File size: 17,027 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
"""HiGHS Linear Optimization Methods

Interface to HiGHS linear optimization software.
https://highs.dev/

.. versionadded:: 1.5.0

References
----------
.. [1] Q. Huangfu and J.A.J. Hall. "Parallelizing the dual revised simplex
           method." Mathematical Programming Computation, 10 (1), 119-142,
           2018. DOI: 10.1007/s12532-017-0130-5

"""

import inspect
import numpy as np
from ._optimize import OptimizeWarning, OptimizeResult
from warnings import warn
from ._highspy._highs_wrapper import _highs_wrapper
from ._highspy._core import(
    kHighsInf,
    HighsDebugLevel,
    ObjSense,
    HighsModelStatus,
)
from ._highspy._core.simplex_constants import (
    SimplexStrategy,
    SimplexEdgeWeightStrategy,
)
from scipy.sparse import csc_matrix, vstack, issparse


def _highs_to_scipy_status_message(highs_status, highs_message):
    """Converts HiGHS status number/message to SciPy status number/message"""

    scipy_statuses_messages = {
        None: (4, "HiGHS did not provide a status code. "),
        HighsModelStatus.kNotset: (4, ""),
        HighsModelStatus.kLoadError: (4, ""),
        HighsModelStatus.kModelError: (2, ""),
        HighsModelStatus.kPresolveError: (4, ""),
        HighsModelStatus.kSolveError: (4, ""),
        HighsModelStatus.kPostsolveError: (4, ""),
        HighsModelStatus.kModelEmpty: (4, ""),
        HighsModelStatus.kObjectiveBound: (4, ""),
        HighsModelStatus.kObjectiveTarget: (4, ""),
        HighsModelStatus.kOptimal: (0, "Optimization terminated successfully. "),
        HighsModelStatus.kTimeLimit: (1, "Time limit reached. "),
        HighsModelStatus.kIterationLimit: (1, "Iteration limit reached. "),
        HighsModelStatus.kInfeasible: (2, "The problem is infeasible. "),
        HighsModelStatus.kUnbounded: (3, "The problem is unbounded. "),
        HighsModelStatus.kUnboundedOrInfeasible: (4, "The problem is unbounded "
                                                  "or infeasible. ")}
    unrecognized = (4, "The HiGHS status code was not recognized. ")
    scipy_status, scipy_message = (
        scipy_statuses_messages.get(highs_status, unrecognized))
    hstat = int(highs_status) if highs_status is not None else None
    scipy_message = (f"{scipy_message}"
                     f"(HiGHS Status {hstat}: {highs_message})")
    return scipy_status, scipy_message


def _replace_inf(x):
    # Replace `np.inf` with kHighsInf
    infs = np.isinf(x)
    with np.errstate(invalid="ignore"):
        x[infs] = np.sign(x[infs])*kHighsInf
    return x


def _convert_to_highs_enum(option, option_str, choices):
    # If option is in the choices we can look it up, if not use
    # the default value taken from function signature and warn:
    try:
        return choices[option.lower()]
    except AttributeError:
        return choices[option]
    except KeyError:
        sig = inspect.signature(_linprog_highs)
        default_str = sig.parameters[option_str].default
        warn(f"Option {option_str} is {option}, but only values in "
             f"{set(choices.keys())} are allowed. Using default: "
             f"{default_str}.",
             OptimizeWarning, stacklevel=3)
        return choices[default_str]


def _linprog_highs(lp, solver, time_limit=None, presolve=True,
                   disp=False, maxiter=None,
                   dual_feasibility_tolerance=None,
                   primal_feasibility_tolerance=None,
                   ipm_optimality_tolerance=None,
                   simplex_dual_edge_weight_strategy=None,
                   mip_rel_gap=None,
                   mip_max_nodes=None,
                   **unknown_options):
    r"""
    Solve the following linear programming problem using one of the HiGHS
    solvers:

    User-facing documentation is in _linprog_doc.py.

    Parameters
    ----------
    lp :  _LPProblem
        A ``scipy.optimize._linprog_util._LPProblem`` ``namedtuple``.
    solver : "ipm" or "simplex" or None
        Which HiGHS solver to use.  If ``None``, "simplex" will be used.

    Options
    -------
    maxiter : int
        The maximum number of iterations to perform in either phase. For
        ``solver='ipm'``, this does not include the number of crossover
        iterations.  Default is the largest possible value for an ``int``
        on the platform.
    disp : bool
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration; default ``False``.
    time_limit : float
        The maximum time in seconds allotted to solve the problem; default is
        the largest possible value for a ``double`` on the platform.
    presolve : bool
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if presolve is
        to be disabled.
    dual_feasibility_tolerance : double
        Dual feasibility tolerance.  Default is 1e-07.
        The minimum of this and ``primal_feasibility_tolerance``
        is used for the feasibility tolerance when ``solver='ipm'``.
    primal_feasibility_tolerance : double
        Primal feasibility tolerance.  Default is 1e-07.
        The minimum of this and ``dual_feasibility_tolerance``
        is used for the feasibility tolerance when ``solver='ipm'``.
    ipm_optimality_tolerance : double
        Optimality tolerance for ``solver='ipm'``.  Default is 1e-08.
        Minimum possible value is 1e-12 and must be smaller than the largest
        possible value for a ``double`` on the platform.
    simplex_dual_edge_weight_strategy : str (default: None)
        Strategy for simplex dual edge weights. The default, ``None``,
        automatically selects one of the following.

        ``'dantzig'`` uses Dantzig's original strategy of choosing the most
        negative reduced cost.

        ``'devex'`` uses the strategy described in [15]_.

        ``steepest`` uses the exact steepest edge strategy as described in
        [16]_.

        ``'steepest-devex'`` begins with the exact steepest edge strategy
        until the computation is too costly or inexact and then switches to
        the devex method.

        Currently, using ``None`` always selects ``'steepest-devex'``, but this
        may change as new options become available.

    mip_max_nodes : int
        The maximum number of nodes allotted to solve the problem; default is
        the largest possible value for a ``HighsInt`` on the platform.
        Ignored if not using the MIP solver.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        ``unknown_options`` is non-empty, a warning is issued listing all
        unused options.

    Returns
    -------
    sol : dict
        A dictionary consisting of the fields:

            x : 1D array
                The values of the decision variables that minimizes the
                objective function while satisfying the constraints.
            fun : float
                The optimal value of the objective function ``c @ x``.
            slack : 1D array
                The (nominally positive) values of the slack,
                ``b_ub - A_ub @ x``.
            con : 1D array
                The (nominally zero) residuals of the equality constraints,
                ``b_eq - A_eq @ x``.
            success : bool
                ``True`` when the algorithm succeeds in finding an optimal
                solution.
            status : int
                An integer representing the exit status of the algorithm.

                ``0`` : Optimization terminated successfully.

                ``1`` : Iteration or time limit reached.

                ``2`` : Problem appears to be infeasible.

                ``3`` : Problem appears to be unbounded.

                ``4`` : The HiGHS solver ran into a problem.

            message : str
                A string descriptor of the exit status of the algorithm.
            nit : int
                The total number of iterations performed.
                For ``solver='simplex'``, this includes iterations in all
                phases. For ``solver='ipm'``, this does not include
                crossover iterations.
            crossover_nit : int
                The number of primal/dual pushes performed during the
                crossover routine for ``solver='ipm'``.  This is ``0``
                for ``solver='simplex'``.
            ineqlin : OptimizeResult
                Solution and sensitivity information corresponding to the
                inequality constraints, `b_ub`. A dictionary consisting of the
                fields:

                residual : np.ndnarray
                    The (nominally positive) values of the slack variables,
                    ``b_ub - A_ub @ x``.  This quantity is also commonly
                    referred to as "slack".

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the right-hand side of the
                    inequality constraints, `b_ub`.

            eqlin : OptimizeResult
                Solution and sensitivity information corresponding to the
                equality constraints, `b_eq`.  A dictionary consisting of the
                fields:

                residual : np.ndarray
                    The (nominally zero) residuals of the equality constraints,
                    ``b_eq - A_eq @ x``.

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the right-hand side of the
                    equality constraints, `b_eq`.

            lower, upper : OptimizeResult
                Solution and sensitivity information corresponding to the
                lower and upper bounds on decision variables, `bounds`.

                residual : np.ndarray
                    The (nominally positive) values of the quantity
                    ``x - lb`` (lower) or ``ub - x`` (upper).

                marginals : np.ndarray
                    The sensitivity (partial derivative) of the objective
                    function with respect to the lower and upper
                    `bounds`.

            mip_node_count : int
                The number of subproblems or "nodes" solved by the MILP
                solver. Only present when `integrality` is not `None`.

            mip_dual_bound : float
                The MILP solver's final estimate of the lower bound on the
                optimal solution. Only present when `integrality` is not
                `None`.

            mip_gap : float
                The difference between the final objective function value
                and the final dual bound, scaled by the final objective
                function value. Only present when `integrality` is not
                `None`.

    Notes
    -----
    The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
    `marginals`, or partial derivatives of the objective function with respect
    to the right-hand side of each constraint. These partial derivatives are
    also referred to as "Lagrange multipliers", "dual values", and
    "shadow prices". The sign convention of `marginals` is opposite that
    of Lagrange multipliers produced by many nonlinear solvers.

    References
    ----------
    .. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
            Mathematical programming 5.1 (1973): 1-28.
    .. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
            simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
    """
    if unknown_options:
        message = (f"Unrecognized options detected: {unknown_options}. "
                   "These will be passed to HiGHS verbatim.")
        warn(message, OptimizeWarning, stacklevel=3)

    # Map options to HiGHS enum values
    simplex_dual_edge_weight_strategy_enum = _convert_to_highs_enum(
        simplex_dual_edge_weight_strategy,
        'simplex_dual_edge_weight_strategy',
        choices={'dantzig': \
                 SimplexEdgeWeightStrategy.kSimplexEdgeWeightStrategyDantzig,
                 'devex': \
                 SimplexEdgeWeightStrategy.kSimplexEdgeWeightStrategyDevex,
                 'steepest-devex': \
                 SimplexEdgeWeightStrategy.kSimplexEdgeWeightStrategyChoose,
                 'steepest': \
                 SimplexEdgeWeightStrategy.kSimplexEdgeWeightStrategySteepestEdge,
                 None: None})

    c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp

    lb, ub = bounds.T.copy()  # separate bounds, copy->C-cntgs
    # highs_wrapper solves LHS <= A*x <= RHS, not equality constraints
    with np.errstate(invalid="ignore"):
        lhs_ub = -np.ones_like(b_ub)*np.inf  # LHS of UB constraints is -inf
    rhs_ub = b_ub  # RHS of UB constraints is b_ub
    lhs_eq = b_eq  # Equality constraint is inequality
    rhs_eq = b_eq  # constraint with LHS=RHS
    lhs = np.concatenate((lhs_ub, lhs_eq))
    rhs = np.concatenate((rhs_ub, rhs_eq))

    if issparse(A_ub) or issparse(A_eq):
        A = vstack((A_ub, A_eq))
    else:
        A = np.vstack((A_ub, A_eq))
    A = csc_matrix(A)

    options = {
        'presolve': presolve,
        'sense': ObjSense.kMinimize,
        'solver': solver,
        'time_limit': time_limit,
        'highs_debug_level': HighsDebugLevel.kHighsDebugLevelNone,
        'dual_feasibility_tolerance': dual_feasibility_tolerance,
        'ipm_optimality_tolerance': ipm_optimality_tolerance,
        'log_to_console': disp,
        'mip_max_nodes': mip_max_nodes,
        'output_flag': disp,
        'primal_feasibility_tolerance': primal_feasibility_tolerance,
        'simplex_dual_edge_weight_strategy':
            simplex_dual_edge_weight_strategy_enum,
        'simplex_strategy': SimplexStrategy.kSimplexStrategyDual,
        'ipm_iteration_limit': maxiter,
        'simplex_iteration_limit': maxiter,
        'mip_rel_gap': mip_rel_gap,
    }
    options.update(unknown_options)

    # np.inf doesn't work; use very large constant
    rhs = _replace_inf(rhs)
    lhs = _replace_inf(lhs)
    lb = _replace_inf(lb)
    ub = _replace_inf(ub)

    if integrality is None or np.sum(integrality) == 0:
        integrality = np.empty(0)
    else:
        integrality = np.array(integrality)

    res = _highs_wrapper(c, A.indptr, A.indices, A.data, lhs, rhs,
                         lb, ub, integrality.astype(np.uint8), options)

    # HiGHS represents constraints as lhs/rhs, so
    # Ax + s = b => Ax = b - s
    # and we need to split up s by A_ub and A_eq
    if 'slack' in res:
        slack = res['slack']
        con = np.array(slack[len(b_ub):])
        slack = np.array(slack[:len(b_ub)])
    else:
        slack, con = None, None

    # lagrange multipliers for equalities/inequalities and upper/lower bounds
    if 'lambda' in res:
        lamda = res['lambda']
        marg_ineqlin = np.array(lamda[:len(b_ub)])
        marg_eqlin = np.array(lamda[len(b_ub):])
        marg_upper = np.array(res['marg_bnds'][1, :])
        marg_lower = np.array(res['marg_bnds'][0, :])
    else:
        marg_ineqlin, marg_eqlin = None, None
        marg_upper, marg_lower = None, None

    # this needs to be updated if we start choosing the solver intelligently

    # Convert to scipy-style status and message
    highs_status = res.get('status', None)
    highs_message = res.get('message', None)
    status, message = _highs_to_scipy_status_message(highs_status,
                                                     highs_message)

    x = res['x'] # is None if not set
    sol = {'x': x,
           'slack': slack,
           'con': con,
           'ineqlin': OptimizeResult({
               'residual': slack,
               'marginals': marg_ineqlin,
           }),
           'eqlin': OptimizeResult({
               'residual': con,
               'marginals': marg_eqlin,
           }),
           'lower': OptimizeResult({
               'residual': None if x is None else x - lb,
               'marginals': marg_lower,
           }),
           'upper': OptimizeResult({
               'residual': None if x is None else ub - x,
               'marginals': marg_upper
            }),
           'fun': res.get('fun'),
           'status': status,
           'success': res['status'] == HighsModelStatus.kOptimal,
           'message': message,
           'nit': res.get('simplex_nit', 0) or res.get('ipm_nit', 0),
           'crossover_nit': res.get('crossover_nit'),
           }

    if np.any(x) and integrality is not None:
        sol.update({
            'mip_node_count': res.get('mip_node_count', 0),
            'mip_dual_bound': res.get('mip_dual_bound', 0.0),
            'mip_gap': res.get('mip_gap', 0.0),
        })

    return sol