File size: 45,028 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
import warnings
from . import _minpack

import numpy as np
from numpy import (atleast_1d, triu, shape, transpose, zeros, prod, greater,
                   asarray, inf,
                   finfo, inexact, issubdtype, dtype)
from scipy import linalg
from scipy.linalg import svd, cholesky, solve_triangular, LinAlgError
from scipy._lib._util import _asarray_validated, _lazywhere, _contains_nan
from scipy._lib._util import getfullargspec_no_self as _getfullargspec
from ._optimize import OptimizeResult, _check_unknown_options, OptimizeWarning
from ._lsq import least_squares
# from ._lsq.common import make_strictly_feasible
from ._lsq.least_squares import prepare_bounds
from scipy.optimize._minimize import Bounds

__all__ = ['fsolve', 'leastsq', 'fixed_point', 'curve_fit']


def _check_func(checker, argname, thefunc, x0, args, numinputs,
                output_shape=None):
    res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
    if (output_shape is not None) and (shape(res) != output_shape):
        if (output_shape[0] != 1):
            if len(output_shape) > 1:
                if output_shape[1] == 1:
                    return shape(res)
            msg = f"{checker}: there is a mismatch between the input and output " \
                  f"shape of the '{argname}' argument"
            func_name = getattr(thefunc, '__name__', None)
            if func_name:
                msg += f" '{func_name}'."
            else:
                msg += "."
            msg += f'Shape should be {output_shape} but it is {shape(res)}.'
            raise TypeError(msg)
    if issubdtype(res.dtype, inexact):
        dt = res.dtype
    else:
        dt = dtype(float)
    return shape(res), dt


def fsolve(func, x0, args=(), fprime=None, full_output=0,
           col_deriv=0, xtol=1.49012e-8, maxfev=0, band=None,
           epsfcn=None, factor=100, diag=None):
    """
    Find the roots of a function.

    Return the roots of the (non-linear) equations defined by
    ``func(x) = 0`` given a starting estimate.

    Parameters
    ----------
    func : callable ``f(x, *args)``
        A function that takes at least one (possibly vector) argument,
        and returns a value of the same length.
    x0 : ndarray
        The starting estimate for the roots of ``func(x) = 0``.
    args : tuple, optional
        Any extra arguments to `func`.
    fprime : callable ``f(x, *args)``, optional
        A function to compute the Jacobian of `func` with derivatives
        across the rows. By default, the Jacobian will be estimated.
    full_output : bool, optional
        If True, return optional outputs.
    col_deriv : bool, optional
        Specify whether the Jacobian function computes derivatives down
        the columns (faster, because there is no transpose operation).
    xtol : float, optional
        The calculation will terminate if the relative error between two
        consecutive iterates is at most `xtol`.
    maxfev : int, optional
        The maximum number of calls to the function. If zero, then
        ``100*(N+1)`` is the maximum where N is the number of elements
        in `x0`.
    band : tuple, optional
        If set to a two-sequence containing the number of sub- and
        super-diagonals within the band of the Jacobi matrix, the
        Jacobi matrix is considered banded (only for ``fprime=None``).
    epsfcn : float, optional
        A suitable step length for the forward-difference
        approximation of the Jacobian (for ``fprime=None``). If
        `epsfcn` is less than the machine precision, it is assumed
        that the relative errors in the functions are of the order of
        the machine precision.
    factor : float, optional
        A parameter determining the initial step bound
        (``factor * || diag * x||``). Should be in the interval
        ``(0.1, 100)``.
    diag : sequence, optional
        N positive entries that serve as a scale factors for the
        variables.

    Returns
    -------
    x : ndarray
        The solution (or the result of the last iteration for
        an unsuccessful call).
    infodict : dict
        A dictionary of optional outputs with the keys:

        ``nfev``
            number of function calls
        ``njev``
            number of Jacobian calls
        ``fvec``
            function evaluated at the output
        ``fjac``
            the orthogonal matrix, q, produced by the QR
            factorization of the final approximate Jacobian
            matrix, stored column wise
        ``r``
            upper triangular matrix produced by QR factorization
            of the same matrix
        ``qtf``
            the vector ``(transpose(q) * fvec)``

    ier : int
        An integer flag.  Set to 1 if a solution was found, otherwise refer
        to `mesg` for more information.
    mesg : str
        If no solution is found, `mesg` details the cause of failure.

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See the ``method='hybr'`` in particular.

    Notes
    -----
    ``fsolve`` is a wrapper around MINPACK's hybrd and hybrj algorithms.

    Examples
    --------
    Find a solution to the system of equations:
    ``x0*cos(x1) = 4,  x1*x0 - x1 = 5``.

    >>> import numpy as np
    >>> from scipy.optimize import fsolve
    >>> def func(x):
    ...     return [x[0] * np.cos(x[1]) - 4,
    ...             x[1] * x[0] - x[1] - 5]
    >>> root = fsolve(func, [1, 1])
    >>> root
    array([6.50409711, 0.90841421])
    >>> np.isclose(func(root), [0.0, 0.0])  # func(root) should be almost 0.0.
    array([ True,  True])

    """
    def _wrapped_func(*fargs):
        """
        Wrapped `func` to track the number of times
        the function has been called.
        """
        _wrapped_func.nfev += 1
        return func(*fargs)

    _wrapped_func.nfev = 0

    options = {'col_deriv': col_deriv,
               'xtol': xtol,
               'maxfev': maxfev,
               'band': band,
               'eps': epsfcn,
               'factor': factor,
               'diag': diag}

    res = _root_hybr(_wrapped_func, x0, args, jac=fprime, **options)
    res.nfev = _wrapped_func.nfev

    if full_output:
        x = res['x']
        info = {k: res.get(k)
                    for k in ('nfev', 'njev', 'fjac', 'r', 'qtf') if k in res}
        info['fvec'] = res['fun']
        return x, info, res['status'], res['message']
    else:
        status = res['status']
        msg = res['message']
        if status == 0:
            raise TypeError(msg)
        elif status == 1:
            pass
        elif status in [2, 3, 4, 5]:
            warnings.warn(msg, RuntimeWarning, stacklevel=2)
        else:
            raise TypeError(msg)
        return res['x']


def _root_hybr(func, x0, args=(), jac=None,
               col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, eps=None,
               factor=100, diag=None, **unknown_options):
    """
    Find the roots of a multivariate function using MINPACK's hybrd and
    hybrj routines (modified Powell method).

    Options
    -------
    col_deriv : bool
        Specify whether the Jacobian function computes derivatives down
        the columns (faster, because there is no transpose operation).
    xtol : float
        The calculation will terminate if the relative error between two
        consecutive iterates is at most `xtol`.
    maxfev : int
        The maximum number of calls to the function. If zero, then
        ``100*(N+1)`` is the maximum where N is the number of elements
        in `x0`.
    band : tuple
        If set to a two-sequence containing the number of sub- and
        super-diagonals within the band of the Jacobi matrix, the
        Jacobi matrix is considered banded (only for ``jac=None``).
    eps : float
        A suitable step length for the forward-difference
        approximation of the Jacobian (for ``jac=None``). If
        `eps` is less than the machine precision, it is assumed
        that the relative errors in the functions are of the order of
        the machine precision.
    factor : float
        A parameter determining the initial step bound
        (``factor * || diag * x||``). Should be in the interval
        ``(0.1, 100)``.
    diag : sequence
        N positive entries that serve as a scale factors for the
        variables.

    """
    _check_unknown_options(unknown_options)
    epsfcn = eps

    x0 = asarray(x0).flatten()
    n = len(x0)
    if not isinstance(args, tuple):
        args = (args,)
    shape, dtype = _check_func('fsolve', 'func', func, x0, args, n, (n,))
    if epsfcn is None:
        epsfcn = finfo(dtype).eps
    Dfun = jac
    if Dfun is None:
        if band is None:
            ml, mu = -10, -10
        else:
            ml, mu = band[:2]
        if maxfev == 0:
            maxfev = 200 * (n + 1)
        retval = _minpack._hybrd(func, x0, args, 1, xtol, maxfev,
                                 ml, mu, epsfcn, factor, diag)
    else:
        _check_func('fsolve', 'fprime', Dfun, x0, args, n, (n, n))
        if (maxfev == 0):
            maxfev = 100 * (n + 1)
        retval = _minpack._hybrj(func, Dfun, x0, args, 1,
                                 col_deriv, xtol, maxfev, factor, diag)

    x, status = retval[0], retval[-1]

    errors = {0: "Improper input parameters were entered.",
              1: "The solution converged.",
              2: "The number of calls to function has "
                  "reached maxfev = %d." % maxfev,
              3: f"xtol={xtol:f} is too small, no further improvement "
                  "in the approximate\n solution is possible.",
              4: "The iteration is not making good progress, as measured "
                  "by the \n improvement from the last five "
                  "Jacobian evaluations.",
              5: "The iteration is not making good progress, "
                  "as measured by the \n improvement from the last "
                  "ten iterations.",
              'unknown': "An error occurred."}

    info = retval[1]
    info['fun'] = info.pop('fvec')
    sol = OptimizeResult(x=x, success=(status == 1), status=status,
                         method="hybr")
    sol.update(info)
    try:
        sol['message'] = errors[status]
    except KeyError:
        sol['message'] = errors['unknown']

    return sol


LEASTSQ_SUCCESS = [1, 2, 3, 4]
LEASTSQ_FAILURE = [5, 6, 7, 8]


def leastsq(func, x0, args=(), Dfun=None, full_output=False,
            col_deriv=False, ftol=1.49012e-8, xtol=1.49012e-8,
            gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None):
    """
    Minimize the sum of squares of a set of equations.

    ::

        x = arg min(sum(func(y)**2,axis=0))
                 y

    Parameters
    ----------
    func : callable
        Should take at least one (possibly length ``N`` vector) argument and
        returns ``M`` floating point numbers. It must not return NaNs or
        fitting might fail. ``M`` must be greater than or equal to ``N``.
    x0 : ndarray
        The starting estimate for the minimization.
    args : tuple, optional
        Any extra arguments to func are placed in this tuple.
    Dfun : callable, optional
        A function or method to compute the Jacobian of func with derivatives
        across the rows. If this is None, the Jacobian will be estimated.
    full_output : bool, optional
        If ``True``, return all optional outputs (not just `x` and `ier`).
    col_deriv : bool, optional
        If ``True``, specify that the Jacobian function computes derivatives
        down the columns (faster, because there is no transpose operation).
    ftol : float, optional
        Relative error desired in the sum of squares.
    xtol : float, optional
        Relative error desired in the approximate solution.
    gtol : float, optional
        Orthogonality desired between the function vector and the columns of
        the Jacobian.
    maxfev : int, optional
        The maximum number of calls to the function. If `Dfun` is provided,
        then the default `maxfev` is 100*(N+1) where N is the number of elements
        in x0, otherwise the default `maxfev` is 200*(N+1).
    epsfcn : float, optional
        A variable used in determining a suitable step length for the forward-
        difference approximation of the Jacobian (for Dfun=None).
        Normally the actual step length will be sqrt(epsfcn)*x
        If epsfcn is less than the machine precision, it is assumed that the
        relative errors are of the order of the machine precision.
    factor : float, optional
        A parameter determining the initial step bound
        (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``.
    diag : sequence, optional
        N positive entries that serve as a scale factors for the variables.

    Returns
    -------
    x : ndarray
        The solution (or the result of the last iteration for an unsuccessful
        call).
    cov_x : ndarray
        The inverse of the Hessian. `fjac` and `ipvt` are used to construct an
        estimate of the Hessian. A value of None indicates a singular matrix,
        which means the curvature in parameters `x` is numerically flat. To
        obtain the covariance matrix of the parameters `x`, `cov_x` must be
        multiplied by the variance of the residuals -- see curve_fit. Only
        returned if `full_output` is ``True``.
    infodict : dict
        a dictionary of optional outputs with the keys:

        ``nfev``
            The number of function calls
        ``fvec``
            The function evaluated at the output
        ``fjac``
            A permutation of the R matrix of a QR
            factorization of the final approximate
            Jacobian matrix, stored column wise.
            Together with ipvt, the covariance of the
            estimate can be approximated.
        ``ipvt``
            An integer array of length N which defines
            a permutation matrix, p, such that
            fjac*p = q*r, where r is upper triangular
            with diagonal elements of nonincreasing
            magnitude. Column j of p is column ipvt(j)
            of the identity matrix.
        ``qtf``
            The vector (transpose(q) * fvec).

        Only returned if `full_output` is ``True``.
    mesg : str
        A string message giving information about the cause of failure.
        Only returned if `full_output` is ``True``.
    ier : int
        An integer flag. If it is equal to 1, 2, 3 or 4, the solution was
        found. Otherwise, the solution was not found. In either case, the
        optional output variable 'mesg' gives more information.

    See Also
    --------
    least_squares : Newer interface to solve nonlinear least-squares problems
        with bounds on the variables. See ``method='lm'`` in particular.

    Notes
    -----
    "leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms.

    cov_x is a Jacobian approximation to the Hessian of the least squares
    objective function.
    This approximation assumes that the objective function is based on the
    difference between some observed target data (ydata) and a (non-linear)
    function of the parameters `f(xdata, params)` ::

           func(params) = ydata - f(xdata, params)

    so that the objective function is ::

           min   sum((ydata - f(xdata, params))**2, axis=0)
         params

    The solution, `x`, is always a 1-D array, regardless of the shape of `x0`,
    or whether `x0` is a scalar.

    Examples
    --------
    >>> from scipy.optimize import leastsq
    >>> def func(x):
    ...     return 2*(x-3)**2+1
    >>> leastsq(func, 0)
    (array([2.99999999]), 1)

    """
    x0 = asarray(x0).flatten()
    n = len(x0)
    if not isinstance(args, tuple):
        args = (args,)
    shape, dtype = _check_func('leastsq', 'func', func, x0, args, n)
    m = shape[0]

    if n > m:
        raise TypeError(f"Improper input: func input vector length N={n} must"
                        f" not exceed func output vector length M={m}")

    if epsfcn is None:
        epsfcn = finfo(dtype).eps

    if Dfun is None:
        if maxfev == 0:
            maxfev = 200*(n + 1)
        retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
                                 gtol, maxfev, epsfcn, factor, diag)
    else:
        if col_deriv:
            _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n, m))
        else:
            _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m, n))
        if maxfev == 0:
            maxfev = 100 * (n + 1)
        retval = _minpack._lmder(func, Dfun, x0, args, full_output,
                                 col_deriv, ftol, xtol, gtol, maxfev,
                                 factor, diag)

    errors = {0: ["Improper input parameters.", TypeError],
              1: ["Both actual and predicted relative reductions "
                  f"in the sum of squares\n  are at most {ftol:f}", None],
              2: ["The relative error between two consecutive "
                  f"iterates is at most {xtol:f}", None],
              3: ["Both actual and predicted relative reductions in "
                  f"the sum of squares\n  are at most {ftol:f} and the "
                  "relative error between two consecutive "
                  f"iterates is at \n  most {xtol:f}", None],
              4: ["The cosine of the angle between func(x) and any "
                  f"column of the\n  Jacobian is at most {gtol:f} in "
                  "absolute value", None],
              5: ["Number of calls to function has reached "
                  "maxfev = %d." % maxfev, ValueError],
              6: [f"ftol={ftol:f} is too small, no further reduction "
                  "in the sum of squares\n  is possible.",
                  ValueError],
              7: [f"xtol={xtol:f} is too small, no further improvement in "
                  "the approximate\n  solution is possible.",
                  ValueError],
              8: [f"gtol={gtol:f} is too small, func(x) is orthogonal to the "
                  "columns of\n  the Jacobian to machine precision.", ValueError]}

    # The FORTRAN return value (possible return values are >= 0 and <= 8)
    info = retval[-1]

    if full_output:
        cov_x = None
        if info in LEASTSQ_SUCCESS:
            # This was
            # perm = take(eye(n), retval[1]['ipvt'] - 1, 0)
            # r = triu(transpose(retval[1]['fjac'])[:n, :])
            # R = dot(r, perm)
            # cov_x = inv(dot(transpose(R), R))
            # but the explicit dot product was not necessary and sometimes
            # the result was not symmetric positive definite. See gh-4555.
            perm = retval[1]['ipvt']
            n = len(perm)
            r = triu(transpose(retval[1]['fjac'])[:n, :])
            inv_triu = linalg.get_lapack_funcs('trtri', (r,))
            try:
                # inverse of permuted matrix is a permutation of matrix inverse
                invR, trtri_info = inv_triu(r)  # default: upper, non-unit diag
                if trtri_info != 0:  # explicit comparison for readability
                    raise LinAlgError(f'trtri returned info {trtri_info}')
                invR[perm] = invR.copy()
                cov_x = invR @ invR.T
            except (LinAlgError, ValueError):
                pass
        return (retval[0], cov_x) + retval[1:-1] + (errors[info][0], info)
    else:
        if info in LEASTSQ_FAILURE:
            warnings.warn(errors[info][0], RuntimeWarning, stacklevel=2)
        elif info == 0:
            raise errors[info][1](errors[info][0])
        return retval[0], info


def _lightweight_memoizer(f):
    # very shallow memoization to address gh-13670: only remember the first set
    # of parameters and corresponding function value, and only attempt to use
    # them twice (the number of times the function is evaluated at x0).
    def _memoized_func(params):
        if _memoized_func.skip_lookup:
            return f(params)

        if np.all(_memoized_func.last_params == params):
            return _memoized_func.last_val
        elif _memoized_func.last_params is not None:
            _memoized_func.skip_lookup = True

        val = f(params)

        if _memoized_func.last_params is None:
            _memoized_func.last_params = np.copy(params)
            _memoized_func.last_val = val

        return val

    _memoized_func.last_params = None
    _memoized_func.last_val = None
    _memoized_func.skip_lookup = False
    return _memoized_func


def _wrap_func(func, xdata, ydata, transform):
    if transform is None:
        def func_wrapped(params):
            return func(xdata, *params) - ydata
    elif transform.size == 1 or transform.ndim == 1:
        def func_wrapped(params):
            return transform * (func(xdata, *params) - ydata)
    else:
        # Chisq = (y - yd)^T C^{-1} (y-yd)
        # transform = L such that C = L L^T
        # C^{-1} = L^{-T} L^{-1}
        # Chisq = (y - yd)^T L^{-T} L^{-1} (y-yd)
        # Define (y-yd)' = L^{-1} (y-yd)
        # by solving
        # L (y-yd)' = (y-yd)
        # and minimize (y-yd)'^T (y-yd)'
        def func_wrapped(params):
            return solve_triangular(transform, func(xdata, *params) - ydata, lower=True)
    return func_wrapped


def _wrap_jac(jac, xdata, transform):
    if transform is None:
        def jac_wrapped(params):
            return jac(xdata, *params)
    elif transform.ndim == 1:
        def jac_wrapped(params):
            return transform[:, np.newaxis] * np.asarray(jac(xdata, *params))
    else:
        def jac_wrapped(params):
            return solve_triangular(transform,
                                    np.asarray(jac(xdata, *params)),
                                    lower=True)
    return jac_wrapped


def _initialize_feasible(lb, ub):
    p0 = np.ones_like(lb)
    lb_finite = np.isfinite(lb)
    ub_finite = np.isfinite(ub)

    mask = lb_finite & ub_finite
    p0[mask] = 0.5 * (lb[mask] + ub[mask])

    mask = lb_finite & ~ub_finite
    p0[mask] = lb[mask] + 1

    mask = ~lb_finite & ub_finite
    p0[mask] = ub[mask] - 1

    return p0


def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False,
              check_finite=None, bounds=(-np.inf, np.inf), method=None,
              jac=None, *, full_output=False, nan_policy=None,
              **kwargs):
    """
    Use non-linear least squares to fit a function, f, to data.

    Assumes ``ydata = f(xdata, *params) + eps``.

    Parameters
    ----------
    f : callable
        The model function, f(x, ...). It must take the independent
        variable as the first argument and the parameters to fit as
        separate remaining arguments.
    xdata : array_like
        The independent variable where the data is measured.
        Should usually be an M-length sequence or an (k,M)-shaped array for
        functions with k predictors, and each element should be float
        convertible if it is an array like object.
    ydata : array_like
        The dependent data, a length M array - nominally ``f(xdata, ...)``.
    p0 : array_like, optional
        Initial guess for the parameters (length N). If None, then the
        initial values will all be 1 (if the number of parameters for the
        function can be determined using introspection, otherwise a
        ValueError is raised).
    sigma : None or scalar or M-length sequence or MxM array, optional
        Determines the uncertainty in `ydata`. If we define residuals as
        ``r = ydata - f(xdata, *popt)``, then the interpretation of `sigma`
        depends on its number of dimensions:

        - A scalar or 1-D `sigma` should contain values of standard deviations of
          errors in `ydata`. In this case, the optimized function is
          ``chisq = sum((r / sigma) ** 2)``.

        - A 2-D `sigma` should contain the covariance matrix of
          errors in `ydata`. In this case, the optimized function is
          ``chisq = r.T @ inv(sigma) @ r``.

          .. versionadded:: 0.19

        None (default) is equivalent of 1-D `sigma` filled with ones.
    absolute_sigma : bool, optional
        If True, `sigma` is used in an absolute sense and the estimated parameter
        covariance `pcov` reflects these absolute values.

        If False (default), only the relative magnitudes of the `sigma` values matter.
        The returned parameter covariance matrix `pcov` is based on scaling
        `sigma` by a constant factor. This constant is set by demanding that the
        reduced `chisq` for the optimal parameters `popt` when using the
        *scaled* `sigma` equals unity. In other words, `sigma` is scaled to
        match the sample variance of the residuals after the fit. Default is False.
        Mathematically,
        ``pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)``
    check_finite : bool, optional
        If True, check that the input arrays do not contain nans of infs,
        and raise a ValueError if they do. Setting this parameter to
        False may silently produce nonsensical results if the input arrays
        do contain nans. Default is True if `nan_policy` is not specified
        explicitly and False otherwise.
    bounds : 2-tuple of array_like or `Bounds`, optional
        Lower and upper bounds on parameters. Defaults to no bounds.
        There are two ways to specify the bounds:

        - Instance of `Bounds` class.

        - 2-tuple of array_like: Each element of the tuple must be either
          an array with the length equal to the number of parameters, or a
          scalar (in which case the bound is taken to be the same for all
          parameters). Use ``np.inf`` with an appropriate sign to disable
          bounds on all or some parameters.

    method : {'lm', 'trf', 'dogbox'}, optional
        Method to use for optimization. See `least_squares` for more details.
        Default is 'lm' for unconstrained problems and 'trf' if `bounds` are
        provided. The method 'lm' won't work when the number of observations
        is less than the number of variables, use 'trf' or 'dogbox' in this
        case.

        .. versionadded:: 0.17
    jac : callable, string or None, optional
        Function with signature ``jac(x, ...)`` which computes the Jacobian
        matrix of the model function with respect to parameters as a dense
        array_like structure. It will be scaled according to provided `sigma`.
        If None (default), the Jacobian will be estimated numerically.
        String keywords for 'trf' and 'dogbox' methods can be used to select
        a finite difference scheme, see `least_squares`.

        .. versionadded:: 0.18
    full_output : boolean, optional
        If True, this function returns additional information: `infodict`,
        `mesg`, and `ier`.

        .. versionadded:: 1.9
    nan_policy : {'raise', 'omit', None}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is None):

        * 'raise': throws an error
        * 'omit': performs the calculations ignoring nan values
        * None: no special handling of NaNs is performed
          (except what is done by check_finite); the behavior when NaNs
          are present is implementation-dependent and may change.

        Note that if this value is specified explicitly (not None),
        `check_finite` will be set as False.

        .. versionadded:: 1.11
    **kwargs
        Keyword arguments passed to `leastsq` for ``method='lm'`` or
        `least_squares` otherwise.

    Returns
    -------
    popt : array
        Optimal values for the parameters so that the sum of the squared
        residuals of ``f(xdata, *popt) - ydata`` is minimized.
    pcov : 2-D array
        The estimated approximate covariance of popt. The diagonals provide
        the variance of the parameter estimate. To compute one standard
        deviation errors on the parameters, use
        ``perr = np.sqrt(np.diag(pcov))``. Note that the relationship between
        `cov` and parameter error estimates is derived based on a linear
        approximation to the model function around the optimum [1]_.
        When this approximation becomes inaccurate, `cov` may not provide an
        accurate measure of uncertainty.

        How the `sigma` parameter affects the estimated covariance
        depends on `absolute_sigma` argument, as described above.

        If the Jacobian matrix at the solution doesn't have a full rank, then
        'lm' method returns a matrix filled with ``np.inf``, on the other hand
        'trf'  and 'dogbox' methods use Moore-Penrose pseudoinverse to compute
        the covariance matrix. Covariance matrices with large condition numbers
        (e.g. computed with `numpy.linalg.cond`) may indicate that results are
        unreliable.
    infodict : dict (returned only if `full_output` is True)
        a dictionary of optional outputs with the keys:

        ``nfev``
            The number of function calls. Methods 'trf' and 'dogbox' do not
            count function calls for numerical Jacobian approximation,
            as opposed to 'lm' method.
        ``fvec``
            The residual values evaluated at the solution, for a 1-D `sigma`
            this is ``(f(x, *popt) - ydata)/sigma``.
        ``fjac``
            A permutation of the R matrix of a QR
            factorization of the final approximate
            Jacobian matrix, stored column wise.
            Together with ipvt, the covariance of the
            estimate can be approximated.
            Method 'lm' only provides this information.
        ``ipvt``
            An integer array of length N which defines
            a permutation matrix, p, such that
            fjac*p = q*r, where r is upper triangular
            with diagonal elements of nonincreasing
            magnitude. Column j of p is column ipvt(j)
            of the identity matrix.
            Method 'lm' only provides this information.
        ``qtf``
            The vector (transpose(q) * fvec).
            Method 'lm' only provides this information.

        .. versionadded:: 1.9
    mesg : str (returned only if `full_output` is True)
        A string message giving information about the solution.

        .. versionadded:: 1.9
    ier : int (returned only if `full_output` is True)
        An integer flag. If it is equal to 1, 2, 3 or 4, the solution was
        found. Otherwise, the solution was not found. In either case, the
        optional output variable `mesg` gives more information.

        .. versionadded:: 1.9

    Raises
    ------
    ValueError
        if either `ydata` or `xdata` contain NaNs, or if incompatible options
        are used.

    RuntimeError
        if the least-squares minimization fails.

    OptimizeWarning
        if covariance of the parameters can not be estimated.

    See Also
    --------
    least_squares : Minimize the sum of squares of nonlinear functions.
    scipy.stats.linregress : Calculate a linear least squares regression for
                             two sets of measurements.

    Notes
    -----
    Users should ensure that inputs `xdata`, `ydata`, and the output of `f`
    are ``float64``, or else the optimization may return incorrect results.

    With ``method='lm'``, the algorithm uses the Levenberg-Marquardt algorithm
    through `leastsq`. Note that this algorithm can only deal with
    unconstrained problems.

    Box constraints can be handled by methods 'trf' and 'dogbox'. Refer to
    the docstring of `least_squares` for more information.

    Parameters to be fitted must have similar scale. Differences of multiple
    orders of magnitude can lead to incorrect results. For the 'trf' and
    'dogbox' methods, the `x_scale` keyword argument can be used to scale
    the parameters.

    References
    ----------
    .. [1] K. Vugrin et al. Confidence region estimation techniques for nonlinear
           regression in groundwater flow: Three case studies. Water Resources
           Research, Vol. 43, W03423, :doi:`10.1029/2005WR004804`

    Examples
    --------
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.optimize import curve_fit

    >>> def func(x, a, b, c):
    ...     return a * np.exp(-b * x) + c

    Define the data to be fit with some noise:

    >>> xdata = np.linspace(0, 4, 50)
    >>> y = func(xdata, 2.5, 1.3, 0.5)
    >>> rng = np.random.default_rng()
    >>> y_noise = 0.2 * rng.normal(size=xdata.size)
    >>> ydata = y + y_noise
    >>> plt.plot(xdata, ydata, 'b-', label='data')

    Fit for the parameters a, b, c of the function `func`:

    >>> popt, pcov = curve_fit(func, xdata, ydata)
    >>> popt
    array([2.56274217, 1.37268521, 0.47427475])
    >>> plt.plot(xdata, func(xdata, *popt), 'r-',
    ...          label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

    Constrain the optimization to the region of ``0 <= a <= 3``,
    ``0 <= b <= 1`` and ``0 <= c <= 0.5``:

    >>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5]))
    >>> popt
    array([2.43736712, 1.        , 0.34463856])
    >>> plt.plot(xdata, func(xdata, *popt), 'g--',
    ...          label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

    >>> plt.xlabel('x')
    >>> plt.ylabel('y')
    >>> plt.legend()
    >>> plt.show()

    For reliable results, the model `func` should not be overparametrized;
    redundant parameters can cause unreliable covariance matrices and, in some
    cases, poorer quality fits. As a quick check of whether the model may be
    overparameterized, calculate the condition number of the covariance matrix:

    >>> np.linalg.cond(pcov)
    34.571092161547405  # may vary

    The value is small, so it does not raise much concern. If, however, we were
    to add a fourth parameter ``d`` to `func` with the same effect as ``a``:

    >>> def func2(x, a, b, c, d):
    ...     return a * d * np.exp(-b * x) + c  # a and d are redundant
    >>> popt, pcov = curve_fit(func2, xdata, ydata)
    >>> np.linalg.cond(pcov)
    1.13250718925596e+32  # may vary

    Such a large value is cause for concern. The diagonal elements of the
    covariance matrix, which is related to uncertainty of the fit, gives more
    information:

    >>> np.diag(pcov)
    array([1.48814742e+29, 3.78596560e-02, 5.39253738e-03, 2.76417220e+28])  # may vary

    Note that the first and last terms are much larger than the other elements,
    suggesting that the optimal values of these parameters are ambiguous and
    that only one of these parameters is needed in the model.

    If the optimal parameters of `f` differ by multiple orders of magnitude, the
    resulting fit can be inaccurate. Sometimes, `curve_fit` can fail to find any
    results:

    >>> ydata = func(xdata, 500000, 0.01, 15)
    >>> try:
    ...     popt, pcov = curve_fit(func, xdata, ydata, method = 'trf')
    ... except RuntimeError as e:
    ...     print(e)
    Optimal parameters not found: The maximum number of function evaluations is
    exceeded.

    If parameter scale is roughly known beforehand, it can be defined in
    `x_scale` argument:

    >>> popt, pcov = curve_fit(func, xdata, ydata, method = 'trf',
    ...                        x_scale = [1000, 1, 1])
    >>> popt
    array([5.00000000e+05, 1.00000000e-02, 1.49999999e+01])
    """
    if p0 is None:
        # determine number of parameters by inspecting the function
        sig = _getfullargspec(f)
        args = sig.args
        if len(args) < 2:
            raise ValueError("Unable to determine number of fit parameters.")
        n = len(args) - 1
    else:
        p0 = np.atleast_1d(p0)
        n = p0.size

    if isinstance(bounds, Bounds):
        lb, ub = bounds.lb, bounds.ub
    else:
        lb, ub = prepare_bounds(bounds, n)
    if p0 is None:
        p0 = _initialize_feasible(lb, ub)

    bounded_problem = np.any((lb > -np.inf) | (ub < np.inf))
    if method is None:
        if bounded_problem:
            method = 'trf'
        else:
            method = 'lm'

    if method == 'lm' and bounded_problem:
        raise ValueError("Method 'lm' only works for unconstrained problems. "
                         "Use 'trf' or 'dogbox' instead.")

    if check_finite is None:
        check_finite = True if nan_policy is None else False

    # optimization may produce garbage for float32 inputs, cast them to float64
    if check_finite:
        ydata = np.asarray_chkfinite(ydata, float)
    else:
        ydata = np.asarray(ydata, float)

    if isinstance(xdata, (list, tuple, np.ndarray)):
        # `xdata` is passed straight to the user-defined `f`, so allow
        # non-array_like `xdata`.
        if check_finite:
            xdata = np.asarray_chkfinite(xdata, float)
        else:
            xdata = np.asarray(xdata, float)

    if ydata.size == 0:
        raise ValueError("`ydata` must not be empty!")

    # nan handling is needed only if check_finite is False because if True,
    # the x-y data are already checked, and they don't contain nans.
    if not check_finite and nan_policy is not None:
        if nan_policy == "propagate":
            raise ValueError("`nan_policy='propagate'` is not supported "
                             "by this function.")

        policies = [None, 'raise', 'omit']
        x_contains_nan, nan_policy = _contains_nan(xdata, nan_policy,
                                                   policies=policies)
        y_contains_nan, nan_policy = _contains_nan(ydata, nan_policy,
                                                   policies=policies)

        if (x_contains_nan or y_contains_nan) and nan_policy == 'omit':
            # ignore NaNs for N dimensional arrays
            has_nan = np.isnan(xdata)
            has_nan = has_nan.any(axis=tuple(range(has_nan.ndim-1)))
            has_nan |= np.isnan(ydata)

            xdata = xdata[..., ~has_nan]
            ydata = ydata[~has_nan]

            # Also omit the corresponding entries from sigma
            if sigma is not None:
                sigma = np.asarray(sigma)
                if sigma.ndim == 1:
                    sigma = sigma[~has_nan]
                elif sigma.ndim == 2:
                    sigma = sigma[~has_nan, :]
                    sigma = sigma[:, ~has_nan]

    # Determine type of sigma
    if sigma is not None:
        sigma = np.asarray(sigma)

        # if 1-D or a scalar, sigma are errors, define transform = 1/sigma
        if sigma.size == 1 or sigma.shape == (ydata.size,):
            transform = 1.0 / sigma
        # if 2-D, sigma is the covariance matrix,
        # define transform = L such that L L^T = C
        elif sigma.shape == (ydata.size, ydata.size):
            try:
                # scipy.linalg.cholesky requires lower=True to return L L^T = A
                transform = cholesky(sigma, lower=True)
            except LinAlgError as e:
                raise ValueError("`sigma` must be positive definite.") from e
        else:
            raise ValueError("`sigma` has incorrect shape.")
    else:
        transform = None

    func = _lightweight_memoizer(_wrap_func(f, xdata, ydata, transform))

    if callable(jac):
        jac = _lightweight_memoizer(_wrap_jac(jac, xdata, transform))
    elif jac is None and method != 'lm':
        jac = '2-point'

    if 'args' in kwargs:
        # The specification for the model function `f` does not support
        # additional arguments. Refer to the `curve_fit` docstring for
        # acceptable call signatures of `f`.
        raise ValueError("'args' is not a supported keyword argument.")

    if method == 'lm':
        # if ydata.size == 1, this might be used for broadcast.
        if ydata.size != 1 and n > ydata.size:
            raise TypeError(f"The number of func parameters={n} must not"
                            f" exceed the number of data points={ydata.size}")
        res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
        popt, pcov, infodict, errmsg, ier = res
        ysize = len(infodict['fvec'])
        cost = np.sum(infodict['fvec'] ** 2)
        if ier not in [1, 2, 3, 4]:
            raise RuntimeError("Optimal parameters not found: " + errmsg)
    else:
        # Rename maxfev (leastsq) to max_nfev (least_squares), if specified.
        if 'max_nfev' not in kwargs:
            kwargs['max_nfev'] = kwargs.pop('maxfev', None)

        res = least_squares(func, p0, jac=jac, bounds=bounds, method=method,
                            **kwargs)

        if not res.success:
            raise RuntimeError("Optimal parameters not found: " + res.message)

        infodict = dict(nfev=res.nfev, fvec=res.fun)
        ier = res.status
        errmsg = res.message

        ysize = len(res.fun)
        cost = 2 * res.cost  # res.cost is half sum of squares!
        popt = res.x

        # Do Moore-Penrose inverse discarding zero singular values.
        _, s, VT = svd(res.jac, full_matrices=False)
        threshold = np.finfo(float).eps * max(res.jac.shape) * s[0]
        s = s[s > threshold]
        VT = VT[:s.size]
        pcov = np.dot(VT.T / s**2, VT)

    warn_cov = False
    if pcov is None or np.isnan(pcov).any():
        # indeterminate covariance
        pcov = zeros((len(popt), len(popt)), dtype=float)
        pcov.fill(inf)
        warn_cov = True
    elif not absolute_sigma:
        if ysize > p0.size:
            s_sq = cost / (ysize - p0.size)
            pcov = pcov * s_sq
        else:
            pcov.fill(inf)
            warn_cov = True

    if warn_cov:
        warnings.warn('Covariance of the parameters could not be estimated',
                      category=OptimizeWarning, stacklevel=2)

    if full_output:
        return popt, pcov, infodict, errmsg, ier
    else:
        return popt, pcov


def check_gradient(fcn, Dfcn, x0, args=(), col_deriv=0):
    """Perform a simple check on the gradient for correctness.

    """

    x = atleast_1d(x0)
    n = len(x)
    x = x.reshape((n,))
    fvec = atleast_1d(fcn(x, *args))
    m = len(fvec)
    fvec = fvec.reshape((m,))
    ldfjac = m
    fjac = atleast_1d(Dfcn(x, *args))
    fjac = fjac.reshape((m, n))
    if col_deriv == 0:
        fjac = transpose(fjac)

    xp = zeros((n,), float)
    err = zeros((m,), float)
    fvecp = None
    _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err)

    fvecp = atleast_1d(fcn(xp, *args))
    fvecp = fvecp.reshape((m,))
    _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err)

    good = (prod(greater(err, 0.5), axis=0))

    return (good, err)


def _del2(p0, p1, d):
    return p0 - np.square(p1 - p0) / d


def _relerr(actual, desired):
    return (actual - desired) / desired


def _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel):
    p0 = x0
    for i in range(maxiter):
        p1 = func(p0, *args)
        if use_accel:
            p2 = func(p1, *args)
            d = p2 - 2.0 * p1 + p0
            p = _lazywhere(d != 0, (p0, p1, d), f=_del2, fillvalue=p2)
        else:
            p = p1
        relerr = _lazywhere(p0 != 0, (p, p0), f=_relerr, fillvalue=p)
        if np.all(np.abs(relerr) < xtol):
            return p
        p0 = p
    msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p)
    raise RuntimeError(msg)


def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500, method='del2'):
    """
    Find a fixed point of the function.

    Given a function of one or more variables and a starting point, find a
    fixed point of the function: i.e., where ``func(x0) == x0``.

    Parameters
    ----------
    func : function
        Function to evaluate.
    x0 : array_like
        Fixed point of function.
    args : tuple, optional
        Extra arguments to `func`.
    xtol : float, optional
        Convergence tolerance, defaults to 1e-08.
    maxiter : int, optional
        Maximum number of iterations, defaults to 500.
    method : {"del2", "iteration"}, optional
        Method of finding the fixed-point, defaults to "del2",
        which uses Steffensen's Method with Aitken's ``Del^2``
        convergence acceleration [1]_. The "iteration" method simply iterates
        the function until convergence is detected, without attempting to
        accelerate the convergence.

    References
    ----------
    .. [1] Burden, Faires, "Numerical Analysis", 5th edition, pg. 80

    Examples
    --------
    >>> import numpy as np
    >>> from scipy import optimize
    >>> def func(x, c1, c2):
    ...    return np.sqrt(c1/(x+c2))
    >>> c1 = np.array([10,12.])
    >>> c2 = np.array([3, 5.])
    >>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2))
    array([ 1.4920333 ,  1.37228132])

    """
    use_accel = {'del2': True, 'iteration': False}[method]
    x0 = _asarray_validated(x0, as_inexact=True)
    return _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel)