File size: 21,047 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
"""
Functions
---------
.. autosummary::
:toctree: generated/
fmin_l_bfgs_b
"""
## License for the Python wrapper
## ==============================
## Copyright (c) 2004 David M. Cooke <[email protected]>
## Permission is hereby granted, free of charge, to any person obtaining a
## copy of this software and associated documentation files (the "Software"),
## to deal in the Software without restriction, including without limitation
## the rights to use, copy, modify, merge, publish, distribute, sublicense,
## and/or sell copies of the Software, and to permit persons to whom the
## Software is furnished to do so, subject to the following conditions:
## The above copyright notice and this permission notice shall be included in
## all copies or substantial portions of the Software.
## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
## FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
## DEALINGS IN THE SOFTWARE.
## Modifications by Travis Oliphant and Enthought, Inc. for inclusion in SciPy
import numpy as np
from numpy import array, asarray, float64, zeros
from . import _lbfgsb
from ._optimize import (MemoizeJac, OptimizeResult, _call_callback_maybe_halt,
_wrap_callback, _check_unknown_options,
_prepare_scalar_function)
from ._constraints import old_bound_to_new
from scipy.sparse.linalg import LinearOperator
__all__ = ['fmin_l_bfgs_b', 'LbfgsInvHessProduct']
status_messages = {
0 : "START",
1 : "NEW_X",
2 : "RESTART",
3 : "FG",
4 : "CONVERGENCE",
5 : "STOP",
6 : "WARNING",
7 : "ERROR",
8 : "ABNORMAL"
}
task_messages = {
0 : "",
301 : "",
302 : "",
401 : "NORM OF PROJECTED GRADIENT <= PGTOL",
402 : "RELATIVE REDUCTION OF F <= FACTR*EPSMCH",
501 : "CPU EXCEEDING THE TIME LIMIT",
502 : "TOTAL NO. OF F,G EVALUATIONS EXCEEDS LIMIT",
503 : "PROJECTED GRADIENT IS SUFFICIENTLY SMALL",
504 : "TOTAL NO. OF ITERATIONS REACHED LIMIT",
505 : "CALLBACK REQUESTED HALT",
601 : "ROUNDING ERRORS PREVENT PROGRESS",
602 : "STP = STPMAX",
603 : "STP = STPMIN",
604 : "XTOL TEST SATISFIED",
701 : "NO FEASIBLE SOLUTION",
702 : "FACTR < 0",
703 : "FTOL < 0",
704 : "GTOL < 0",
705 : "XTOL < 0",
706 : "STP < STPMIN",
707 : "STP > STPMAX",
708 : "STPMIN < 0",
709 : "STPMAX < STPMIN",
710 : "INITIAL G >= 0",
711 : "M <= 0",
712 : "N <= 0",
713 : "INVALID NBD",
}
def fmin_l_bfgs_b(func, x0, fprime=None, args=(),
approx_grad=0,
bounds=None, m=10, factr=1e7, pgtol=1e-5,
epsilon=1e-8,
iprint=-1, maxfun=15000, maxiter=15000, disp=None,
callback=None, maxls=20):
"""
Minimize a function func using the L-BFGS-B algorithm.
Parameters
----------
func : callable f(x,*args)
Function to minimize.
x0 : ndarray
Initial guess.
fprime : callable fprime(x,*args), optional
The gradient of `func`. If None, then `func` returns the function
value and the gradient (``f, g = func(x, *args)``), unless
`approx_grad` is True in which case `func` returns only ``f``.
args : sequence, optional
Arguments to pass to `func` and `fprime`.
approx_grad : bool, optional
Whether to approximate the gradient numerically (in which case
`func` returns only the function value).
bounds : list, optional
``(min, max)`` pairs for each element in ``x``, defining
the bounds on that parameter. Use None or +-inf for one of ``min`` or
``max`` when there is no bound in that direction.
m : int, optional
The maximum number of variable metric corrections
used to define the limited memory matrix. (The limited memory BFGS
method does not store the full hessian but uses this many terms in an
approximation to it.)
factr : float, optional
The iteration stops when
``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``,
where ``eps`` is the machine precision, which is automatically
generated by the code. Typical values for `factr` are: 1e12 for
low accuracy; 1e7 for moderate accuracy; 10.0 for extremely
high accuracy. See Notes for relationship to `ftol`, which is exposed
(instead of `factr`) by the `scipy.optimize.minimize` interface to
L-BFGS-B.
pgtol : float, optional
The iteration will stop when
``max{|proj g_i | i = 1, ..., n} <= pgtol``
where ``proj g_i`` is the i-th component of the projected gradient.
epsilon : float, optional
Step size used when `approx_grad` is True, for numerically
calculating the gradient
iprint : int, optional
Deprecated option that previously controlled the text printed on the
screen during the problem solution. Now the code does not emit any
output and this keyword has no function.
.. deprecated:: 1.15.0
This keyword is deprecated and will be removed from SciPy 1.17.0.
disp : int, optional
Deprecated option that previously controlled the text printed on the
screen during the problem solution. Now the code does not emit any
output and this keyword has no function.
.. deprecated:: 1.15.0
This keyword is deprecated and will be removed from SciPy 1.17.0.
maxfun : int, optional
Maximum number of function evaluations. Note that this function
may violate the limit because of evaluating gradients by numerical
differentiation.
maxiter : int, optional
Maximum number of iterations.
callback : callable, optional
Called after each iteration, as ``callback(xk)``, where ``xk`` is the
current parameter vector.
maxls : int, optional
Maximum number of line search steps (per iteration). Default is 20.
Returns
-------
x : array_like
Estimated position of the minimum.
f : float
Value of `func` at the minimum.
d : dict
Information dictionary.
* d['warnflag'] is
- 0 if converged,
- 1 if too many function evaluations or too many iterations,
- 2 if stopped for another reason, given in d['task']
* d['grad'] is the gradient at the minimum (should be 0 ish)
* d['funcalls'] is the number of function calls made.
* d['nit'] is the number of iterations.
See also
--------
minimize: Interface to minimization algorithms for multivariate
functions. See the 'L-BFGS-B' `method` in particular. Note that the
`ftol` option is made available via that interface, while `factr` is
provided via this interface, where `factr` is the factor multiplying
the default machine floating-point precision to arrive at `ftol`:
``ftol = factr * numpy.finfo(float).eps``.
Notes
-----
SciPy uses a C-translated and modified version of the Fortran code,
L-BFGS-B v3.0 (released April 25, 2011, BSD-3 licensed). Original Fortran
version was written by Ciyou Zhu, Richard Byrd, Jorge Nocedal and,
Jose Luis Morales.
References
----------
* R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
Constrained Optimization, (1995), SIAM Journal on Scientific and
Statistical Computing, 16, 5, pp. 1190-1208.
* C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
FORTRAN routines for large scale bound constrained optimization (1997),
ACM Transactions on Mathematical Software, 23, 4, pp. 550 - 560.
* J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B,
FORTRAN routines for large scale bound constrained optimization (2011),
ACM Transactions on Mathematical Software, 38, 1.
Examples
--------
Solve a linear regression problem via `fmin_l_bfgs_b`. To do this, first we
define an objective function ``f(m, b) = (y - y_model)**2``, where `y`
describes the observations and `y_model` the prediction of the linear model
as ``y_model = m*x + b``. The bounds for the parameters, ``m`` and ``b``,
are arbitrarily chosen as ``(0,5)`` and ``(5,10)`` for this example.
>>> import numpy as np
>>> from scipy.optimize import fmin_l_bfgs_b
>>> X = np.arange(0, 10, 1)
>>> M = 2
>>> B = 3
>>> Y = M * X + B
>>> def func(parameters, *args):
... x = args[0]
... y = args[1]
... m, b = parameters
... y_model = m*x + b
... error = sum(np.power((y - y_model), 2))
... return error
>>> initial_values = np.array([0.0, 1.0])
>>> x_opt, f_opt, info = fmin_l_bfgs_b(func, x0=initial_values, args=(X, Y),
... approx_grad=True)
>>> x_opt, f_opt
array([1.99999999, 3.00000006]), 1.7746231151323805e-14 # may vary
The optimized parameters in ``x_opt`` agree with the ground truth parameters
``m`` and ``b``. Next, let us perform a bound constrained optimization using
the `bounds` parameter.
>>> bounds = [(0, 5), (5, 10)]
>>> x_opt, f_op, info = fmin_l_bfgs_b(func, x0=initial_values, args=(X, Y),
... approx_grad=True, bounds=bounds)
>>> x_opt, f_opt
array([1.65990508, 5.31649385]), 15.721334516453945 # may vary
"""
# handle fprime/approx_grad
if approx_grad:
fun = func
jac = None
elif fprime is None:
fun = MemoizeJac(func)
jac = fun.derivative
else:
fun = func
jac = fprime
# build options
callback = _wrap_callback(callback)
opts = {'maxcor': m,
'ftol': factr * np.finfo(float).eps,
'gtol': pgtol,
'eps': epsilon,
'maxfun': maxfun,
'maxiter': maxiter,
'callback': callback,
'maxls': maxls}
res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
**opts)
d = {'grad': res['jac'],
'task': res['message'],
'funcalls': res['nfev'],
'nit': res['nit'],
'warnflag': res['status']}
f = res['fun']
x = res['x']
return x, f, d
def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None,
disp=None, maxcor=10, ftol=2.2204460492503131e-09,
gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000,
iprint=-1, callback=None, maxls=20,
finite_diff_rel_step=None, **unknown_options):
"""
Minimize a scalar function of one or more variables using the L-BFGS-B
algorithm.
Options
-------
disp : None or int
Deprecated option that previously controlled the text printed on the
screen during the problem solution. Now the code does not emit any
output and this keyword has no function.
.. deprecated:: 1.15.0
This keyword is deprecated and will be removed from SciPy 1.17.0.
maxcor : int
The maximum number of variable metric corrections used to
define the limited memory matrix. (The limited memory BFGS
method does not store the full hessian but uses this many terms
in an approximation to it.)
ftol : float
The iteration stops when ``(f^k -
f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``.
gtol : float
The iteration will stop when ``max{|proj g_i | i = 1, ..., n}
<= gtol`` where ``proj g_i`` is the i-th component of the
projected gradient.
eps : float or ndarray
If `jac is None` the absolute step size used for numerical
approximation of the jacobian via forward differences.
maxfun : int
Maximum number of function evaluations. Note that this function
may violate the limit because of evaluating gradients by numerical
differentiation.
maxiter : int
Maximum number of iterations.
iprint : int, optional
Deprecated option that previously controlled the text printed on the
screen during the problem solution. Now the code does not emit any
output and this keyword has no function.
.. deprecated:: 1.15.0
This keyword is deprecated and will be removed from SciPy 1.17.0.
maxls : int, optional
Maximum number of line search steps (per iteration). Default is 20.
finite_diff_rel_step : None or array_like, optional
If ``jac in ['2-point', '3-point', 'cs']`` the relative step size to
use for numerical approximation of the jacobian. The absolute step
size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
possibly adjusted to fit into the bounds. For ``method='3-point'``
the sign of `h` is ignored. If None (default) then step is selected
automatically.
Notes
-----
The option `ftol` is exposed via the `scipy.optimize.minimize` interface,
but calling `scipy.optimize.fmin_l_bfgs_b` directly exposes `factr`. The
relationship between the two is ``ftol = factr * numpy.finfo(float).eps``.
I.e., `factr` multiplies the default machine floating-point precision to
arrive at `ftol`.
"""
_check_unknown_options(unknown_options)
m = maxcor
pgtol = gtol
factr = ftol / np.finfo(float).eps
x0 = asarray(x0).ravel()
n, = x0.shape
# historically old-style bounds were/are expected by lbfgsb.
# That's still the case but we'll deal with new-style from here on,
# it's easier
if bounds is None:
pass
elif len(bounds) != n:
raise ValueError('length of x0 != length of bounds')
else:
bounds = np.array(old_bound_to_new(bounds))
# check bounds
if (bounds[0] > bounds[1]).any():
raise ValueError(
"LBFGSB - one of the lower bounds is greater than an upper bound."
)
# initial vector must lie within the bounds. Otherwise ScalarFunction and
# approx_derivative will cause problems
x0 = np.clip(x0, bounds[0], bounds[1])
# _prepare_scalar_function can use bounds=None to represent no bounds
sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
bounds=bounds,
finite_diff_rel_step=finite_diff_rel_step)
func_and_grad = sf.fun_and_grad
nbd = zeros(n, np.int32)
low_bnd = zeros(n, float64)
upper_bnd = zeros(n, float64)
bounds_map = {(-np.inf, np.inf): 0,
(1, np.inf): 1,
(1, 1): 2,
(-np.inf, 1): 3}
if bounds is not None:
for i in range(0, n):
L, U = bounds[0, i], bounds[1, i]
if not np.isinf(L):
low_bnd[i] = L
L = 1
if not np.isinf(U):
upper_bnd[i] = U
U = 1
nbd[i] = bounds_map[L, U]
if not maxls > 0:
raise ValueError('maxls must be positive.')
x = array(x0, dtype=np.float64)
f = array(0.0, dtype=np.int32)
g = zeros((n,), dtype=np.int32)
wa = zeros(2*m*n + 5*n + 11*m*m + 8*m, float64)
iwa = zeros(3*n, dtype=np.int32)
task = zeros(2, dtype=np.int32)
ln_task = zeros(2, dtype=np.int32)
lsave = zeros(4, dtype=np.int32)
isave = zeros(44, dtype=np.int32)
dsave = zeros(29, dtype=float64)
n_iterations = 0
while True:
# g may become float32 if a user provides a function that calculates
# the Jacobian in float32 (see gh-18730). The underlying code expects
# float64, so upcast it
g = g.astype(np.float64)
# x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \
_lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa,
iwa, task, lsave, isave, dsave, maxls, ln_task)
if task[0] == 3:
# The minimization routine wants f and g at the current x.
# Note that interruptions due to maxfun are postponed
# until the completion of the current minimization iteration.
# Overwrite f and g:
f, g = func_and_grad(x)
elif task[0] == 1:
# new iteration
n_iterations += 1
intermediate_result = OptimizeResult(x=x, fun=f)
if _call_callback_maybe_halt(callback, intermediate_result):
task[0] = 5
task[1] = 505
if n_iterations >= maxiter:
task[0] = 5
task[1] = 504
elif sf.nfev > maxfun:
task[0] = 5
task[1] = 502
else:
break
if task[0] == 4:
warnflag = 0
elif sf.nfev > maxfun or n_iterations >= maxiter:
warnflag = 1
else:
warnflag = 2
# These two portions of the workspace are described in the mainlb
# function docstring in "__lbfgsb.c", ws and wy arguments.
s = wa[0: m*n].reshape(m, n)
y = wa[m*n: 2*m*n].reshape(m, n)
# isave(31) = the total number of BFGS updates prior the current iteration.
n_bfgs_updates = isave[30]
n_corrs = min(n_bfgs_updates, maxcor)
hess_inv = LbfgsInvHessProduct(s[:n_corrs], y[:n_corrs])
msg = status_messages[task[0]] + ": " + task_messages[task[1]]
return OptimizeResult(fun=f, jac=g, nfev=sf.nfev,
njev=sf.ngev,
nit=n_iterations, status=warnflag, message=msg,
x=x, success=(warnflag == 0), hess_inv=hess_inv)
class LbfgsInvHessProduct(LinearOperator):
"""Linear operator for the L-BFGS approximate inverse Hessian.
This operator computes the product of a vector with the approximate inverse
of the Hessian of the objective function, using the L-BFGS limited
memory approximation to the inverse Hessian, accumulated during the
optimization.
Objects of this class implement the ``scipy.sparse.linalg.LinearOperator``
interface.
Parameters
----------
sk : array_like, shape=(n_corr, n)
Array of `n_corr` most recent updates to the solution vector.
(See [1]).
yk : array_like, shape=(n_corr, n)
Array of `n_corr` most recent updates to the gradient. (See [1]).
References
----------
.. [1] Nocedal, Jorge. "Updating quasi-Newton matrices with limited
storage." Mathematics of computation 35.151 (1980): 773-782.
"""
def __init__(self, sk, yk):
"""Construct the operator."""
if sk.shape != yk.shape or sk.ndim != 2:
raise ValueError('sk and yk must have matching shape, (n_corrs, n)')
n_corrs, n = sk.shape
super().__init__(dtype=np.float64, shape=(n, n))
self.sk = sk
self.yk = yk
self.n_corrs = n_corrs
self.rho = 1 / np.einsum('ij,ij->i', sk, yk)
def _matvec(self, x):
"""Efficient matrix-vector multiply with the BFGS matrices.
This calculation is described in Section (4) of [1].
Parameters
----------
x : ndarray
An array with shape (n,) or (n,1).
Returns
-------
y : ndarray
The matrix-vector product
"""
s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
q = np.array(x, dtype=self.dtype, copy=True)
if q.ndim == 2 and q.shape[1] == 1:
q = q.reshape(-1)
alpha = np.empty(n_corrs)
for i in range(n_corrs-1, -1, -1):
alpha[i] = rho[i] * np.dot(s[i], q)
q = q - alpha[i]*y[i]
r = q
for i in range(n_corrs):
beta = rho[i] * np.dot(y[i], r)
r = r + s[i] * (alpha[i] - beta)
return r
def todense(self):
"""Return a dense array representation of this operator.
Returns
-------
arr : ndarray, shape=(n, n)
An array with the same shape and containing
the same data represented by this `LinearOperator`.
"""
s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
I_arr = np.eye(*self.shape, dtype=self.dtype)
Hk = I_arr
for i in range(n_corrs):
A1 = I_arr - s[i][:, np.newaxis] * y[i][np.newaxis, :] * rho[i]
A2 = I_arr - y[i][:, np.newaxis] * s[i][np.newaxis, :] * rho[i]
Hk = np.dot(A1, np.dot(Hk, A2)) + (rho[i] * s[i][:, np.newaxis] *
s[i][np.newaxis, :])
return Hk
|