xp_ravel(arg_array, xp=xp) for arg_array in arg_arrays]
            res = []
            for i in range(math.prod(shape)):
                arg_scalars = [arg_array[i] for arg_array in arg_arrays]
                res.append(f(*arg_scalars))
            return res

        return wrapped

    return decorator


# These tests were originally written for the private `optimize._chandrupatla`
# interfaces, but now we want the tests to check the behavior of the public
# `optimize.elementwise` interfaces. Therefore, rather than importing
# `_chandrupatla`/`_chandrupatla_minimize` from `_chandrupatla.py`, we import
# `find_root`/`find_minimum` from `optimize.elementwise` and wrap those
# functions to conform to the private interface. This may look a little strange,
# since it effectively just inverts the interface transformation done within the
# `find_root`/`find_minimum` functions, but it allows us to run the original,
# unmodified tests on the public interfaces, simplifying the PR that adds
# the public interfaces. We'll refactor this when we want to @parametrize the
# tests over multiple `method`s.
def _wrap_chandrupatla(func):
    def _chandrupatla_wrapper(f, *bracket, **kwargs):
        # avoid passing arguments to `find_minimum` to this function
        tol_keys = {'xatol', 'xrtol', 'fatol', 'frtol'}
        tolerances = {key: kwargs.pop(key) for key in tol_keys if key in kwargs}
        _callback = kwargs.pop('callback', None)
        if callable(_callback):
            def callback(res):
                if func == find_root:
                    res.xl, res.xr = res.bracket
                    res.fl, res.fr = res.f_bracket
                else:
                    res.xl, res.xm, res.xr = res.bracket
                    res.fl, res.fm, res.fr = res.f_bracket
                res.fun = res.f_x
                del res.bracket
                del res.f_bracket
                del res.f_x
                return _callback(res)
        else:
            callback = _callback

        res = func(f, bracket, tolerances=tolerances, callback=callback, **kwargs)
        if func == find_root:
            res.xl, res.xr = res.bracket
            res.fl, res.fr = res.f_bracket
        else:
            res.xl, res.xm, res.xr = res.bracket
            res.fl, res.fm, res.fr = res.f_bracket
        res.fun = res.f_x
        del res.bracket
        del res.f_bracket
        del res.f_x
        return res
    return _chandrupatla_wrapper


_chandrupatla_root = _wrap_chandrupatla(find_root)
_chandrupatla_minimize = _wrap_chandrupatla(find_minimum)


def f1(x):
    return 100*(1 - x**3.)**2 + (1-x**2.) + 2*(1-x)**2.


def f2(x):
    return 5 + (x - 2.)**6


def f3(x):
    xp = array_namespace(x)
    return xp.exp(x) - 5*x


def f4(x):
    return x**5. - 5*x**3. - 20.*x + 5.


def f5(x):
    return 8*x**3 - 2*x**2 - 7*x + 3


def _bracket_minimum(func, x1, x2):
    phi = 1.61803398875
    maxiter = 100
    f1 = func(x1)
    f2 = func(x2)
    step = x2 - x1
    x1, x2, f1, f2, step = ((x2, x1, f2, f1, -step) if f2 > f1
                            else (x1, x2, f1, f2, step))

    for i in range(maxiter):
        step *= phi
        x3 = x2 + step
        f3 = func(x3)
        if f3 < f2:
            x1, x2, f1, f2 = x2, x3, f2, f3
        else:
            break
    return x1, x2, x3, f1, f2, f3


cases = [
    (f1, -1, 11),
    (f1, -2, 13),
    (f1, -4, 13),
    (f1, -8, 15),
    (f1, -16, 16),
    (f1, -32, 19),
    (f1, -64, 20),
    (f1, -128, 21),
    (f1, -256, 21),
    (f1, -512, 19),
    (f1, -1024, 24),
    (f2, -1, 8),
    (f2, -2, 6),
    (f2, -4, 6),
    (f2, -8, 7),
    (f2, -16, 8),
    (f2, -32, 8),
    (f2, -64, 9),
    (f2, -128, 11),
    (f2, -256, 13),
    (f2, -512, 12),
    (f2, -1024, 13),
    (f3, -1, 11),
    (f3, -2, 11),
    (f3, -4, 11),
    (f3, -8, 10),
    (f3, -16, 14),
    (f3, -32, 12),
    (f3, -64, 15),
    (f3, -128, 18),
    (f3, -256, 18),
    (f3, -512, 19),
    (f3, -1024, 19),
    (f4, -0.05, 9),
    (f4, -0.10, 11),
    (f4, -0.15, 11),
    (f4, -0.20, 11),
    (f4, -0.25, 11),
    (f4, -0.30, 9),
    (f4, -0.35, 9),
    (f4, -0.40, 9),
    (f4, -0.45, 10),
    (f4, -0.50, 10),
    (f4, -0.55, 10),
    (f5, -0.05, 6),
    (f5, -0.10, 7),
    (f5, -0.15, 8),
    (f5, -0.20, 10),
    (f5, -0.25, 9),
    (f5, -0.30, 8),
    (f5, -0.35, 7),
    (f5, -0.40, 7),
    (f5, -0.45, 9),
    (f5, -0.50, 9),
    (f5, -0.55, 8)
]


@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
@pytest.mark.skip_xp_backends('jax.numpy',
                              reason='JAX arrays do not support item assignment.')
@pytest.mark.skip_xp_backends('array_api_strict',
                              reason='Currently uses fancy indexing assignment.')
class TestChandrupatlaMinimize:

    def f(self, x, loc):
        xp = array_namespace(x, loc)
        res = -xp.exp(-1/2 * (x-loc)**2) / (2*xp.pi)**0.5
        return xp.asarray(res, dtype=x.dtype)[()]

    @pytest.mark.parametrize('dtype', ('float32', 'float64'))
    @pytest.mark.parametrize('loc', [0.6, np.linspace(-1.05, 1.05, 10)])
    def test_basic(self, loc, xp, dtype):
        # Find mode of normal distribution. Compare mode against location
        # parameter and value of pdf at mode against expected pdf.
        rtol = {'float32': 5e-3, 'float64': 5e-7}[dtype]
        dtype = getattr(xp, dtype)
        bracket = (xp.asarray(xi, dtype=dtype) for xi in (-5, 0, 5))
        loc = xp.asarray(loc, dtype=dtype)
        fun = xp.broadcast_to(xp.asarray(-stats.norm.pdf(0), dtype=dtype), loc.shape)

        res = _chandrupatla_minimize(self.f, *bracket, args=(loc,))
        xp_assert_close(res.x, loc, rtol=rtol)
        xp_assert_equal(res.fun, fun)

    @pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
    def test_vectorization(self, shape, xp):
        # Test for correct functionality, output shapes, and dtypes for various
        # input shapes.
        loc = xp.linspace(-0.05, 1.05, 12).reshape(shape) if shape else xp.asarray(0.6)
        args = (loc,)
        bracket = xp.asarray(-5.), xp.asarray(0.), xp.asarray(5.)
        xp_test = array_namespace(loc)  # need xp.stack

        @_vectorize(xp)
        def chandrupatla_single(loc_single):
            return _chandrupatla_minimize(self.f, *bracket, args=(loc_single,))

        def f(*args, **kwargs):
            f.f_evals += 1
            return self.f(*args, **kwargs)
        f.f_evals = 0

        res = _chandrupatla_minimize(f, *bracket, args=args)
        refs = chandrupatla_single(loc)

        attrs = ['x', 'fun', 'success', 'status', 'nfev', 'nit',
                 'xl', 'xm', 'xr', 'fl', 'fm', 'fr']
        for attr in attrs:
            ref_attr = xp_test.stack([getattr(ref, attr) for ref in refs])
            res_attr = xp_ravel(getattr(res, attr))
            xp_assert_equal(res_attr, ref_attr)
            assert getattr(res, attr).shape == shape

        xp_assert_equal(res.fun, self.f(res.x, *args))
        xp_assert_equal(res.fl, self.f(res.xl, *args))
        xp_assert_equal(res.fm, self.f(res.xm, *args))
        xp_assert_equal(res.fr, self.f(res.xr, *args))
        assert xp.max(res.nfev) == f.f_evals
        assert xp.max(res.nit) == f.f_evals - 3

        assert xp_test.isdtype(res.success.dtype, 'bool')
        assert xp_test.isdtype(res.status.dtype, 'integral')
        assert xp_test.isdtype(res.nfev.dtype, 'integral')
        assert xp_test.isdtype(res.nit.dtype, 'integral')


    def test_flags(self, xp):
        # Test cases that should produce different status flags; show that all
        # can be produced simultaneously.
        def f(xs, js):
            funcs = [lambda x: (x - 2.5) ** 2,
                     lambda x: x - 10,
                     lambda x: (x - 2.5) ** 4,
                     lambda x: xp.full_like(x, xp.asarray(xp.nan))]
            res = []
            for i in range(xp_size(js)):
                x = xs[i, ...]
                j = int(xp_ravel(js)[i])
                res.append(funcs[j](x))
            return xp.stack(res)

        args = (xp.arange(4, dtype=xp.int64),)
        bracket = (xp.asarray([0]*4, dtype=xp.float64),
                   xp.asarray([2]*4, dtype=xp.float64),
                   xp.asarray([np.pi]*4, dtype=xp.float64))
        res = _chandrupatla_minimize(f, *bracket, args=args, maxiter=10)

        ref_flags = xp.asarray([eim._ECONVERGED, eim._ESIGNERR, eim._ECONVERR,
                                eim._EVALUEERR], dtype=xp.int32)
        xp_assert_equal(res.status, ref_flags)

    def test_convergence(self, xp):
        # Test that the convergence tolerances behave as expected
        rng = np.random.default_rng(2585255913088665241)
        p = xp.asarray(rng.random(size=3))
        bracket = (xp.asarray(-5), xp.asarray(0), xp.asarray(5))
        args = (p,)
        kwargs0 = dict(args=args, xatol=0, xrtol=0, fatol=0, frtol=0)

        kwargs = kwargs0.copy()
        kwargs['xatol'] = 1e-3
        res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        j1 = xp.abs(res1.xr - res1.xl)
        tol = xp.asarray(4*kwargs['xatol'], dtype=p.dtype)
        xp_assert_less(j1, xp.full((3,), tol, dtype=p.dtype))
        kwargs['xatol'] = 1e-6
        res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        j2 = xp.abs(res2.xr - res2.xl)
        tol = xp.asarray(4*kwargs['xatol'], dtype=p.dtype)
        xp_assert_less(j2, xp.full((3,), tol, dtype=p.dtype))
        xp_assert_less(j2, j1)

        kwargs = kwargs0.copy()
        kwargs['xrtol'] = 1e-3
        res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        j1 = xp.abs(res1.xr - res1.xl)
        tol = xp.asarray(4*kwargs['xrtol']*xp.abs(res1.x), dtype=p.dtype)
        xp_assert_less(j1, tol)
        kwargs['xrtol'] = 1e-6
        res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        j2 = xp.abs(res2.xr - res2.xl)
        tol = xp.asarray(4*kwargs['xrtol']*xp.abs(res2.x), dtype=p.dtype)
        xp_assert_less(j2, tol)
        xp_assert_less(j2, j1)

        kwargs = kwargs0.copy()
        kwargs['fatol'] = 1e-3
        res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        h1 = xp.abs(res1.fl - 2 * res1.fm + res1.fr)
        tol = xp.asarray(2*kwargs['fatol'], dtype=p.dtype)
        xp_assert_less(h1, xp.full((3,), tol, dtype=p.dtype))
        kwargs['fatol'] = 1e-6
        res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        h2 = xp.abs(res2.fl - 2 * res2.fm + res2.fr)
        tol = xp.asarray(2*kwargs['fatol'], dtype=p.dtype)
        xp_assert_less(h2, xp.full((3,), tol, dtype=p.dtype))
        xp_assert_less(h2, h1)

        kwargs = kwargs0.copy()
        kwargs['frtol'] = 1e-3
        res1 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        h1 = xp.abs(res1.fl - 2 * res1.fm + res1.fr)
        tol = xp.asarray(2*kwargs['frtol']*xp.abs(res1.fun), dtype=p.dtype)
        xp_assert_less(h1, tol)
        kwargs['frtol'] = 1e-6
        res2 = _chandrupatla_minimize(self.f, *bracket, **kwargs)
        h2 = xp.abs(res2.fl - 2 * res2.fm + res2.fr)
        tol = xp.asarray(2*kwargs['frtol']*abs(res2.fun), dtype=p.dtype)
        xp_assert_less(h2, tol)
        xp_assert_less(h2, h1)

    def test_maxiter_callback(self, xp):
        # Test behavior of `maxiter` parameter and `callback` interface
        loc = xp.asarray(0.612814)
        bracket = (xp.asarray(-5), xp.asarray(0), xp.asarray(5))
        maxiter = 5

        res = _chandrupatla_minimize(self.f, *bracket, args=(loc,),
                                     maxiter=maxiter)
        assert not xp.any(res.success)
        assert xp.all(res.nfev == maxiter+3)
        assert xp.all(res.nit == maxiter)

        def callback(res):
            callback.iter += 1
            callback.res = res
            assert hasattr(res, 'x')
            if callback.iter == 0:
                # callback is called once with initial bracket
                assert (res.xl, res.xm, res.xr) == bracket
            else:
                changed_xr = (res.xl == callback.xl) & (res.xr != callback.xr)
                changed_xl = (res.xl != callback.xl) & (res.xr == callback.xr)
                assert xp.all(changed_xr | changed_xl)

            callback.xl = res.xl
            callback.xr = res.xr
            assert res.status == eim._EINPROGRESS
            xp_assert_equal(self.f(res.xl, loc), res.fl)
            xp_assert_equal(self.f(res.xm, loc), res.fm)
            xp_assert_equal(self.f(res.xr, loc), res.fr)
            xp_assert_equal(self.f(res.x, loc), res.fun)
            if callback.iter == maxiter:
                raise StopIteration

        callback.xl = xp.nan
        callback.xr = xp.nan
        callback.iter = -1  # callback called once before first iteration
        callback.res = None

        res2 = _chandrupatla_minimize(self.f, *bracket, args=(loc,),
                                      callback=callback)

        # terminating with callback is identical to terminating due to maxiter
        # (except for `status`)
        for key in res.keys():
            if key == 'status':
                assert res[key] == eim._ECONVERR
                # assert callback.res[key] == eim._EINPROGRESS
                assert res2[key] == eim._ECALLBACK
            else:
                assert res2[key] == callback.res[key] == res[key]

    @pytest.mark.parametrize('case', cases)
    def test_nit_expected(self, case, xp):
        # Test that `_chandrupatla` implements Chandrupatla's algorithm:
        # in all 55 test cases, the number of iterations performed
        # matches the number reported in the original paper.
        func, x1, nit = case

        # Find bracket using the algorithm in the paper
        step = 0.2
        x2 = x1 + step
        x1, x2, x3, f1, f2, f3 = _bracket_minimum(func, x1, x2)

        # Use tolerances from original paper
        xatol = 0.0001
        fatol = 0.000001
        xrtol = 1e-16
        frtol = 1e-16

        bracket = xp.asarray(x1), xp.asarray(x2), xp.asarray(x3, dtype=xp.float64)
        res = _chandrupatla_minimize(func, *bracket, xatol=xatol,
                                     fatol=fatol, xrtol=xrtol, frtol=frtol)
        xp_assert_equal(res.nit, xp.asarray(nit, dtype=xp.int32))

    @pytest.mark.parametrize("loc", (0.65, [0.65, 0.7]))
    @pytest.mark.parametrize("dtype", ('float16', 'float32', 'float64'))
    def test_dtype(self, loc, dtype, xp):
        # Test that dtypes are preserved
        dtype = getattr(xp, dtype)

        loc = xp.asarray(loc, dtype=dtype)
        bracket = (xp.asarray(-3, dtype=dtype),
                   xp.asarray(1, dtype=dtype),
                   xp.asarray(5, dtype=dtype))

        xp_test = array_namespace(loc)  # need astype
        def f(x, loc):
            assert x.dtype == dtype
            return xp_test.astype((x - loc)**2, dtype)

        res = _chandrupatla_minimize(f, *bracket, args=(loc,))
        assert res.x.dtype == dtype
        xp_assert_close(res.x, loc, rtol=math.sqrt(xp.finfo(dtype).eps))

    def test_input_validation(self, xp):
        # Test input validation for appropriate error messages

        message = '`func` must be callable.'
        bracket = xp.asarray(-4), xp.asarray(0), xp.asarray(4)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(None, *bracket)

        message = 'Abscissae and function output must be real numbers.'
        bracket = xp.asarray(-4 + 1j), xp.asarray(0), xp.asarray(4)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket)

        message = "...be broadcast..."
        bracket = xp.asarray([-2, -3]), xp.asarray([0, 0]), xp.asarray([3, 4, 5])
        # raised by `np.broadcast, but the traceback is readable IMO
        with pytest.raises((ValueError, RuntimeError), match=message):
            _chandrupatla_minimize(lambda x: x, *bracket)

        message = "The shape of the array returned by `func` must be the same"
        bracket = xp.asarray([-3, -3]), xp.asarray([0, 0]), xp.asarray([5, 5])
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: [x[0, ...], x[1, ...], x[1, ...]],
                                   *bracket)

        message = 'Tolerances must be non-negative scalars.'
        bracket = xp.asarray(-4), xp.asarray(0), xp.asarray(4)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket, xatol=-1)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket, xrtol=xp.nan)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket, fatol='ekki')
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket, frtol=xp.nan)

        message = '`maxiter` must be a non-negative integer.'
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket, maxiter=1.5)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket, maxiter=-1)

        message = '`callback` must be callable.'
        with pytest.raises(ValueError, match=message):
            _chandrupatla_minimize(lambda x: x, *bracket, callback='shrubbery')

    def test_bracket_order(self, xp):
        # Confirm that order of points in bracket doesn't
        xp_test = array_namespace(xp.asarray(1.))  # need `xp.newaxis`
        loc = xp.linspace(-1, 1, 6)[:, xp_test.newaxis]
        brackets = xp.asarray(list(permutations([-5, 0, 5]))).T
        res = _chandrupatla_minimize(self.f, *brackets, args=(loc,))
        assert xp.all(xp.isclose(res.x, loc) | (res.fun == self.f(loc, loc)))
        ref = res.x[:, 0]  # all columns should be the same
        xp_test = array_namespace(loc)  # need `xp.broadcast_arrays
        xp_assert_close(*xp_test.broadcast_arrays(res.x.T, ref), rtol=1e-15)

    def test_special_cases(self, xp):
        # Test edge cases and other special cases

        # Test that integers are not passed to `f`
        xp_test = array_namespace(xp.asarray(1.))  # need `xp.isdtype`
        def f(x):
            assert xp_test.isdtype(x.dtype, "real floating")
            return (x - 1)**2

        bracket = xp.asarray(-7), xp.asarray(0), xp.asarray(8)
        with np.errstate(invalid='ignore'):
            res = _chandrupatla_minimize(f, *bracket, fatol=0, frtol=0)
        assert res.success
        xp_assert_close(res.x, xp.asarray(1.), rtol=1e-3)
        xp_assert_close(res.fun, xp.asarray(0.), atol=1e-200)

        # Test that if all elements of bracket equal minimizer, algorithm
        # reports convergence
        def f(x):
            return (x-1)**2

        bracket = xp.asarray(1), xp.asarray(1), xp.asarray(1)
        res = _chandrupatla_minimize(f, *bracket)
        assert res.success
        xp_assert_equal(res.x, xp.asarray(1.))

        # Test maxiter = 0. Should do nothing to bracket.
        def f(x):
            return (x-1)**2

        bracket = xp.asarray(-3), xp.asarray(1.1), xp.asarray(5)
        res = _chandrupatla_minimize(f, *bracket, maxiter=0)
        assert res.xl, res.xr == bracket
        assert res.nit == 0
        assert res.nfev == 3
        assert res.status == -2
        assert res.x == 1.1  # best so far

        # Test scalar `args` (not in tuple)
        def f(x, c):
            return (x-c)**2 - 1

        bracket = xp.asarray(-1), xp.asarray(0), xp.asarray(1)
        c = xp.asarray(1/3)
        res = _chandrupatla_minimize(f, *bracket, args=(c,))
        xp_assert_close(res.x, c)

        # Test zero tolerances
        def f(x):
            return -xp.sin(x)

        bracket = xp.asarray(0), xp.asarray(1), xp.asarray(xp.pi)
        res = _chandrupatla_minimize(f, *bracket, xatol=0, xrtol=0, fatol=0, frtol=0)
        assert res.success
        # found a minimum exactly (according to floating point arithmetic)
        assert res.xl < res.xm < res.xr
        assert f(res.xl) == f(res.xm) == f(res.xr)


@array_api_compatible
@pytest.mark.usefixtures("skip_xp_backends")
@pytest.mark.skip_xp_backends('array_api_strict',
                              reason='Currently uses fancy indexing assignment.')
@pytest.mark.skip_xp_backends('jax.numpy',
                              reason='JAX arrays do not support item assignment.')
@pytest.mark.skip_xp_backends('cupy',
                              reason='cupy/cupy#8391')
class TestChandrupatla(TestScalarRootFinders):

    def f(self, q, p):
        return special.ndtr(q) - p

    @pytest.mark.parametrize('p', [0.6, np.linspace(-0.05, 1.05, 10)])
    def test_basic(self, p, xp):
        # Invert distribution CDF and compare against distribution `ppf`
        a, b = xp.asarray(-5.), xp.asarray(5.)
        res = _chandrupatla_root(self.f, a, b, args=(xp.asarray(p),))
        ref = xp.asarray(stats.norm().ppf(p), dtype=xp.asarray(p).dtype)
        xp_assert_close(res.x, ref)

    @pytest.mark.parametrize('shape', [tuple(), (12,), (3, 4), (3, 2, 2)])
    def test_vectorization(self, shape, xp):
        # Test for correct functionality, output shapes, and dtypes for various
        # input shapes.
        p = (np.linspace(-0.05, 1.05, 12).reshape(shape) if shape
             else np.float64(0.6))
        p_xp = xp.asarray(p)
        args_xp = (p_xp,)
        dtype = p_xp.dtype
        xp_test = array_namespace(p_xp)  # need xp.bool

        @np.vectorize
        def chandrupatla_single(p):
            return _chandrupatla_root(self.f, -5, 5, args=(p,))

        def f(*args, **kwargs):
            f.f_evals += 1
            return self.f(*args, **kwargs)
        f.f_evals = 0

        res = _chandrupatla_root(f, xp.asarray(-5.), xp.asarray(5.), args=args_xp)
        refs = chandrupatla_single(p).ravel()

        ref_x = [ref.x for ref in refs]
        ref_x = xp.reshape(xp.asarray(ref_x, dtype=dtype), shape)
        xp_assert_close(res.x, ref_x)

        ref_fun = [ref.fun for ref in refs]
        ref_fun = xp.reshape(xp.asarray(ref_fun, dtype=dtype), shape)
        xp_assert_close(res.fun, ref_fun, atol=1e-15)
        xp_assert_equal(res.fun, self.f(res.x, *args_xp))

        ref_success = [bool(ref.success) for ref in refs]
        ref_success = xp.reshape(xp.asarray(ref_success, dtype=xp_test.bool), shape)
        xp_assert_equal(res.success, ref_success)

        ref_flag = [ref.status for ref in refs]
        ref_flag = xp.reshape(xp.asarray(ref_flag, dtype=xp.int32), shape)
        xp_assert_equal(res.status, ref_flag)

        ref_nfev = [ref.nfev for ref in refs]
        ref_nfev = xp.reshape(xp.asarray(ref_nfev, dtype=xp.int32), shape)
        if is_numpy(xp):
            xp_assert_equal(res.nfev, ref_nfev)
            assert xp.max(res.nfev) == f.f_evals
        else:  # different backend may lead to different nfev
            assert res.nfev.shape == shape
            assert res.nfev.dtype == xp.int32

        ref_nit = [ref.nit for ref in refs]
        ref_nit = xp.reshape(xp.asarray(ref_nit, dtype=xp.int32), shape)
        if is_numpy(xp):
            xp_assert_equal(res.nit, ref_nit)
            assert xp.max(res.nit) == f.f_evals-2
        else:
            assert res.nit.shape == shape
            assert res.nit.dtype == xp.int32

        ref_xl = [ref.xl for ref in refs]
        ref_xl = xp.reshape(xp.asarray(ref_xl, dtype=dtype), shape)
        xp_assert_close(res.xl, ref_xl)

        ref_xr = [ref.xr for ref in refs]
        ref_xr = xp.reshape(xp.asarray(ref_xr, dtype=dtype), shape)
        xp_assert_close(res.xr, ref_xr)

        xp_assert_less(res.xl, res.xr)
        finite = xp.isfinite(res.x)
        assert xp.all((res.x[finite] == res.xl[finite])
                      | (res.x[finite] == res.xr[finite]))

        # PyTorch and CuPy don't solve to the same accuracy as NumPy - that's OK.
        atol = 1e-15 if is_numpy(xp) else 1e-9

        ref_fl = [ref.fl for ref in refs]
        ref_fl = xp.reshape(xp.asarray(ref_fl, dtype=dtype), shape)
        xp_assert_close(res.fl, ref_fl, atol=atol)
        xp_assert_equal(res.fl, self.f(res.xl, *args_xp))

        ref_fr = [ref.fr for ref in refs]
        ref_fr = xp.reshape(xp.asarray(ref_fr, dtype=dtype), shape)
        xp_assert_close(res.fr, ref_fr, atol=atol)
        xp_assert_equal(res.fr, self.f(res.xr, *args_xp))

        assert xp.all(xp.abs(res.fun[finite]) ==
                      xp.minimum(xp.abs(res.fl[finite]),
                                 xp.abs(res.fr[finite])))

    def test_flags(self, xp):
        # Test cases that should produce different status flags; show that all
        # can be produced simultaneously.
        def f(xs, js):
            # Note that full_like and int(j) shouldn't really be required. CuPy
            # is just really picky here, so I'm making it a special case to
            # make sure the other backends work when the user is less careful.
            assert js.dtype == xp.int64
            if is_cupy(xp):
                funcs = [lambda x: x - 2.5,
                         lambda x: x - 10,
                         lambda x: (x - 0.1)**3,
                         lambda x: xp.full_like(x, xp.asarray(xp.nan))]
                return [funcs[int(j)](x) for x, j in zip(xs, js)]

            funcs = [lambda x: x - 2.5,
                     lambda x: x - 10,
                     lambda x: (x - 0.1) ** 3,
                     lambda x: xp.nan]
            return [funcs[j](x) for x, j in zip(xs, js)]

        args = (xp.arange(4, dtype=xp.int64),)
        a, b = xp.asarray([0.]*4), xp.asarray([xp.pi]*4)
        res = _chandrupatla_root(f, a, b, args=args, maxiter=2)

        ref_flags = xp.asarray([eim._ECONVERGED,
                                eim._ESIGNERR,
                                eim._ECONVERR,
                                eim._EVALUEERR], dtype=xp.int32)
        xp_assert_equal(res.status, ref_flags)

    def test_convergence(self, xp):
        # Test that the convergence tolerances behave as expected
        rng = np.random.default_rng(2585255913088665241)
        p = xp.asarray(rng.random(size=3))
        bracket = (-xp.asarray(5.), xp.asarray(5.))
        args = (p,)
        kwargs0 = dict(args=args, xatol=0, xrtol=0, fatol=0, frtol=0)

        kwargs = kwargs0.copy()
        kwargs['xatol'] = 1e-3
        res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(res1.xr - res1.xl, xp.full_like(p, xp.asarray(1e-3)))
        kwargs['xatol'] = 1e-6
        res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(res2.xr - res2.xl, xp.full_like(p, xp.asarray(1e-6)))
        xp_assert_less(res2.xr - res2.xl, res1.xr - res1.xl)

        kwargs = kwargs0.copy()
        kwargs['xrtol'] = 1e-3
        res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(res1.xr - res1.xl, 1e-3 * xp.abs(res1.x))
        kwargs['xrtol'] = 1e-6
        res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(res2.xr - res2.xl, 1e-6 * xp.abs(res2.x))
        xp_assert_less(res2.xr - res2.xl, res1.xr - res1.xl)

        kwargs = kwargs0.copy()
        kwargs['fatol'] = 1e-3
        res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(xp.abs(res1.fun), xp.full_like(p, xp.asarray(1e-3)))
        kwargs['fatol'] = 1e-6
        res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(xp.abs(res2.fun), xp.full_like(p, xp.asarray(1e-6)))
        xp_assert_less(xp.abs(res2.fun), xp.abs(res1.fun))

        kwargs = kwargs0.copy()
        kwargs['frtol'] = 1e-3
        x1, x2 = bracket
        f0 = xp.minimum(xp.abs(self.f(x1, *args)), xp.abs(self.f(x2, *args)))
        res1 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(xp.abs(res1.fun), 1e-3*f0)
        kwargs['frtol'] = 1e-6
        res2 = _chandrupatla_root(self.f, *bracket, **kwargs)
        xp_assert_less(xp.abs(res2.fun), 1e-6*f0)
        xp_assert_less(xp.abs(res2.fun), xp.abs(res1.fun))

    def test_maxiter_callback(self, xp):
        # Test behavior of `maxiter` parameter and `callback` interface
        p = xp.asarray(0.612814)
        bracket = (xp.asarray(-5.), xp.asarray(5.))
        maxiter = 5

        def f(q, p):
            res = special.ndtr(q) - p
            f.x = q
            f.fun = res
            return res
        f.x = None
        f.fun = None

        res = _chandrupatla_root(f, *bracket, args=(p,), maxiter=maxiter)
        assert not xp.any(res.success)
        assert xp.all(res.nfev == maxiter+2)
        assert xp.all(res.nit == maxiter)

        def callback(res):
            callback.iter += 1
            callback.res = res
            assert hasattr(res, 'x')
            if callback.iter == 0:
                # callback is called once with initial bracket
                assert (res.xl, res.xr) == bracket
            else:
                changed = (((res.xl == callback.xl) & (res.xr != callback.xr))
                           | ((res.xl != callback.xl) & (res.xr == callback.xr)))
                assert xp.all(changed)

            callback.xl = res.xl
            callback.xr = res.xr
            assert res.status == eim._EINPROGRESS
            xp_assert_equal(self.f(res.xl, p), res.fl)
            xp_assert_equal(self.f(res.xr, p), res.fr)
            xp_assert_equal(self.f(res.x, p), res.fun)
            if callback.iter == maxiter:
                raise StopIteration
        callback.iter = -1  # callback called once before first iteration
        callback.res = None
        callback.xl = None
        callback.xr = None

        res2 = _chandrupatla_root(f, *bracket, args=(p,), callback=callback)

        # terminating with callback is identical to terminating due to maxiter
        # (except for `status`)
        for key in res.keys():
            if key == 'status':
                xp_assert_equal(res[key], xp.asarray(eim._ECONVERR, dtype=xp.int32))
                xp_assert_equal(res2[key], xp.asarray(eim._ECALLBACK, dtype=xp.int32))
            elif key.startswith('_'):
                continue
            else:
                xp_assert_equal(res2[key], res[key])

    @pytest.mark.parametrize('case', _CHANDRUPATLA_TESTS)
    def test_nit_expected(self, case, xp):
        # Test that `_chandrupatla` implements Chandrupatla's algorithm:
        # in all 40 test cases, the number of iterations performed
        # matches the number reported in the original paper.
        f, bracket, root, nfeval, id = case
        # Chandrupatla's criterion is equivalent to
        # abs(x2-x1) < 4*abs(xmin)*xrtol + xatol, but we use the more standard
        # abs(x2-x1) < abs(xmin)*xrtol + xatol. Therefore, set xrtol to 4x
        # that used by Chandrupatla in tests.
        bracket = (xp.asarray(bracket[0], dtype=xp.float64),
                   xp.asarray(bracket[1], dtype=xp.float64))
        root = xp.asarray(root, dtype=xp.float64)

        res = _chandrupatla_root(f, *bracket, xrtol=4e-10, xatol=1e-5)
        xp_assert_close(res.fun, xp.asarray(f(root), dtype=xp.float64),
                        rtol=1e-8, atol=2e-3)
        xp_assert_equal(res.nfev, xp.asarray(nfeval, dtype=xp.int32))

    @pytest.mark.parametrize("root", (0.622, [0.622, 0.623]))
    @pytest.mark.parametrize("dtype", ('float16', 'float32', 'float64'))
    def test_dtype(self, root, dtype, xp):
        # Test that dtypes are preserved
        not_numpy = not is_numpy(xp)
        if not_numpy and dtype == 'float16':
            pytest.skip("`float16` dtype only supported for NumPy arrays.")

        dtype = getattr(xp, dtype, None)
        if dtype is None:
            pytest.skip(f"{xp} does not support {dtype}")

        def f(x, root):
            res = (x - root) ** 3.
            if is_numpy(xp):  # NumPy does not preserve dtype
                return xp.asarray(res, dtype=dtype)
            return res

        a, b = xp.asarray(-3, dtype=dtype), xp.asarray(3, dtype=dtype)
        root = xp.asarray(root, dtype=dtype)
        res = _chandrupatla_root(f, a, b, args=(root,), xatol=1e-3)
        try:
            xp_assert_close(res.x, root, atol=1e-3)
        except AssertionError:
            assert res.x.dtype == dtype
            xp.all(res.fun == 0)

    def test_input_validation(self, xp):
        # Test input validation for appropriate error messages

        def func(x):
            return x

        message = '`func` must be callable.'
        with pytest.raises(ValueError, match=message):
            bracket = xp.asarray(-4), xp.asarray(4)
            _chandrupatla_root(None, *bracket)

        message = 'Abscissae and function output must be real numbers.'
        with pytest.raises(ValueError, match=message):
            bracket = xp.asarray(-4+1j), xp.asarray(4)
            _chandrupatla_root(func, *bracket)

        # raised by `np.broadcast, but the traceback is readable IMO
        message = "...not be broadcast..."  # all messages include this part
        with pytest.raises((ValueError, RuntimeError), match=message):
            bracket = xp.asarray([-2, -3]), xp.asarray([3, 4, 5])
            _chandrupatla_root(func, *bracket)

        message = "The shape of the array returned by `func`..."
        with pytest.raises(ValueError, match=message):
            bracket = xp.asarray([-3, -3]), xp.asarray([5, 5])
            _chandrupatla_root(lambda x: [x[0], x[1], x[1]], *bracket)

        message = 'Tolerances must be non-negative scalars.'
        bracket = xp.asarray(-4), xp.asarray(4)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_root(func, *bracket, xatol=-1)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_root(func, *bracket, xrtol=xp.nan)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_root(func, *bracket, fatol='ekki')
        with pytest.raises(ValueError, match=message):
            _chandrupatla_root(func, *bracket, frtol=xp.nan)

        message = '`maxiter` must be a non-negative integer.'
        with pytest.raises(ValueError, match=message):
            _chandrupatla_root(func, *bracket, maxiter=1.5)
        with pytest.raises(ValueError, match=message):
            _chandrupatla_root(func, *bracket, maxiter=-1)

        message = '`callback` must be callable.'
        with pytest.raises(ValueError, match=message):
            _chandrupatla_root(func, *bracket, callback='shrubbery')

    def test_special_cases(self, xp):
        # Test edge cases and other special cases

        # Test infinite function values
        def f(x):
            return 1 / x + 1 - 1 / (-x + 1)

        a, b = xp.asarray([0.1, 0., 0., 0.1]),  xp.asarray([0.9, 1.0, 0.9, 1.0])

        with np.errstate(divide='ignore', invalid='ignore'):
            res = _chandrupatla_root(f, a, b)

        assert xp.all(res.success)
        xp_assert_close(res.x[1:], xp.full((3,), res.x[0]))

        # Test that integers are not passed to `f`
        # (otherwise this would overflow)
        xp_test = array_namespace(a)  # need isdtype
        def f(x):
            assert xp_test.isdtype(x.dtype, "real floating")
            # this would overflow if x were an xp integer dtype
            return x ** 31 - 1

        # note that all inputs are integer type; result is automatically default float
        res = _chandrupatla_root(f, xp.asarray(-7), xp.asarray(5))
        assert res.success
        xp_assert_close(res.x, xp.asarray(1.))

        # Test that if both ends of bracket equal root, algorithm reports
        # convergence.
        def f(x, root):
            return x**2 - root

        root = xp.asarray([0, 1])
        res = _chandrupatla_root(f, xp.asarray(1), xp.asarray(1), args=(root,))
        xp_assert_equal(res.success, xp.asarray([False, True]))
        xp_assert_equal(res.x, xp.asarray([xp.nan, 1.]))

        def f(x):
            return 1/x

        with np.errstate(invalid='ignore'):
            inf = xp.asarray(xp.inf)
            res = _chandrupatla_root(f, inf, inf)
        assert res.success
        xp_assert_equal(res.x, xp.asarray(xp.inf))

        # Test maxiter = 0. Should do nothing to bracket.
        def f(x):
            return x**3 - 1

        a, b = xp.asarray(-3.), xp.asarray(5.)
        res = _chandrupatla_root(f, a, b, maxiter=0)
        xp_assert_equal(res.success, xp.asarray(False))
        xp_assert_equal(res.status, xp.asarray(-2, dtype=xp.int32))
        xp_assert_equal(res.nit, xp.asarray(0, dtype=xp.int32))
        xp_assert_equal(res.nfev, xp.asarray(2, dtype=xp.int32))
        xp_assert_equal(res.xl, a)
        xp_assert_equal(res.xr, b)
        # The `x` attribute is the one with the smaller function value
        xp_assert_equal(res.x, a)
        # Reverse bracket; check that this is still true
        res = _chandrupatla_root(f, -b, -a, maxiter=0)
        xp_assert_equal(res.x, -a)

        # Test maxiter = 1
        res = _chandrupatla_root(f, a, b, maxiter=1)
        xp_assert_equal(res.success, xp.asarray(True))
        xp_assert_equal(res.status, xp.asarray(0, dtype=xp.int32))
        xp_assert_equal(res.nit, xp.asarray(1, dtype=xp.int32))
        xp_assert_equal(res.nfev, xp.asarray(3, dtype=xp.int32))
        xp_assert_close(res.x, xp.asarray(1.))

        # Test scalar `args` (not in tuple)
        def f(x, c):
            return c*x - 1

        res = _chandrupatla_root(f, xp.asarray(-1), xp.asarray(1), args=xp.asarray(3))
        xp_assert_close(res.x, xp.asarray(1/3))

        # # TODO: Test zero tolerance
        # # ~~What's going on here - why are iterations repeated?~~
        # # tl goes to zero when xatol=xrtol=0. When function is nearly linear,
        # # this causes convergence issues.
        # def f(x):
        #     return np.cos(x)
        #
        # res = _chandrupatla_root(f, 0, np.pi, xatol=0, xrtol=0)
        # assert res.nit < 100
        # xp = np.nextafter(res.x, np.inf)
        # xm = np.nextafter(res.x, -np.inf)
        # assert np.abs(res.fun) < np.abs(f(xp))
        # assert np.abs(res.fun) < np.abs(f(xm))