File size: 19,210 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
"""
Unit tests for the basin hopping global minimization algorithm.
"""
import copy
from numpy.testing import (assert_almost_equal, assert_equal, assert_,
assert_allclose)
import pytest
from pytest import raises as assert_raises
import numpy as np
from numpy import cos, sin
from scipy.optimize import basinhopping, OptimizeResult
from scipy.optimize._basinhopping import (
Storage, RandomDisplacement, Metropolis, AdaptiveStepsize)
def func1d(x):
f = cos(14.5 * x - 0.3) + (x + 0.2) * x
df = np.array(-14.5 * sin(14.5 * x - 0.3) + 2. * x + 0.2)
return f, df
def func2d_nograd(x):
f = cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + 0.2) * x[0]
return f
def func2d(x):
f = cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + 0.2) * x[0]
df = np.zeros(2)
df[0] = -14.5 * sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
df[1] = 2. * x[1] + 0.2
return f, df
def func2d_easyderiv(x):
f = 2.0*x[0]**2 + 2.0*x[0]*x[1] + 2.0*x[1]**2 - 6.0*x[0]
df = np.zeros(2)
df[0] = 4.0*x[0] + 2.0*x[1] - 6.0
df[1] = 2.0*x[0] + 4.0*x[1]
return f, df
class MyTakeStep1(RandomDisplacement):
"""use a copy of displace, but have it set a special parameter to
make sure it's actually being used."""
def __init__(self):
self.been_called = False
super().__init__()
def __call__(self, x):
self.been_called = True
return super().__call__(x)
def myTakeStep2(x):
"""redo RandomDisplacement in function form without the attribute stepsize
to make sure everything still works ok
"""
s = 0.5
x += np.random.uniform(-s, s, np.shape(x))
return x
class MyAcceptTest:
"""pass a custom accept test
This does nothing but make sure it's being used and ensure all the
possible return values are accepted
"""
def __init__(self):
self.been_called = False
self.ncalls = 0
self.testres = [False, 'force accept', True, np.bool_(True),
np.bool_(False), [], {}, 0, 1]
def __call__(self, **kwargs):
self.been_called = True
self.ncalls += 1
if self.ncalls - 1 < len(self.testres):
return self.testres[self.ncalls - 1]
else:
return True
class MyCallBack:
"""pass a custom callback function
This makes sure it's being used. It also returns True after 10
steps to ensure that it's stopping early.
"""
def __init__(self):
self.been_called = False
self.ncalls = 0
def __call__(self, x, f, accepted):
self.been_called = True
self.ncalls += 1
if self.ncalls == 10:
return True
class TestBasinHopping:
def setup_method(self):
""" Tests setup.
Run tests based on the 1-D and 2-D functions described above.
"""
self.x0 = (1.0, [1.0, 1.0])
self.sol = (-0.195, np.array([-0.195, -0.1]))
self.tol = 3 # number of decimal places
self.niter = 100
self.disp = False
self.kwargs = {"method": "L-BFGS-B", "jac": True}
self.kwargs_nograd = {"method": "L-BFGS-B"}
def test_TypeError(self):
# test the TypeErrors are raised on bad input
i = 1
# if take_step is passed, it must be callable
assert_raises(TypeError, basinhopping, func2d, self.x0[i],
take_step=1)
# if accept_test is passed, it must be callable
assert_raises(TypeError, basinhopping, func2d, self.x0[i],
accept_test=1)
def test_input_validation(self):
msg = 'target_accept_rate has to be in range \\(0, 1\\)'
with assert_raises(ValueError, match=msg):
basinhopping(func1d, self.x0[0], target_accept_rate=0.)
with assert_raises(ValueError, match=msg):
basinhopping(func1d, self.x0[0], target_accept_rate=1.)
msg = 'stepwise_factor has to be in range \\(0, 1\\)'
with assert_raises(ValueError, match=msg):
basinhopping(func1d, self.x0[0], stepwise_factor=0.)
with assert_raises(ValueError, match=msg):
basinhopping(func1d, self.x0[0], stepwise_factor=1.)
def test_1d_grad(self):
# test 1-D minimizations with gradient
i = 0
res = basinhopping(func1d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp)
assert_almost_equal(res.x, self.sol[i], self.tol)
def test_2d(self):
# test 2d minimizations with gradient
i = 1
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp)
assert_almost_equal(res.x, self.sol[i], self.tol)
assert_(res.nfev > 0)
def test_njev(self):
# test njev is returned correctly
i = 1
minimizer_kwargs = self.kwargs.copy()
# L-BFGS-B doesn't use njev, but BFGS does
minimizer_kwargs["method"] = "BFGS"
res = basinhopping(func2d, self.x0[i],
minimizer_kwargs=minimizer_kwargs, niter=self.niter,
disp=self.disp)
assert_(res.nfev > 0)
assert_equal(res.nfev, res.njev)
def test_jac(self):
# test Jacobian returned
minimizer_kwargs = self.kwargs.copy()
# BFGS returns a Jacobian
minimizer_kwargs["method"] = "BFGS"
res = basinhopping(func2d_easyderiv, [0.0, 0.0],
minimizer_kwargs=minimizer_kwargs, niter=self.niter,
disp=self.disp)
assert_(hasattr(res.lowest_optimization_result, "jac"))
# in this case, the Jacobian is just [df/dx, df/dy]
_, jacobian = func2d_easyderiv(res.x)
assert_almost_equal(res.lowest_optimization_result.jac, jacobian,
self.tol)
def test_2d_nograd(self):
# test 2-D minimizations without gradient
i = 1
res = basinhopping(func2d_nograd, self.x0[i],
minimizer_kwargs=self.kwargs_nograd,
niter=self.niter, disp=self.disp)
assert_almost_equal(res.x, self.sol[i], self.tol)
@pytest.mark.fail_slow(10)
def test_all_minimizers(self):
# Test 2-D minimizations with gradient. Nelder-Mead, Powell, COBYLA, and
# COBYQA don't accept jac=True, so aren't included here.
i = 1
methods = ['CG', 'BFGS', 'Newton-CG', 'L-BFGS-B', 'TNC', 'SLSQP']
minimizer_kwargs = copy.copy(self.kwargs)
for method in methods:
minimizer_kwargs["method"] = method
res = basinhopping(func2d, self.x0[i],
minimizer_kwargs=minimizer_kwargs,
niter=self.niter, disp=self.disp)
assert_almost_equal(res.x, self.sol[i], self.tol)
@pytest.mark.fail_slow(20)
def test_all_nograd_minimizers(self):
# Test 2-D minimizations without gradient. Newton-CG requires jac=True,
# so not included here.
i = 1
methods = ['CG', 'BFGS', 'L-BFGS-B', 'TNC', 'SLSQP',
'Nelder-Mead', 'Powell', 'COBYLA', 'COBYQA']
minimizer_kwargs = copy.copy(self.kwargs_nograd)
for method in methods:
# COBYQA takes extensive amount of time on this problem
niter = 10 if method == 'COBYQA' else self.niter
minimizer_kwargs["method"] = method
res = basinhopping(func2d_nograd, self.x0[i],
minimizer_kwargs=minimizer_kwargs,
niter=niter, disp=self.disp, seed=1234)
tol = self.tol
if method == 'COBYLA':
tol = 2
assert_almost_equal(res.x, self.sol[i], decimal=tol)
def test_pass_takestep(self):
# test that passing a custom takestep works
# also test that the stepsize is being adjusted
takestep = MyTakeStep1()
initial_step_size = takestep.stepsize
i = 1
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp,
take_step=takestep)
assert_almost_equal(res.x, self.sol[i], self.tol)
assert_(takestep.been_called)
# make sure that the build in adaptive step size has been used
assert_(initial_step_size != takestep.stepsize)
def test_pass_simple_takestep(self):
# test that passing a custom takestep without attribute stepsize
takestep = myTakeStep2
i = 1
res = basinhopping(func2d_nograd, self.x0[i],
minimizer_kwargs=self.kwargs_nograd,
niter=self.niter, disp=self.disp,
take_step=takestep)
assert_almost_equal(res.x, self.sol[i], self.tol)
def test_pass_accept_test(self):
# test passing a custom accept test
# makes sure it's being used and ensures all the possible return values
# are accepted.
accept_test = MyAcceptTest()
i = 1
# there's no point in running it more than a few steps.
basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=10, disp=self.disp, accept_test=accept_test)
assert_(accept_test.been_called)
def test_pass_callback(self):
# test passing a custom callback function
# This makes sure it's being used. It also returns True after 10 steps
# to ensure that it's stopping early.
callback = MyCallBack()
i = 1
# there's no point in running it more than a few steps.
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=30, disp=self.disp, callback=callback)
assert_(callback.been_called)
assert_("callback" in res.message[0])
# One of the calls of MyCallBack is during BasinHoppingRunner
# construction, so there are only 9 remaining before MyCallBack stops
# the minimization.
assert_equal(res.nit, 9)
def test_minimizer_fail(self):
# test if a minimizer fails
i = 1
self.kwargs["options"] = dict(maxiter=0)
self.niter = 10
res = basinhopping(func2d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp)
# the number of failed minimizations should be the number of
# iterations + 1
assert_equal(res.nit + 1, res.minimization_failures)
def test_niter_zero(self):
# gh5915, what happens if you call basinhopping with niter=0
i = 0
basinhopping(func1d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=0, disp=self.disp)
def test_rng_reproducibility(self):
# rng should ensure reproducibility between runs
minimizer_kwargs = {"method": "L-BFGS-B", "jac": True}
f_1 = []
def callback(x, f, accepted):
f_1.append(f)
basinhopping(func2d, [1.0, 1.0], minimizer_kwargs=minimizer_kwargs,
niter=10, callback=callback, rng=10)
f_2 = []
def callback2(x, f, accepted):
f_2.append(f)
basinhopping(func2d, [1.0, 1.0], minimizer_kwargs=minimizer_kwargs,
niter=10, callback=callback2, rng=10)
assert_equal(np.array(f_1), np.array(f_2))
def test_random_gen(self):
# check that np.random.Generator can be used (numpy >= 1.17)
rng = np.random.default_rng(1)
minimizer_kwargs = {"method": "L-BFGS-B", "jac": True}
res1 = basinhopping(func2d, [1.0, 1.0],
minimizer_kwargs=minimizer_kwargs,
niter=10, rng=rng)
rng = np.random.default_rng(1)
res2 = basinhopping(func2d, [1.0, 1.0],
minimizer_kwargs=minimizer_kwargs,
niter=10, rng=rng)
assert_equal(res1.x, res2.x)
def test_monotonic_basin_hopping(self):
# test 1-D minimizations with gradient and T=0
i = 0
res = basinhopping(func1d, self.x0[i], minimizer_kwargs=self.kwargs,
niter=self.niter, disp=self.disp, T=0)
assert_almost_equal(res.x, self.sol[i], self.tol)
@pytest.mark.thread_unsafe
class Test_Storage:
def setup_method(self):
self.x0 = np.array(1)
self.f0 = 0
minres = OptimizeResult(success=True)
minres.x = self.x0
minres.fun = self.f0
self.storage = Storage(minres)
def test_higher_f_rejected(self):
new_minres = OptimizeResult(success=True)
new_minres.x = self.x0 + 1
new_minres.fun = self.f0 + 1
ret = self.storage.update(new_minres)
minres = self.storage.get_lowest()
assert_equal(self.x0, minres.x)
assert_equal(self.f0, minres.fun)
assert_(not ret)
@pytest.mark.parametrize('success', [True, False])
def test_lower_f_accepted(self, success):
new_minres = OptimizeResult(success=success)
new_minres.x = self.x0 + 1
new_minres.fun = self.f0 - 1
ret = self.storage.update(new_minres)
minres = self.storage.get_lowest()
assert (self.x0 != minres.x) == success # can't use `is`
assert (self.f0 != minres.fun) == success # left side is NumPy bool
assert ret is success
class Test_RandomDisplacement:
def setup_method(self):
self.stepsize = 1.0
self.N = 300000
def test_random(self):
# the mean should be 0
# the variance should be (2*stepsize)**2 / 12
# note these tests are random, they will fail from time to time
rng = np.random.RandomState(0)
x0 = np.zeros([self.N])
displace = RandomDisplacement(stepsize=self.stepsize, rng=rng)
x = displace(x0)
v = (2. * self.stepsize) ** 2 / 12
assert_almost_equal(np.mean(x), 0., 1)
assert_almost_equal(np.var(x), v, 1)
class Test_Metropolis:
def setup_method(self):
self.T = 2.
self.met = Metropolis(self.T)
self.res_new = OptimizeResult(success=True, fun=0.)
self.res_old = OptimizeResult(success=True, fun=1.)
def test_boolean_return(self):
# the return must be a bool, else an error will be raised in
# basinhopping
ret = self.met(res_new=self.res_new, res_old=self.res_old)
assert isinstance(ret, bool)
def test_lower_f_accepted(self):
assert_(self.met(res_new=self.res_new, res_old=self.res_old))
def test_accept(self):
# test that steps are randomly accepted for f_new > f_old
one_accept = False
one_reject = False
for i in range(1000):
if one_accept and one_reject:
break
res_new = OptimizeResult(success=True, fun=1.)
res_old = OptimizeResult(success=True, fun=0.5)
ret = self.met(res_new=res_new, res_old=res_old)
if ret:
one_accept = True
else:
one_reject = True
assert_(one_accept)
assert_(one_reject)
def test_GH7495(self):
# an overflow in exp was producing a RuntimeWarning
# create own object here in case someone changes self.T
met = Metropolis(2)
res_new = OptimizeResult(success=True, fun=0.)
res_old = OptimizeResult(success=True, fun=2000)
with np.errstate(over='raise'):
met.accept_reject(res_new=res_new, res_old=res_old)
def test_gh7799(self):
# gh-7799 reported a problem in which local search was successful but
# basinhopping returned an invalid solution. Show that this is fixed.
def func(x):
return (x**2-8)**2+(x+2)**2
x0 = -4
limit = 50 # Constrain to func value >= 50
con = {'type': 'ineq', 'fun': lambda x: func(x) - limit},
res = basinhopping(
func,
x0,
30,
seed=np.random.RandomState(1234),
minimizer_kwargs={'constraints': con}
)
assert res.success
assert_allclose(res.fun, limit, rtol=1e-6)
def test_accept_gh7799(self):
# Metropolis should not accept the result of an unsuccessful new local
# search if the old local search was successful
met = Metropolis(0) # monotonic basin hopping
res_new = OptimizeResult(success=True, fun=0.)
res_old = OptimizeResult(success=True, fun=1.)
# if new local search was successful and energy is lower, accept
assert met(res_new=res_new, res_old=res_old)
# if new res is unsuccessful, don't accept - even if energy is lower
res_new.success = False
assert not met(res_new=res_new, res_old=res_old)
# ...unless the old res was unsuccessful, too. In that case, why not?
res_old.success = False
assert met(res_new=res_new, res_old=res_old)
def test_reject_all_gh7799(self):
# Test the behavior when there is no feasible solution
def fun(x):
return x@x
def constraint(x):
return x + 1
kwargs = {'constraints': {'type': 'eq', 'fun': constraint},
'bounds': [(0, 1), (0, 1)], 'method': 'slsqp'}
res = basinhopping(fun, x0=[2, 3], niter=10, minimizer_kwargs=kwargs)
assert not res.success
class Test_AdaptiveStepsize:
def setup_method(self):
self.stepsize = 1.
self.ts = RandomDisplacement(stepsize=self.stepsize)
self.target_accept_rate = 0.5
self.takestep = AdaptiveStepsize(takestep=self.ts, verbose=False,
accept_rate=self.target_accept_rate)
def test_adaptive_increase(self):
# if few steps are rejected, the stepsize should increase
x = 0.
self.takestep(x)
self.takestep.report(False)
for i in range(self.takestep.interval):
self.takestep(x)
self.takestep.report(True)
assert_(self.ts.stepsize > self.stepsize)
def test_adaptive_decrease(self):
# if few steps are rejected, the stepsize should increase
x = 0.
self.takestep(x)
self.takestep.report(True)
for i in range(self.takestep.interval):
self.takestep(x)
self.takestep.report(False)
assert_(self.ts.stepsize < self.stepsize)
def test_all_accepted(self):
# test that everything works OK if all steps were accepted
x = 0.
for i in range(self.takestep.interval + 1):
self.takestep(x)
self.takestep.report(True)
assert_(self.ts.stepsize > self.stepsize)
def test_all_rejected(self):
# test that everything works OK if all steps were rejected
x = 0.
for i in range(self.takestep.interval + 1):
self.takestep(x)
self.takestep.report(False)
assert_(self.ts.stepsize < self.stepsize)
|