File size: 61,942 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
"""
Created on Sat Aug 22 19:49:17 2020

@author: matth
"""


def _linprog_highs_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
                       bounds=None, method='highs', callback=None,
                       maxiter=None, disp=False, presolve=True,
                       time_limit=None,
                       dual_feasibility_tolerance=None,
                       primal_feasibility_tolerance=None,
                       ipm_optimality_tolerance=None,
                       simplex_dual_edge_weight_strategy=None,
                       mip_rel_gap=None,
                       **unknown_options):
    r"""
    Linear programming: minimize a linear objective function subject to linear
    equality and inequality constraints using one of the HiGHS solvers.

    Linear programming solves problems of the following form:

    .. math::

        \min_x \ & c^T x \\
        \mbox{such that} \ & A_{ub} x \leq b_{ub},\\
        & A_{eq} x = b_{eq},\\
        & l \leq x \leq u ,

    where :math:`x` is a vector of decision variables; :math:`c`,
    :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
    :math:`A_{ub}` and :math:`A_{eq}` are matrices.

    Alternatively, that's:

    minimize::

        c @ x

    such that::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
        lb <= x <= ub

    Note that by default ``lb = 0`` and ``ub = None`` unless specified with
    ``bounds``.

    Parameters
    ----------
    c : 1-D array
        The coefficients of the linear objective function to be minimized.
    A_ub : 2-D array, optional
        The inequality constraint matrix. Each row of ``A_ub`` specifies the
        coefficients of a linear inequality constraint on ``x``.
    b_ub : 1-D array, optional
        The inequality constraint vector. Each element represents an
        upper bound on the corresponding value of ``A_ub @ x``.
    A_eq : 2-D array, optional
        The equality constraint matrix. Each row of ``A_eq`` specifies the
        coefficients of a linear equality constraint on ``x``.
    b_eq : 1-D array, optional
        The equality constraint vector. Each element of ``A_eq @ x`` must equal
        the corresponding element of ``b_eq``.
    bounds : sequence, optional
        A sequence of ``(min, max)`` pairs for each element in ``x``, defining
        the minimum and maximum values of that decision variable. Use ``None``
        to indicate that there is no bound. By default, bounds are
        ``(0, None)`` (all decision variables are non-negative).
        If a single tuple ``(min, max)`` is provided, then ``min`` and
        ``max`` will serve as bounds for all decision variables.
    method : str

        This is the method-specific documentation for 'highs', which chooses
        automatically between
        :ref:`'highs-ds' <optimize.linprog-highs-ds>` and
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
        :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
        :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
        :ref:`'simplex' <optimize.linprog-simplex>` (legacy)
        are also available.
    integrality : 1-D array or int, optional
        Indicates the type of integrality constraint on each decision variable.

        ``0`` : Continuous variable; no integrality constraint.

        ``1`` : Integer variable; decision variable must be an integer
        within `bounds`.

        ``2`` : Semi-continuous variable; decision variable must be within
        `bounds` or take value ``0``.

        ``3`` : Semi-integer variable; decision variable must be an integer
        within `bounds` or take value ``0``.

        By default, all variables are continuous.

        For mixed integrality constraints, supply an array of shape `c.shape`.
        To infer a constraint on each decision variable from shorter inputs,
        the argument will be broadcast to `c.shape` using `np.broadcast_to`.

        This argument is currently used only by the ``'highs'`` method and
        ignored otherwise.

    Options
    -------
    maxiter : int
        The maximum number of iterations to perform in either phase.
        For :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`, this does not
        include the number of crossover iterations. Default is the largest
        possible value for an ``int`` on the platform.
    disp : bool (default: ``False``)
        Set to ``True`` if indicators of optimization status are to be
        printed to the console during optimization.
    presolve : bool (default: ``True``)
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if
        presolve is to be disabled.
    time_limit : float
        The maximum time in seconds allotted to solve the problem;
        default is the largest possible value for a ``double`` on the
        platform.
    dual_feasibility_tolerance : double (default: 1e-07)
        Dual feasibility tolerance for
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`.
        The minimum of this and ``primal_feasibility_tolerance``
        is used for the feasibility tolerance of
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
    primal_feasibility_tolerance : double (default: 1e-07)
        Primal feasibility tolerance for
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`.
        The minimum of this and ``dual_feasibility_tolerance``
        is used for the feasibility tolerance of
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
    ipm_optimality_tolerance : double (default: ``1e-08``)
        Optimality tolerance for
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
        Minimum allowable value is 1e-12.
    simplex_dual_edge_weight_strategy : str (default: None)
        Strategy for simplex dual edge weights. The default, ``None``,
        automatically selects one of the following.

        ``'dantzig'`` uses Dantzig's original strategy of choosing the most
        negative reduced cost.

        ``'devex'`` uses the strategy described in [15]_.

        ``steepest`` uses the exact steepest edge strategy as described in
        [16]_.

        ``'steepest-devex'`` begins with the exact steepest edge strategy
        until the computation is too costly or inexact and then switches to
        the devex method.

        Currently, ``None`` always selects ``'steepest-devex'``, but this
        may change as new options become available.
    mip_rel_gap : double (default: None)
        Termination criterion for MIP solver: solver will terminate when the
        gap between the primal objective value and the dual objective bound,
        scaled by the primal objective value, is <= mip_rel_gap.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        ``unknown_options`` is non-empty, a warning is issued listing
        all unused options.

    Returns
    -------
    res : OptimizeResult
        A :class:`scipy.optimize.OptimizeResult` consisting of the fields:

        x : 1D array
            The values of the decision variables that minimizes the
            objective function while satisfying the constraints.
        fun : float
            The optimal value of the objective function ``c @ x``.
        slack : 1D array
            The (nominally positive) values of the slack,
            ``b_ub - A_ub @ x``.
        con : 1D array
            The (nominally zero) residuals of the equality constraints,
            ``b_eq - A_eq @ x``.
        success : bool
            ``True`` when the algorithm succeeds in finding an optimal
            solution.
        status : int
            An integer representing the exit status of the algorithm.

            ``0`` : Optimization terminated successfully.

            ``1`` : Iteration or time limit reached.

            ``2`` : Problem appears to be infeasible.

            ``3`` : Problem appears to be unbounded.

            ``4`` : The HiGHS solver ran into a problem.

        message : str
            A string descriptor of the exit status of the algorithm.
        nit : int
            The total number of iterations performed.
            For the HiGHS simplex method, this includes iterations in all
            phases. For the HiGHS interior-point method, this does not include
            crossover iterations.
        crossover_nit : int
            The number of primal/dual pushes performed during the
            crossover routine for the HiGHS interior-point method.
            This is ``0`` for the HiGHS simplex method.
        ineqlin : OptimizeResult
            Solution and sensitivity information corresponding to the
            inequality constraints, `b_ub`. A dictionary consisting of the
            fields:

            residual : np.ndnarray
                The (nominally positive) values of the slack variables,
                ``b_ub - A_ub @ x``.  This quantity is also commonly
                referred to as "slack".

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the right-hand side of the
                inequality constraints, `b_ub`.

        eqlin : OptimizeResult
            Solution and sensitivity information corresponding to the
            equality constraints, `b_eq`.  A dictionary consisting of the
            fields:

            residual : np.ndarray
                The (nominally zero) residuals of the equality constraints,
                ``b_eq - A_eq @ x``.

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the right-hand side of the
                equality constraints, `b_eq`.

        lower, upper : OptimizeResult
            Solution and sensitivity information corresponding to the
            lower and upper bounds on decision variables, `bounds`.

            residual : np.ndarray
                The (nominally positive) values of the quantity
                ``x - lb`` (lower) or ``ub - x`` (upper).

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the lower and upper
                `bounds`.

    Notes
    -----

    Method :ref:`'highs-ds' <optimize.linprog-highs-ds>` is a wrapper
    of the C++ high performance dual revised simplex implementation (HSOL)
    [13]_, [14]_. Method :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`
    is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint
    **m**\ ethod [13]_; it features a crossover routine, so it is as accurate
    as a simplex solver. Method :ref:`'highs' <optimize.linprog-highs>` chooses
    between the two automatically. For new code involving `linprog`, we
    recommend explicitly choosing one of these three method values instead of
    :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
    :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
    :ref:`'simplex' <optimize.linprog-simplex>` (legacy).

    The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
    `marginals`, or partial derivatives of the objective function with respect
    to the right-hand side of each constraint. These partial derivatives are
    also referred to as "Lagrange multipliers", "dual values", and
    "shadow prices". The sign convention of `marginals` is opposite that
    of Lagrange multipliers produced by many nonlinear solvers.

    References
    ----------
    .. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J.
           "HiGHS - high performance software for linear optimization."
           https://highs.dev/
    .. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised
           simplex method." Mathematical Programming Computation, 10 (1),
           119-142, 2018. DOI: 10.1007/s12532-017-0130-5
    .. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
            Mathematical programming 5.1 (1973): 1-28.
    .. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
            simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
    """
    pass


def _linprog_highs_ds_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
                          bounds=None, method='highs-ds', callback=None,
                          maxiter=None, disp=False, presolve=True,
                          time_limit=None,
                          dual_feasibility_tolerance=None,
                          primal_feasibility_tolerance=None,
                          simplex_dual_edge_weight_strategy=None,
                          **unknown_options):
    r"""
    Linear programming: minimize a linear objective function subject to linear
    equality and inequality constraints using the HiGHS dual simplex solver.

    Linear programming solves problems of the following form:

    .. math::

        \min_x \ & c^T x \\
        \mbox{such that} \ & A_{ub} x \leq b_{ub},\\
        & A_{eq} x = b_{eq},\\
        & l \leq x \leq u ,

    where :math:`x` is a vector of decision variables; :math:`c`,
    :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
    :math:`A_{ub}` and :math:`A_{eq}` are matrices.

    Alternatively, that's:

    minimize::

        c @ x

    such that::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
        lb <= x <= ub

    Note that by default ``lb = 0`` and ``ub = None`` unless specified with
    ``bounds``.

    Parameters
    ----------
    c : 1-D array
        The coefficients of the linear objective function to be minimized.
    A_ub : 2-D array, optional
        The inequality constraint matrix. Each row of ``A_ub`` specifies the
        coefficients of a linear inequality constraint on ``x``.
    b_ub : 1-D array, optional
        The inequality constraint vector. Each element represents an
        upper bound on the corresponding value of ``A_ub @ x``.
    A_eq : 2-D array, optional
        The equality constraint matrix. Each row of ``A_eq`` specifies the
        coefficients of a linear equality constraint on ``x``.
    b_eq : 1-D array, optional
        The equality constraint vector. Each element of ``A_eq @ x`` must equal
        the corresponding element of ``b_eq``.
    bounds : sequence, optional
        A sequence of ``(min, max)`` pairs for each element in ``x``, defining
        the minimum and maximum values of that decision variable. Use ``None``
        to indicate that there is no bound. By default, bounds are
        ``(0, None)`` (all decision variables are non-negative).
        If a single tuple ``(min, max)`` is provided, then ``min`` and
        ``max`` will serve as bounds for all decision variables.
    method : str

        This is the method-specific documentation for 'highs-ds'.
        :ref:`'highs' <optimize.linprog-highs>`,
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
        :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
        :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
        :ref:`'simplex' <optimize.linprog-simplex>` (legacy)
        are also available.

    Options
    -------
    maxiter : int
        The maximum number of iterations to perform in either phase.
        Default is the largest possible value for an ``int`` on the platform.
    disp : bool (default: ``False``)
        Set to ``True`` if indicators of optimization status are to be
        printed to the console during optimization.
    presolve : bool (default: ``True``)
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if
        presolve is to be disabled.
    time_limit : float
        The maximum time in seconds allotted to solve the problem;
        default is the largest possible value for a ``double`` on the
        platform.
    dual_feasibility_tolerance : double (default: 1e-07)
        Dual feasibility tolerance for
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`.
    primal_feasibility_tolerance : double (default: 1e-07)
        Primal feasibility tolerance for
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`.
    simplex_dual_edge_weight_strategy : str (default: None)
        Strategy for simplex dual edge weights. The default, ``None``,
        automatically selects one of the following.

        ``'dantzig'`` uses Dantzig's original strategy of choosing the most
        negative reduced cost.

        ``'devex'`` uses the strategy described in [15]_.

        ``steepest`` uses the exact steepest edge strategy as described in
        [16]_.

        ``'steepest-devex'`` begins with the exact steepest edge strategy
        until the computation is too costly or inexact and then switches to
        the devex method.

        Currently, ``None`` always selects ``'steepest-devex'``, but this
        may change as new options become available.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        ``unknown_options`` is non-empty, a warning is issued listing
        all unused options.

    Returns
    -------
    res : OptimizeResult
        A :class:`scipy.optimize.OptimizeResult` consisting of the fields:

        x : 1D array
            The values of the decision variables that minimizes the
            objective function while satisfying the constraints.
        fun : float
            The optimal value of the objective function ``c @ x``.
        slack : 1D array
            The (nominally positive) values of the slack,
            ``b_ub - A_ub @ x``.
        con : 1D array
            The (nominally zero) residuals of the equality constraints,
            ``b_eq - A_eq @ x``.
        success : bool
            ``True`` when the algorithm succeeds in finding an optimal
            solution.
        status : int
            An integer representing the exit status of the algorithm.

            ``0`` : Optimization terminated successfully.

            ``1`` : Iteration or time limit reached.

            ``2`` : Problem appears to be infeasible.

            ``3`` : Problem appears to be unbounded.

            ``4`` : The HiGHS solver ran into a problem.

        message : str
            A string descriptor of the exit status of the algorithm.
        nit : int
            The total number of iterations performed. This includes iterations
            in all phases.
        crossover_nit : int
            This is always ``0`` for the HiGHS simplex method.
            For the HiGHS interior-point method, this is the number of
            primal/dual pushes performed during the crossover routine.
        ineqlin : OptimizeResult
            Solution and sensitivity information corresponding to the
            inequality constraints, `b_ub`. A dictionary consisting of the
            fields:

            residual : np.ndnarray
                The (nominally positive) values of the slack variables,
                ``b_ub - A_ub @ x``.  This quantity is also commonly
                referred to as "slack".

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the right-hand side of the
                inequality constraints, `b_ub`.

        eqlin : OptimizeResult
            Solution and sensitivity information corresponding to the
            equality constraints, `b_eq`.  A dictionary consisting of the
            fields:

            residual : np.ndarray
                The (nominally zero) residuals of the equality constraints,
                ``b_eq - A_eq @ x``.

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the right-hand side of the
                equality constraints, `b_eq`.

        lower, upper : OptimizeResult
            Solution and sensitivity information corresponding to the
            lower and upper bounds on decision variables, `bounds`.

            residual : np.ndarray
                The (nominally positive) values of the quantity
                ``x - lb`` (lower) or ``ub - x`` (upper).

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the lower and upper
                `bounds`.

    Notes
    -----

    Method :ref:`'highs-ds' <optimize.linprog-highs-ds>` is a wrapper
    of the C++ high performance dual revised simplex implementation (HSOL)
    [13]_, [14]_. Method :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`
    is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint
    **m**\ ethod [13]_; it features a crossover routine, so it is as accurate
    as a simplex solver. Method :ref:`'highs' <optimize.linprog-highs>` chooses
    between the two automatically. For new code involving `linprog`, we
    recommend explicitly choosing one of these three method values instead of
    :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
    :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
    :ref:`'simplex' <optimize.linprog-simplex>` (legacy).

    The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
    `marginals`, or partial derivatives of the objective function with respect
    to the right-hand side of each constraint. These partial derivatives are
    also referred to as "Lagrange multipliers", "dual values", and
    "shadow prices". The sign convention of `marginals` is opposite that
    of Lagrange multipliers produced by many nonlinear solvers.

    References
    ----------
    .. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J.
           "HiGHS - high performance software for linear optimization."
           https://highs.dev/
    .. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised
           simplex method." Mathematical Programming Computation, 10 (1),
           119-142, 2018. DOI: 10.1007/s12532-017-0130-5
    .. [15] Harris, Paula MJ. "Pivot selection methods of the Devex LP code."
            Mathematical programming 5.1 (1973): 1-28.
    .. [16] Goldfarb, Donald, and John Ker Reid. "A practicable steepest-edge
            simplex algorithm." Mathematical Programming 12.1 (1977): 361-371.
    """
    pass


def _linprog_highs_ipm_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
                           bounds=None, method='highs-ipm', callback=None,
                           maxiter=None, disp=False, presolve=True,
                           time_limit=None,
                           dual_feasibility_tolerance=None,
                           primal_feasibility_tolerance=None,
                           ipm_optimality_tolerance=None,
                           **unknown_options):
    r"""
    Linear programming: minimize a linear objective function subject to linear
    equality and inequality constraints using the HiGHS interior point solver.

    Linear programming solves problems of the following form:

    .. math::

        \min_x \ & c^T x \\
        \mbox{such that} \ & A_{ub} x \leq b_{ub},\\
        & A_{eq} x = b_{eq},\\
        & l \leq x \leq u ,

    where :math:`x` is a vector of decision variables; :math:`c`,
    :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
    :math:`A_{ub}` and :math:`A_{eq}` are matrices.

    Alternatively, that's:

    minimize::

        c @ x

    such that::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
        lb <= x <= ub

    Note that by default ``lb = 0`` and ``ub = None`` unless specified with
    ``bounds``.

    Parameters
    ----------
    c : 1-D array
        The coefficients of the linear objective function to be minimized.
    A_ub : 2-D array, optional
        The inequality constraint matrix. Each row of ``A_ub`` specifies the
        coefficients of a linear inequality constraint on ``x``.
    b_ub : 1-D array, optional
        The inequality constraint vector. Each element represents an
        upper bound on the corresponding value of ``A_ub @ x``.
    A_eq : 2-D array, optional
        The equality constraint matrix. Each row of ``A_eq`` specifies the
        coefficients of a linear equality constraint on ``x``.
    b_eq : 1-D array, optional
        The equality constraint vector. Each element of ``A_eq @ x`` must equal
        the corresponding element of ``b_eq``.
    bounds : sequence, optional
        A sequence of ``(min, max)`` pairs for each element in ``x``, defining
        the minimum and maximum values of that decision variable. Use ``None``
        to indicate that there is no bound. By default, bounds are
        ``(0, None)`` (all decision variables are non-negative).
        If a single tuple ``(min, max)`` is provided, then ``min`` and
        ``max`` will serve as bounds for all decision variables.
    method : str

        This is the method-specific documentation for 'highs-ipm'.
        :ref:`'highs-ipm' <optimize.linprog-highs>`,
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`,
        :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
        :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
        :ref:`'simplex' <optimize.linprog-simplex>` (legacy)
        are also available.

    Options
    -------
    maxiter : int
        The maximum number of iterations to perform in either phase.
        For :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`, this does not
        include the number of crossover iterations. Default is the largest
        possible value for an ``int`` on the platform.
    disp : bool (default: ``False``)
        Set to ``True`` if indicators of optimization status are to be
        printed to the console during optimization.
    presolve : bool (default: ``True``)
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if
        presolve is to be disabled.
    time_limit : float
        The maximum time in seconds allotted to solve the problem;
        default is the largest possible value for a ``double`` on the
        platform.
    dual_feasibility_tolerance : double (default: 1e-07)
        The minimum of this and ``primal_feasibility_tolerance``
        is used for the feasibility tolerance of
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
    primal_feasibility_tolerance : double (default: 1e-07)
        The minimum of this and ``dual_feasibility_tolerance``
        is used for the feasibility tolerance of
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
    ipm_optimality_tolerance : double (default: ``1e-08``)
        Optimality tolerance for
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`.
        Minimum allowable value is 1e-12.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        ``unknown_options`` is non-empty, a warning is issued listing
        all unused options.

    Returns
    -------
    res : OptimizeResult
        A :class:`scipy.optimize.OptimizeResult` consisting of the fields:

        x : 1D array
            The values of the decision variables that minimizes the
            objective function while satisfying the constraints.
        fun : float
            The optimal value of the objective function ``c @ x``.
        slack : 1D array
            The (nominally positive) values of the slack,
            ``b_ub - A_ub @ x``.
        con : 1D array
            The (nominally zero) residuals of the equality constraints,
            ``b_eq - A_eq @ x``.
        success : bool
            ``True`` when the algorithm succeeds in finding an optimal
            solution.
        status : int
            An integer representing the exit status of the algorithm.

            ``0`` : Optimization terminated successfully.

            ``1`` : Iteration or time limit reached.

            ``2`` : Problem appears to be infeasible.

            ``3`` : Problem appears to be unbounded.

            ``4`` : The HiGHS solver ran into a problem.

        message : str
            A string descriptor of the exit status of the algorithm.
        nit : int
            The total number of iterations performed.
            For the HiGHS interior-point method, this does not include
            crossover iterations.
        crossover_nit : int
            The number of primal/dual pushes performed during the
            crossover routine for the HiGHS interior-point method.
        ineqlin : OptimizeResult
            Solution and sensitivity information corresponding to the
            inequality constraints, `b_ub`. A dictionary consisting of the
            fields:

            residual : np.ndnarray
                The (nominally positive) values of the slack variables,
                ``b_ub - A_ub @ x``.  This quantity is also commonly
                referred to as "slack".

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the right-hand side of the
                inequality constraints, `b_ub`.

        eqlin : OptimizeResult
            Solution and sensitivity information corresponding to the
            equality constraints, `b_eq`.  A dictionary consisting of the
            fields:

            residual : np.ndarray
                The (nominally zero) residuals of the equality constraints,
                ``b_eq - A_eq @ x``.

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the right-hand side of the
                equality constraints, `b_eq`.

        lower, upper : OptimizeResult
            Solution and sensitivity information corresponding to the
            lower and upper bounds on decision variables, `bounds`.

            residual : np.ndarray
                The (nominally positive) values of the quantity
                ``x - lb`` (lower) or ``ub - x`` (upper).

            marginals : np.ndarray
                The sensitivity (partial derivative) of the objective
                function with respect to the lower and upper
                `bounds`.

    Notes
    -----

    Method :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`
    is a wrapper of a C++ implementation of an **i**\ nterior-\ **p**\ oint
    **m**\ ethod [13]_; it features a crossover routine, so it is as accurate
    as a simplex solver.
    Method :ref:`'highs-ds' <optimize.linprog-highs-ds>` is a wrapper
    of the C++ high performance dual revised simplex implementation (HSOL)
    [13]_, [14]_. Method :ref:`'highs' <optimize.linprog-highs>` chooses
    between the two automatically. For new code involving `linprog`, we
    recommend explicitly choosing one of these three method values instead of
    :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
    :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
    :ref:`'simplex' <optimize.linprog-simplex>` (legacy).

    The result fields `ineqlin`, `eqlin`, `lower`, and `upper` all contain
    `marginals`, or partial derivatives of the objective function with respect
    to the right-hand side of each constraint. These partial derivatives are
    also referred to as "Lagrange multipliers", "dual values", and
    "shadow prices". The sign convention of `marginals` is opposite that
    of Lagrange multipliers produced by many nonlinear solvers.

    References
    ----------
    .. [13] Huangfu, Q., Galabova, I., Feldmeier, M., and Hall, J. A. J.
           "HiGHS - high performance software for linear optimization."
           https://highs.dev/
    .. [14] Huangfu, Q. and Hall, J. A. J. "Parallelizing the dual revised
           simplex method." Mathematical Programming Computation, 10 (1),
           119-142, 2018. DOI: 10.1007/s12532-017-0130-5
    """
    pass


def _linprog_ip_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
                    bounds=None, method='interior-point', callback=None,
                    maxiter=1000, disp=False, presolve=True,
                    tol=1e-8, autoscale=False, rr=True,
                    alpha0=.99995, beta=0.1, sparse=False,
                    lstsq=False, sym_pos=True, cholesky=True, pc=True,
                    ip=False, permc_spec='MMD_AT_PLUS_A', **unknown_options):
    r"""
    Linear programming: minimize a linear objective function subject to linear
    equality and inequality constraints using the interior-point method of
    [4]_.

    .. deprecated:: 1.9.0
        `method='interior-point'` will be removed in SciPy 1.11.0.
        It is replaced by `method='highs'` because the latter is
        faster and more robust.

    Linear programming solves problems of the following form:

    .. math::

        \min_x \ & c^T x \\
        \mbox{such that} \ & A_{ub} x \leq b_{ub},\\
        & A_{eq} x = b_{eq},\\
        & l \leq x \leq u ,

    where :math:`x` is a vector of decision variables; :math:`c`,
    :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
    :math:`A_{ub}` and :math:`A_{eq}` are matrices.

    Alternatively, that's:

    minimize::

        c @ x

    such that::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
        lb <= x <= ub

    Note that by default ``lb = 0`` and ``ub = None`` unless specified with
    ``bounds``.

    Parameters
    ----------
    c : 1-D array
        The coefficients of the linear objective function to be minimized.
    A_ub : 2-D array, optional
        The inequality constraint matrix. Each row of ``A_ub`` specifies the
        coefficients of a linear inequality constraint on ``x``.
    b_ub : 1-D array, optional
        The inequality constraint vector. Each element represents an
        upper bound on the corresponding value of ``A_ub @ x``.
    A_eq : 2-D array, optional
        The equality constraint matrix. Each row of ``A_eq`` specifies the
        coefficients of a linear equality constraint on ``x``.
    b_eq : 1-D array, optional
        The equality constraint vector. Each element of ``A_eq @ x`` must equal
        the corresponding element of ``b_eq``.
    bounds : sequence, optional
        A sequence of ``(min, max)`` pairs for each element in ``x``, defining
        the minimum and maximum values of that decision variable. Use ``None``
        to indicate that there is no bound. By default, bounds are
        ``(0, None)`` (all decision variables are non-negative).
        If a single tuple ``(min, max)`` is provided, then ``min`` and
        ``max`` will serve as bounds for all decision variables.
    method : str
        This is the method-specific documentation for 'interior-point'.
        :ref:`'highs' <optimize.linprog-highs>`,
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`,
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
        :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and
        :ref:`'simplex' <optimize.linprog-simplex>` (legacy)
        are also available.
    callback : callable, optional
        Callback function to be executed once per iteration.

    Options
    -------
    maxiter : int (default: 1000)
        The maximum number of iterations of the algorithm.
    disp : bool (default: False)
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration.
    presolve : bool (default: True)
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if
        presolve is to be disabled.
    tol : float (default: 1e-8)
        Termination tolerance to be used for all termination criteria;
        see [4]_ Section 4.5.
    autoscale : bool (default: False)
        Set to ``True`` to automatically perform equilibration.
        Consider using this option if the numerical values in the
        constraints are separated by several orders of magnitude.
    rr : bool (default: True)
        Set to ``False`` to disable automatic redundancy removal.
    alpha0 : float (default: 0.99995)
        The maximal step size for Mehrota's predictor-corrector search
        direction; see :math:`\beta_{3}` of [4]_ Table 8.1.
    beta : float (default: 0.1)
        The desired reduction of the path parameter :math:`\mu` (see [6]_)
        when Mehrota's predictor-corrector is not in use (uncommon).
    sparse : bool (default: False)
        Set to ``True`` if the problem is to be treated as sparse after
        presolve. If either ``A_eq`` or ``A_ub`` is a sparse matrix,
        this option will automatically be set ``True``, and the problem
        will be treated as sparse even during presolve. If your constraint
        matrices contain mostly zeros and the problem is not very small (less
        than about 100 constraints or variables), consider setting ``True``
        or providing ``A_eq`` and ``A_ub`` as sparse matrices.
    lstsq : bool (default: ``False``)
        Set to ``True`` if the problem is expected to be very poorly
        conditioned. This should always be left ``False`` unless severe
        numerical difficulties are encountered. Leave this at the default
        unless you receive a warning message suggesting otherwise.
    sym_pos : bool (default: True)
        Leave ``True`` if the problem is expected to yield a well conditioned
        symmetric positive definite normal equation matrix
        (almost always). Leave this at the default unless you receive
        a warning message suggesting otherwise.
    cholesky : bool (default: True)
        Set to ``True`` if the normal equations are to be solved by explicit
        Cholesky decomposition followed by explicit forward/backward
        substitution. This is typically faster for problems
        that are numerically well-behaved.
    pc : bool (default: True)
        Leave ``True`` if the predictor-corrector method of Mehrota is to be
        used. This is almost always (if not always) beneficial.
    ip : bool (default: False)
        Set to ``True`` if the improved initial point suggestion due to [4]_
        Section 4.3 is desired. Whether this is beneficial or not
        depends on the problem.
    permc_spec : str (default: 'MMD_AT_PLUS_A')
        (Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
        True``, and no SuiteSparse.)
        A matrix is factorized in each iteration of the algorithm.
        This option specifies how to permute the columns of the matrix for
        sparsity preservation. Acceptable values are:

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering.

        This option can impact the convergence of the
        interior point algorithm; test different values to determine which
        performs best for your problem. For more information, refer to
        ``scipy.sparse.linalg.splu``.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        `unknown_options` is non-empty a warning is issued listing all
        unused options.

    Returns
    -------
    res : OptimizeResult
        A :class:`scipy.optimize.OptimizeResult` consisting of the fields:

        x : 1-D array
            The values of the decision variables that minimizes the
            objective function while satisfying the constraints.
        fun : float
            The optimal value of the objective function ``c @ x``.
        slack : 1-D array
            The (nominally positive) values of the slack variables,
            ``b_ub - A_ub @ x``.
        con : 1-D array
            The (nominally zero) residuals of the equality constraints,
            ``b_eq - A_eq @ x``.
        success : bool
            ``True`` when the algorithm succeeds in finding an optimal
            solution.
        status : int
            An integer representing the exit status of the algorithm.

            ``0`` : Optimization terminated successfully.

            ``1`` : Iteration limit reached.

            ``2`` : Problem appears to be infeasible.

            ``3`` : Problem appears to be unbounded.

            ``4`` : Numerical difficulties encountered.

        message : str
            A string descriptor of the exit status of the algorithm.
        nit : int
            The total number of iterations performed in all phases.


    Notes
    -----
    This method implements the algorithm outlined in [4]_ with ideas from [8]_
    and a structure inspired by the simpler methods of [6]_.

    The primal-dual path following method begins with initial 'guesses' of
    the primal and dual variables of the standard form problem and iteratively
    attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the
    problem with a gradually reduced logarithmic barrier term added to the
    objective. This particular implementation uses a homogeneous self-dual
    formulation, which provides certificates of infeasibility or unboundedness
    where applicable.

    The default initial point for the primal and dual variables is that
    defined in [4]_ Section 4.4 Equation 8.22. Optionally (by setting initial
    point option ``ip=True``), an alternate (potentially improved) starting
    point can be calculated according to the additional recommendations of
    [4]_ Section 4.4.

    A search direction is calculated using the predictor-corrector method
    (single correction) proposed by Mehrota and detailed in [4]_ Section 4.1.
    (A potential improvement would be to implement the method of multiple
    corrections described in [4]_ Section 4.2.) In practice, this is
    accomplished by solving the normal equations, [4]_ Section 5.1 Equations
    8.31 and 8.32, derived from the Newton equations [4]_ Section 5 Equations
    8.25 (compare to [4]_ Section 4 Equations 8.6-8.8). The advantage of
    solving the normal equations rather than 8.25 directly is that the
    matrices involved are symmetric positive definite, so Cholesky
    decomposition can be used rather than the more expensive LU factorization.

    With default options, the solver used to perform the factorization depends
    on third-party software availability and the conditioning of the problem.

    For dense problems, solvers are tried in the following order:

    1. ``scipy.linalg.cho_factor``

    2. ``scipy.linalg.solve`` with option ``sym_pos=True``

    3. ``scipy.linalg.solve`` with option ``sym_pos=False``

    4. ``scipy.linalg.lstsq``

    For sparse problems:

    1. ``sksparse.cholmod.cholesky`` (if scikit-sparse and SuiteSparse are
       installed)

    2. ``scipy.sparse.linalg.factorized`` (if scikit-umfpack and SuiteSparse
       are installed)

    3. ``scipy.sparse.linalg.splu`` (which uses SuperLU distributed with SciPy)

    4. ``scipy.sparse.linalg.lsqr``

    If the solver fails for any reason, successively more robust (but slower)
    solvers are attempted in the order indicated. Attempting, failing, and
    re-starting factorization can be time consuming, so if the problem is
    numerically challenging, options can be set to  bypass solvers that are
    failing. Setting ``cholesky=False`` skips to solver 2,
    ``sym_pos=False`` skips to solver 3, and ``lstsq=True`` skips
    to solver 4 for both sparse and dense problems.

    Potential improvements for combating issues associated with dense
    columns in otherwise sparse problems are outlined in [4]_ Section 5.3 and
    [10]_ Section 4.1-4.2; the latter also discusses the alleviation of
    accuracy issues associated with the substitution approach to free
    variables.

    After calculating the search direction, the maximum possible step size
    that does not activate the non-negativity constraints is calculated, and
    the smaller of this step size and unity is applied (as in [4]_ Section
    4.1.) [4]_ Section 4.3 suggests improvements for choosing the step size.

    The new point is tested according to the termination conditions of [4]_
    Section 4.5. The same tolerance, which can be set using the ``tol`` option,
    is used for all checks. (A potential improvement would be to expose
    the different tolerances to be set independently.) If optimality,
    unboundedness, or infeasibility is detected, the solve procedure
    terminates; otherwise it repeats.

    Whereas the top level ``linprog`` module expects a problem of form:

    Minimize::

        c @ x

    Subject to::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
         lb <= x <= ub

    where ``lb = 0`` and ``ub = None`` unless set in ``bounds``. The problem
    is automatically converted to the form:

    Minimize::

        c @ x

    Subject to::

        A @ x == b
            x >= 0

    for solution. That is, the original problem contains equality, upper-bound
    and variable constraints whereas the method specific solver requires
    equality constraints and variable non-negativity. ``linprog`` converts the
    original problem to standard form by converting the simple bounds to upper
    bound constraints, introducing non-negative slack variables for inequality
    constraints, and expressing unbounded variables as the difference between
    two non-negative variables. The problem is converted back to the original
    form before results are reported.

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.
    .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
           Programming based on Newton's Method." Unpublished Course Notes,
           March 2004. Available 2/25/2017 at
           https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
    .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
           programming." Mathematical Programming 71.2 (1995): 221-245.
    .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
           programming." Athena Scientific 1 (1997): 997.
    .. [10] Andersen, Erling D., et al. Implementation of interior point
            methods for large scale linear programming. HEC/Universite de
            Geneve, 1996.
    """
    pass


def _linprog_rs_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
                    bounds=None, method='interior-point', callback=None,
                    x0=None, maxiter=5000, disp=False, presolve=True,
                    tol=1e-12, autoscale=False, rr=True, maxupdate=10,
                    mast=False, pivot="mrc", **unknown_options):
    r"""
    Linear programming: minimize a linear objective function subject to linear
    equality and inequality constraints using the revised simplex method.

    .. deprecated:: 1.9.0
        `method='revised simplex'` will be removed in SciPy 1.11.0.
        It is replaced by `method='highs'` because the latter is
        faster and more robust.

    Linear programming solves problems of the following form:

    .. math::

        \min_x \ & c^T x \\
        \mbox{such that} \ & A_{ub} x \leq b_{ub},\\
        & A_{eq} x = b_{eq},\\
        & l \leq x \leq u ,

    where :math:`x` is a vector of decision variables; :math:`c`,
    :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
    :math:`A_{ub}` and :math:`A_{eq}` are matrices.

    Alternatively, that's:

    minimize::

        c @ x

    such that::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
        lb <= x <= ub

    Note that by default ``lb = 0`` and ``ub = None`` unless specified with
    ``bounds``.

    Parameters
    ----------
    c : 1-D array
        The coefficients of the linear objective function to be minimized.
    A_ub : 2-D array, optional
        The inequality constraint matrix. Each row of ``A_ub`` specifies the
        coefficients of a linear inequality constraint on ``x``.
    b_ub : 1-D array, optional
        The inequality constraint vector. Each element represents an
        upper bound on the corresponding value of ``A_ub @ x``.
    A_eq : 2-D array, optional
        The equality constraint matrix. Each row of ``A_eq`` specifies the
        coefficients of a linear equality constraint on ``x``.
    b_eq : 1-D array, optional
        The equality constraint vector. Each element of ``A_eq @ x`` must equal
        the corresponding element of ``b_eq``.
    bounds : sequence, optional
        A sequence of ``(min, max)`` pairs for each element in ``x``, defining
        the minimum and maximum values of that decision variable. Use ``None``
        to indicate that there is no bound. By default, bounds are
        ``(0, None)`` (all decision variables are non-negative).
        If a single tuple ``(min, max)`` is provided, then ``min`` and
        ``max`` will serve as bounds for all decision variables.
    method : str
        This is the method-specific documentation for 'revised simplex'.
        :ref:`'highs' <optimize.linprog-highs>`,
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`,
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
        :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
        and :ref:`'simplex' <optimize.linprog-simplex>` (legacy)
        are also available.
    callback : callable, optional
        Callback function to be executed once per iteration.
    x0 : 1-D array, optional
        Guess values of the decision variables, which will be refined by
        the optimization algorithm. This argument is currently used only by the
        'revised simplex' method, and can only be used if `x0` represents a
        basic feasible solution.

    Options
    -------
    maxiter : int (default: 5000)
       The maximum number of iterations to perform in either phase.
    disp : bool (default: False)
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration.
    presolve : bool (default: True)
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if
        presolve is to be disabled.
    tol : float (default: 1e-12)
        The tolerance which determines when a solution is "close enough" to
        zero in Phase 1 to be considered a basic feasible solution or close
        enough to positive to serve as an optimal solution.
    autoscale : bool (default: False)
        Set to ``True`` to automatically perform equilibration.
        Consider using this option if the numerical values in the
        constraints are separated by several orders of magnitude.
    rr : bool (default: True)
        Set to ``False`` to disable automatic redundancy removal.
    maxupdate : int (default: 10)
        The maximum number of updates performed on the LU factorization.
        After this many updates is reached, the basis matrix is factorized
        from scratch.
    mast : bool (default: False)
        Minimize Amortized Solve Time. If enabled, the average time to solve
        a linear system using the basis factorization is measured. Typically,
        the average solve time will decrease with each successive solve after
        initial factorization, as factorization takes much more time than the
        solve operation (and updates). Eventually, however, the updated
        factorization becomes sufficiently complex that the average solve time
        begins to increase. When this is detected, the basis is refactorized
        from scratch. Enable this option to maximize speed at the risk of
        nondeterministic behavior. Ignored if ``maxupdate`` is 0.
    pivot : "mrc" or "bland" (default: "mrc")
        Pivot rule: Minimum Reduced Cost ("mrc") or Bland's rule ("bland").
        Choose Bland's rule if iteration limit is reached and cycling is
        suspected.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        `unknown_options` is non-empty a warning is issued listing all
        unused options.

    Returns
    -------
    res : OptimizeResult
        A :class:`scipy.optimize.OptimizeResult` consisting of the fields:

        x : 1-D array
            The values of the decision variables that minimizes the
            objective function while satisfying the constraints.
        fun : float
            The optimal value of the objective function ``c @ x``.
        slack : 1-D array
            The (nominally positive) values of the slack variables,
            ``b_ub - A_ub @ x``.
        con : 1-D array
            The (nominally zero) residuals of the equality constraints,
            ``b_eq - A_eq @ x``.
        success : bool
            ``True`` when the algorithm succeeds in finding an optimal
            solution.
        status : int
            An integer representing the exit status of the algorithm.

            ``0`` : Optimization terminated successfully.

            ``1`` : Iteration limit reached.

            ``2`` : Problem appears to be infeasible.

            ``3`` : Problem appears to be unbounded.

            ``4`` : Numerical difficulties encountered.

            ``5`` : Problem has no constraints; turn presolve on.

            ``6`` : Invalid guess provided.

        message : str
            A string descriptor of the exit status of the algorithm.
        nit : int
            The total number of iterations performed in all phases.


    Notes
    -----
    Method *revised simplex* uses the revised simplex method as described in
    [9]_, except that a factorization [11]_ of the basis matrix, rather than
    its inverse, is efficiently maintained and used to solve the linear systems
    at each iteration of the algorithm.

    References
    ----------
    .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
           programming." Athena Scientific 1 (1997): 997.
    .. [11] Bartels, Richard H. "A stabilization of the simplex method."
            Journal in  Numerische Mathematik 16.5 (1971): 414-434.
    """
    pass


def _linprog_simplex_doc(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None,
                         bounds=None, method='interior-point', callback=None,
                         maxiter=5000, disp=False, presolve=True,
                         tol=1e-12, autoscale=False, rr=True, bland=False,
                         **unknown_options):
    r"""
    Linear programming: minimize a linear objective function subject to linear
    equality and inequality constraints using the tableau-based simplex method.

    .. deprecated:: 1.9.0
        `method='simplex'` will be removed in SciPy 1.11.0.
        It is replaced by `method='highs'` because the latter is
        faster and more robust.

    Linear programming solves problems of the following form:

    .. math::

        \min_x \ & c^T x \\
        \mbox{such that} \ & A_{ub} x \leq b_{ub},\\
        & A_{eq} x = b_{eq},\\
        & l \leq x \leq u ,

    where :math:`x` is a vector of decision variables; :math:`c`,
    :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and
    :math:`A_{ub}` and :math:`A_{eq}` are matrices.

    Alternatively, that's:

    minimize::

        c @ x

    such that::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
        lb <= x <= ub

    Note that by default ``lb = 0`` and ``ub = None`` unless specified with
    ``bounds``.

    Parameters
    ----------
    c : 1-D array
        The coefficients of the linear objective function to be minimized.
    A_ub : 2-D array, optional
        The inequality constraint matrix. Each row of ``A_ub`` specifies the
        coefficients of a linear inequality constraint on ``x``.
    b_ub : 1-D array, optional
        The inequality constraint vector. Each element represents an
        upper bound on the corresponding value of ``A_ub @ x``.
    A_eq : 2-D array, optional
        The equality constraint matrix. Each row of ``A_eq`` specifies the
        coefficients of a linear equality constraint on ``x``.
    b_eq : 1-D array, optional
        The equality constraint vector. Each element of ``A_eq @ x`` must equal
        the corresponding element of ``b_eq``.
    bounds : sequence, optional
        A sequence of ``(min, max)`` pairs for each element in ``x``, defining
        the minimum and maximum values of that decision variable. Use ``None``
        to indicate that there is no bound. By default, bounds are
        ``(0, None)`` (all decision variables are non-negative).
        If a single tuple ``(min, max)`` is provided, then ``min`` and
        ``max`` will serve as bounds for all decision variables.
    method : str
        This is the method-specific documentation for 'simplex'.
        :ref:`'highs' <optimize.linprog-highs>`,
        :ref:`'highs-ds' <optimize.linprog-highs-ds>`,
        :ref:`'highs-ipm' <optimize.linprog-highs-ipm>`,
        :ref:`'interior-point' <optimize.linprog-interior-point>` (default),
        and :ref:`'revised simplex' <optimize.linprog-revised_simplex>`
        are also available.
    callback : callable, optional
        Callback function to be executed once per iteration.

    Options
    -------
    maxiter : int (default: 5000)
       The maximum number of iterations to perform in either phase.
    disp : bool (default: False)
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration.
    presolve : bool (default: True)
        Presolve attempts to identify trivial infeasibilities,
        identify trivial unboundedness, and simplify the problem before
        sending it to the main solver. It is generally recommended
        to keep the default setting ``True``; set to ``False`` if
        presolve is to be disabled.
    tol : float (default: 1e-12)
        The tolerance which determines when a solution is "close enough" to
        zero in Phase 1 to be considered a basic feasible solution or close
        enough to positive to serve as an optimal solution.
    autoscale : bool (default: False)
        Set to ``True`` to automatically perform equilibration.
        Consider using this option if the numerical values in the
        constraints are separated by several orders of magnitude.
    rr : bool (default: True)
        Set to ``False`` to disable automatic redundancy removal.
    bland : bool
        If True, use Bland's anti-cycling rule [3]_ to choose pivots to
        prevent cycling. If False, choose pivots which should lead to a
        converged solution more quickly. The latter method is subject to
        cycling (non-convergence) in rare instances.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        `unknown_options` is non-empty a warning is issued listing all
        unused options.

    Returns
    -------
    res : OptimizeResult
        A :class:`scipy.optimize.OptimizeResult` consisting of the fields:

        x : 1-D array
            The values of the decision variables that minimizes the
            objective function while satisfying the constraints.
        fun : float
            The optimal value of the objective function ``c @ x``.
        slack : 1-D array
            The (nominally positive) values of the slack variables,
            ``b_ub - A_ub @ x``.
        con : 1-D array
            The (nominally zero) residuals of the equality constraints,
            ``b_eq - A_eq @ x``.
        success : bool
            ``True`` when the algorithm succeeds in finding an optimal
            solution.
        status : int
            An integer representing the exit status of the algorithm.

            ``0`` : Optimization terminated successfully.

            ``1`` : Iteration limit reached.

            ``2`` : Problem appears to be infeasible.

            ``3`` : Problem appears to be unbounded.

            ``4`` : Numerical difficulties encountered.

        message : str
            A string descriptor of the exit status of the algorithm.
        nit : int
            The total number of iterations performed in all phases.

    References
    ----------
    .. [1] Dantzig, George B., Linear programming and extensions. Rand
           Corporation Research Study Princeton Univ. Press, Princeton, NJ,
           1963
    .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to
           Mathematical Programming", McGraw-Hill, Chapter 4.
    .. [3] Bland, Robert G. New finite pivoting rules for the simplex method.
           Mathematics of Operations Research (2), 1977: pp. 103-107.
    """
    pass