File size: 22,079 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import pickle
import tempfile
import shutil
import os

import numpy as np
from numpy import pi
from numpy.testing import (assert_array_almost_equal,
                           assert_equal, assert_warns,
                           assert_allclose)
import pytest
from pytest import raises as assert_raises

from scipy.odr import (Data, Model, ODR, RealData, OdrStop, OdrWarning,
                       multilinear, exponential, unilinear, quadratic,
                       polynomial)


class TestODR:

    # Bad Data for 'x'

    def test_bad_data(self):
        assert_raises(ValueError, Data, 2, 1)
        assert_raises(ValueError, RealData, 2, 1)

    # Empty Data for 'x'
    def empty_data_func(self, B, x):
        return B[0]*x + B[1]

    @pytest.mark.thread_unsafe
    def test_empty_data(self):
        beta0 = [0.02, 0.0]
        linear = Model(self.empty_data_func)

        empty_dat = Data([], [])
        assert_warns(OdrWarning, ODR,
                     empty_dat, linear, beta0=beta0)

        empty_dat = RealData([], [])
        assert_warns(OdrWarning, ODR,
                     empty_dat, linear, beta0=beta0)

    # Explicit Example

    def explicit_fcn(self, B, x):
        ret = B[0] + B[1] * np.power(np.exp(B[2]*x) - 1.0, 2)
        return ret

    def explicit_fjd(self, B, x):
        eBx = np.exp(B[2]*x)
        ret = B[1] * 2.0 * (eBx-1.0) * B[2] * eBx
        return ret

    def explicit_fjb(self, B, x):
        eBx = np.exp(B[2]*x)
        res = np.vstack([np.ones(x.shape[-1]),
                         np.power(eBx-1.0, 2),
                         B[1]*2.0*(eBx-1.0)*eBx*x])
        return res

    def test_explicit(self):
        explicit_mod = Model(
            self.explicit_fcn,
            fjacb=self.explicit_fjb,
            fjacd=self.explicit_fjd,
            meta=dict(name='Sample Explicit Model',
                      ref='ODRPACK UG, pg. 39'),
        )
        explicit_dat = Data([0.,0.,5.,7.,7.5,10.,16.,26.,30.,34.,34.5,100.],
                        [1265.,1263.6,1258.,1254.,1253.,1249.8,1237.,1218.,1220.6,
                         1213.8,1215.5,1212.])
        explicit_odr = ODR(explicit_dat, explicit_mod, beta0=[1500.0, -50.0, -0.1],
                       ifixx=[0,0,1,1,1,1,1,1,1,1,1,0])
        explicit_odr.set_job(deriv=2)
        explicit_odr.set_iprint(init=0, iter=0, final=0)

        out = explicit_odr.run()
        assert_array_almost_equal(
            out.beta,
            np.array([1.2646548050648876e+03, -5.4018409956678255e+01,
                -8.7849712165253724e-02]),
        )
        assert_array_almost_equal(
            out.sd_beta,
            np.array([1.0349270280543437, 1.583997785262061, 0.0063321988657267]),
        )
        assert_array_almost_equal(
            out.cov_beta,
            np.array([[4.4949592379003039e-01, -3.7421976890364739e-01,
                 -8.0978217468468912e-04],
               [-3.7421976890364739e-01, 1.0529686462751804e+00,
                 -1.9453521827942002e-03],
               [-8.0978217468468912e-04, -1.9453521827942002e-03,
                  1.6827336938454476e-05]]),
        )

    # Implicit Example

    def implicit_fcn(self, B, x):
        return (B[2]*np.power(x[0]-B[0], 2) +
                2.0*B[3]*(x[0]-B[0])*(x[1]-B[1]) +
                B[4]*np.power(x[1]-B[1], 2) - 1.0)

    def test_implicit(self):
        implicit_mod = Model(
            self.implicit_fcn,
            implicit=1,
            meta=dict(name='Sample Implicit Model',
                      ref='ODRPACK UG, pg. 49'),
        )
        implicit_dat = Data([
            [0.5,1.2,1.6,1.86,2.12,2.36,2.44,2.36,2.06,1.74,1.34,0.9,-0.28,
             -0.78,-1.36,-1.9,-2.5,-2.88,-3.18,-3.44],
            [-0.12,-0.6,-1.,-1.4,-2.54,-3.36,-4.,-4.75,-5.25,-5.64,-5.97,-6.32,
             -6.44,-6.44,-6.41,-6.25,-5.88,-5.5,-5.24,-4.86]],
            1,
        )
        implicit_odr = ODR(implicit_dat, implicit_mod,
            beta0=[-1.0, -3.0, 0.09, 0.02, 0.08])

        out = implicit_odr.run()
        assert_array_almost_equal(
            out.beta,
            np.array([-0.9993809167281279, -2.9310484652026476, 0.0875730502693354,
                0.0162299708984738, 0.0797537982976416]),
        )
        assert_array_almost_equal(
            out.sd_beta,
            np.array([0.1113840353364371, 0.1097673310686467, 0.0041060738314314,
                0.0027500347539902, 0.0034962501532468]),
        )
        assert_allclose(
            out.cov_beta,
            np.array([[2.1089274602333052e+00, -1.9437686411979040e+00,
                  7.0263550868344446e-02, -4.7175267373474862e-02,
                  5.2515575927380355e-02],
               [-1.9437686411979040e+00, 2.0481509222414456e+00,
                 -6.1600515853057307e-02, 4.6268827806232933e-02,
                 -5.8822307501391467e-02],
               [7.0263550868344446e-02, -6.1600515853057307e-02,
                  2.8659542561579308e-03, -1.4628662260014491e-03,
                  1.4528860663055824e-03],
               [-4.7175267373474862e-02, 4.6268827806232933e-02,
                 -1.4628662260014491e-03, 1.2855592885514335e-03,
                 -1.2692942951415293e-03],
               [5.2515575927380355e-02, -5.8822307501391467e-02,
                  1.4528860663055824e-03, -1.2692942951415293e-03,
                  2.0778813389755596e-03]]),
            rtol=1e-6, atol=2e-6,
        )

    # Multi-variable Example

    def multi_fcn(self, B, x):
        if (x < 0.0).any():
            raise OdrStop
        theta = pi*B[3]/2.
        ctheta = np.cos(theta)
        stheta = np.sin(theta)
        omega = np.power(2.*pi*x*np.exp(-B[2]), B[3])
        phi = np.arctan2((omega*stheta), (1.0 + omega*ctheta))
        r = (B[0] - B[1]) * np.power(np.sqrt(np.power(1.0 + omega*ctheta, 2) +
             np.power(omega*stheta, 2)), -B[4])
        ret = np.vstack([B[1] + r*np.cos(B[4]*phi),
                         r*np.sin(B[4]*phi)])
        return ret

    def test_multi(self):
        multi_mod = Model(
            self.multi_fcn,
            meta=dict(name='Sample Multi-Response Model',
                      ref='ODRPACK UG, pg. 56'),
        )

        multi_x = np.array([30.0, 50.0, 70.0, 100.0, 150.0, 200.0, 300.0, 500.0,
            700.0, 1000.0, 1500.0, 2000.0, 3000.0, 5000.0, 7000.0, 10000.0,
            15000.0, 20000.0, 30000.0, 50000.0, 70000.0, 100000.0, 150000.0])
        multi_y = np.array([
            [4.22, 4.167, 4.132, 4.038, 4.019, 3.956, 3.884, 3.784, 3.713,
             3.633, 3.54, 3.433, 3.358, 3.258, 3.193, 3.128, 3.059, 2.984,
             2.934, 2.876, 2.838, 2.798, 2.759],
            [0.136, 0.167, 0.188, 0.212, 0.236, 0.257, 0.276, 0.297, 0.309,
             0.311, 0.314, 0.311, 0.305, 0.289, 0.277, 0.255, 0.24, 0.218,
             0.202, 0.182, 0.168, 0.153, 0.139],
        ])
        n = len(multi_x)
        multi_we = np.zeros((2, 2, n), dtype=float)
        multi_ifixx = np.ones(n, dtype=int)
        multi_delta = np.zeros(n, dtype=float)

        multi_we[0,0,:] = 559.6
        multi_we[1,0,:] = multi_we[0,1,:] = -1634.0
        multi_we[1,1,:] = 8397.0

        for i in range(n):
            if multi_x[i] < 100.0:
                multi_ifixx[i] = 0
            elif multi_x[i] <= 150.0:
                pass  # defaults are fine
            elif multi_x[i] <= 1000.0:
                multi_delta[i] = 25.0
            elif multi_x[i] <= 10000.0:
                multi_delta[i] = 560.0
            elif multi_x[i] <= 100000.0:
                multi_delta[i] = 9500.0
            else:
                multi_delta[i] = 144000.0
            if multi_x[i] == 100.0 or multi_x[i] == 150.0:
                multi_we[:,:,i] = 0.0

        multi_dat = Data(multi_x, multi_y, wd=1e-4/np.power(multi_x, 2),
            we=multi_we)
        multi_odr = ODR(multi_dat, multi_mod, beta0=[4.,2.,7.,.4,.5],
            delta0=multi_delta, ifixx=multi_ifixx)
        multi_odr.set_job(deriv=1, del_init=1)

        out = multi_odr.run()
        assert_array_almost_equal(
            out.beta,
            np.array([4.3799880305938963, 2.4333057577497703, 8.0028845899503978,
                0.5101147161764654, 0.5173902330489161]),
        )
        assert_array_almost_equal(
            out.sd_beta,
            np.array([0.0130625231081944, 0.0130499785273277, 0.1167085962217757,
                0.0132642749596149, 0.0288529201353984]),
        )
        assert_array_almost_equal(
            out.cov_beta,
            np.array([[0.0064918418231375, 0.0036159705923791, 0.0438637051470406,
                -0.0058700836512467, 0.011281212888768],
               [0.0036159705923791, 0.0064793789429006, 0.0517610978353126,
                -0.0051181304940204, 0.0130726943624117],
               [0.0438637051470406, 0.0517610978353126, 0.5182263323095322,
                -0.0563083340093696, 0.1269490939468611],
               [-0.0058700836512467, -0.0051181304940204, -0.0563083340093696,
                 0.0066939246261263, -0.0140184391377962],
               [0.011281212888768, 0.0130726943624117, 0.1269490939468611,
                -0.0140184391377962, 0.0316733013820852]]),
        )

    # Pearson's Data
    # K. Pearson, Philosophical Magazine, 2, 559 (1901)

    def pearson_fcn(self, B, x):
        return B[0] + B[1]*x

    def test_pearson(self):
        p_x = np.array([0.,.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4])
        p_y = np.array([5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5])
        p_sx = np.array([.03,.03,.04,.035,.07,.11,.13,.22,.74,1.])
        p_sy = np.array([1.,.74,.5,.35,.22,.22,.12,.12,.1,.04])

        p_dat = RealData(p_x, p_y, sx=p_sx, sy=p_sy)

        # Reverse the data to test invariance of results
        pr_dat = RealData(p_y, p_x, sx=p_sy, sy=p_sx)

        p_mod = Model(self.pearson_fcn, meta=dict(name='Uni-linear Fit'))

        p_odr = ODR(p_dat, p_mod, beta0=[1.,1.])
        pr_odr = ODR(pr_dat, p_mod, beta0=[1.,1.])

        out = p_odr.run()
        assert_array_almost_equal(
            out.beta,
            np.array([5.4767400299231674, -0.4796082367610305]),
        )
        assert_array_almost_equal(
            out.sd_beta,
            np.array([0.3590121690702467, 0.0706291186037444]),
        )
        assert_array_almost_equal(
            out.cov_beta,
            np.array([[0.0854275622946333, -0.0161807025443155],
               [-0.0161807025443155, 0.003306337993922]]),
        )

        rout = pr_odr.run()
        assert_array_almost_equal(
            rout.beta,
            np.array([11.4192022410781231, -2.0850374506165474]),
        )
        assert_array_almost_equal(
            rout.sd_beta,
            np.array([0.9820231665657161, 0.3070515616198911]),
        )
        assert_array_almost_equal(
            rout.cov_beta,
            np.array([[0.6391799462548782, -0.1955657291119177],
               [-0.1955657291119177, 0.0624888159223392]]),
        )

    # Lorentz Peak
    # The data is taken from one of the undergraduate physics labs I performed.

    def lorentz(self, beta, x):
        return (beta[0]*beta[1]*beta[2] / np.sqrt(np.power(x*x -
            beta[2]*beta[2], 2.0) + np.power(beta[1]*x, 2.0)))

    def test_lorentz(self):
        l_sy = np.array([.29]*18)
        l_sx = np.array([.000972971,.000948268,.000707632,.000706679,
            .000706074, .000703918,.000698955,.000456856,
            .000455207,.000662717,.000654619,.000652694,
            .000000859202,.00106589,.00106378,.00125483, .00140818,.00241839])

        l_dat = RealData(
            [3.9094, 3.85945, 3.84976, 3.84716, 3.84551, 3.83964, 3.82608,
             3.78847, 3.78163, 3.72558, 3.70274, 3.6973, 3.67373, 3.65982,
             3.6562, 3.62498, 3.55525, 3.41886],
            [652, 910.5, 984, 1000, 1007.5, 1053, 1160.5, 1409.5, 1430, 1122,
             957.5, 920, 777.5, 709.5, 698, 578.5, 418.5, 275.5],
            sx=l_sx,
            sy=l_sy,
        )
        l_mod = Model(self.lorentz, meta=dict(name='Lorentz Peak'))
        l_odr = ODR(l_dat, l_mod, beta0=(1000., .1, 3.8))

        out = l_odr.run()
        assert_array_almost_equal(
            out.beta,
            np.array([1.4306780846149925e+03, 1.3390509034538309e-01,
                 3.7798193600109009e+00]),
        )
        assert_array_almost_equal(
            out.sd_beta,
            np.array([7.3621186811330963e-01, 3.5068899941471650e-04,
                 2.4451209281408992e-04]),
        )
        assert_array_almost_equal(
            out.cov_beta,
            np.array([[2.4714409064597873e-01, -6.9067261911110836e-05,
                 -3.1236953270424990e-05],
               [-6.9067261911110836e-05, 5.6077531517333009e-08,
                  3.6133261832722601e-08],
               [-3.1236953270424990e-05, 3.6133261832722601e-08,
                  2.7261220025171730e-08]]),
        )

    def test_ticket_1253(self):
        def linear(c, x):
            return c[0]*x+c[1]

        c = [2.0, 3.0]
        x = np.linspace(0, 10)
        y = linear(c, x)

        model = Model(linear)
        data = Data(x, y, wd=1.0, we=1.0)
        job = ODR(data, model, beta0=[1.0, 1.0])
        result = job.run()
        assert_equal(result.info, 2)

    # Verify fix for gh-9140

    def test_ifixx(self):
        x1 = [-2.01, -0.99, -0.001, 1.02, 1.98]
        x2 = [3.98, 1.01, 0.001, 0.998, 4.01]
        fix = np.vstack((np.zeros_like(x1, dtype=int), np.ones_like(x2, dtype=int)))
        data = Data(np.vstack((x1, x2)), y=1, fix=fix)
        model = Model(lambda beta, x: x[1, :] - beta[0] * x[0, :]**2., implicit=True)

        odr1 = ODR(data, model, beta0=np.array([1.]))
        sol1 = odr1.run()
        odr2 = ODR(data, model, beta0=np.array([1.]), ifixx=fix)
        sol2 = odr2.run()
        assert_equal(sol1.beta, sol2.beta)

    # verify bugfix for #11800 in #11802
    def test_ticket_11800(self):
        # parameters
        beta_true = np.array([1.0, 2.3, 1.1, -1.0, 1.3, 0.5])
        nr_measurements = 10

        std_dev_x = 0.01
        x_error = np.array([[0.00063445, 0.00515731, 0.00162719, 0.01022866,
            -0.01624845, 0.00482652, 0.00275988, -0.00714734, -0.00929201, -0.00687301],
            [-0.00831623, -0.00821211, -0.00203459, 0.00938266, -0.00701829,
            0.0032169, 0.00259194, -0.00581017, -0.0030283, 0.01014164]])

        std_dev_y = 0.05
        y_error = np.array([[0.05275304, 0.04519563, -0.07524086, 0.03575642,
            0.04745194, 0.03806645, 0.07061601, -0.00753604, -0.02592543, -0.02394929],
            [0.03632366, 0.06642266, 0.08373122, 0.03988822, -0.0092536,
            -0.03750469, -0.03198903, 0.01642066, 0.01293648, -0.05627085]])

        beta_solution = np.array([
            2.62920235756665876536e+00, -1.26608484996299608838e+02,
            1.29703572775403074502e+02, -1.88560985401185465804e+00,
            7.83834160771274923718e+01, -7.64124076838087091801e+01])

        # model's function and Jacobians
        def func(beta, x):
            y0 = beta[0] + beta[1] * x[0, :] + beta[2] * x[1, :]
            y1 = beta[3] + beta[4] * x[0, :] + beta[5] * x[1, :]

            return np.vstack((y0, y1))

        def df_dbeta_odr(beta, x):
            nr_meas = np.shape(x)[1]
            zeros = np.zeros(nr_meas)
            ones = np.ones(nr_meas)

            dy0 = np.array([ones, x[0, :], x[1, :], zeros, zeros, zeros])
            dy1 = np.array([zeros, zeros, zeros, ones, x[0, :], x[1, :]])

            return np.stack((dy0, dy1))

        def df_dx_odr(beta, x):
            nr_meas = np.shape(x)[1]
            ones = np.ones(nr_meas)

            dy0 = np.array([beta[1] * ones, beta[2] * ones])
            dy1 = np.array([beta[4] * ones, beta[5] * ones])
            return np.stack((dy0, dy1))

        # do measurements with errors in independent and dependent variables
        x0_true = np.linspace(1, 10, nr_measurements)
        x1_true = np.linspace(1, 10, nr_measurements)
        x_true = np.array([x0_true, x1_true])

        y_true = func(beta_true, x_true)

        x_meas = x_true + x_error
        y_meas = y_true + y_error

        # estimate model's parameters
        model_f = Model(func, fjacb=df_dbeta_odr, fjacd=df_dx_odr)

        data = RealData(x_meas, y_meas, sx=std_dev_x, sy=std_dev_y)

        odr_obj = ODR(data, model_f, beta0=0.9 * beta_true, maxit=100)
        #odr_obj.set_iprint(init=2, iter=0, iter_step=1, final=1)
        odr_obj.set_job(deriv=3)

        odr_out = odr_obj.run()

        # check results
        assert_equal(odr_out.info, 1)
        assert_array_almost_equal(odr_out.beta, beta_solution)

    def test_multilinear_model(self):
        x = np.linspace(0.0, 5.0)
        y = 10.0 + 5.0 * x
        data = Data(x, y)
        odr_obj = ODR(data, multilinear)
        output = odr_obj.run()
        assert_array_almost_equal(output.beta, [10.0, 5.0])

    def test_exponential_model(self):
        x = np.linspace(0.0, 5.0)
        y = -10.0 + np.exp(0.5*x)
        data = Data(x, y)
        odr_obj = ODR(data, exponential)
        output = odr_obj.run()
        assert_array_almost_equal(output.beta, [-10.0, 0.5])

    def test_polynomial_model(self):
        x = np.linspace(0.0, 5.0)
        y = 1.0 + 2.0 * x + 3.0 * x ** 2 + 4.0 * x ** 3
        poly_model = polynomial(3)
        data = Data(x, y)
        odr_obj = ODR(data, poly_model)
        output = odr_obj.run()
        assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0, 4.0])

    def test_unilinear_model(self):
        x = np.linspace(0.0, 5.0)
        y = 1.0 * x + 2.0
        data = Data(x, y)
        odr_obj = ODR(data, unilinear)
        output = odr_obj.run()
        assert_array_almost_equal(output.beta, [1.0, 2.0])

    def test_quadratic_model(self):
        x = np.linspace(0.0, 5.0)
        y = 1.0 * x ** 2 + 2.0 * x + 3.0
        data = Data(x, y)
        odr_obj = ODR(data, quadratic)
        output = odr_obj.run()
        assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0])

    def test_work_ind(self):

        def func(par, x):
            b0, b1 = par
            return b0 + b1 * x

        # generate some data
        n_data = 4
        x = np.arange(n_data)
        y = np.where(x % 2, x + 0.1, x - 0.1)
        x_err = np.full(n_data, 0.1)
        y_err = np.full(n_data, 0.1)

        # do the fitting
        linear_model = Model(func)
        real_data = RealData(x, y, sx=x_err, sy=y_err)
        odr_obj = ODR(real_data, linear_model, beta0=[0.4, 0.4])
        odr_obj.set_job(fit_type=0)
        out = odr_obj.run()

        sd_ind = out.work_ind['sd']
        assert_array_almost_equal(out.sd_beta,
                                  out.work[sd_ind:sd_ind + len(out.sd_beta)])

    @pytest.mark.skipif(True, reason="Fortran I/O prone to crashing so better "
                                     "not to run this test, see gh-13127")
    def test_output_file_overwrite(self):
        """
        Verify fix for gh-1892
        """
        def func(b, x):
            return b[0] + b[1] * x

        p = Model(func)
        data = Data(np.arange(10), 12 * np.arange(10))
        tmp_dir = tempfile.mkdtemp()
        error_file_path = os.path.join(tmp_dir, "error.dat")
        report_file_path = os.path.join(tmp_dir, "report.dat")
        try:
            ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
                rptfile=report_file_path).run()
            ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
                rptfile=report_file_path, overwrite=True).run()
        finally:
            # remove output files for clean up
            shutil.rmtree(tmp_dir)

    def test_odr_model_default_meta(self):
        def func(b, x):
            return b[0] + b[1] * x

        p = Model(func)
        p.set_meta(name='Sample Model Meta', ref='ODRPACK')
        assert_equal(p.meta, {'name': 'Sample Model Meta', 'ref': 'ODRPACK'})

    def test_work_array_del_init(self):
        """
        Verify fix for gh-18739 where del_init=1 fails.
        """
        def func(b, x):
            return b[0] + b[1] * x

        # generate some data
        n_data = 4
        x = np.arange(n_data)
        y = np.where(x % 2, x + 0.1, x - 0.1)
        x_err = np.full(n_data, 0.1)
        y_err = np.full(n_data, 0.1)

        linear_model = Model(func)
        # Try various shapes of the `we` array from various `sy` and `covy`
        rd0 = RealData(x, y, sx=x_err, sy=y_err)
        rd1 = RealData(x, y, sx=x_err, sy=0.1)
        rd2 = RealData(x, y, sx=x_err, sy=[0.1])
        rd3 = RealData(x, y, sx=x_err, sy=np.full((1, n_data), 0.1))
        rd4 = RealData(x, y, sx=x_err, covy=[[0.01]])
        rd5 = RealData(x, y, sx=x_err, covy=np.full((1, 1, n_data), 0.01))
        for rd in [rd0, rd1, rd2, rd3, rd4, rd5]:
            odr_obj = ODR(rd, linear_model, beta0=[0.4, 0.4],
                          delta0=np.full(n_data, -0.1))
            odr_obj.set_job(fit_type=0, del_init=1)
            # Just make sure that it runs without raising an exception.
            odr_obj.run()

    def test_pickling_data(self):
        x = np.linspace(0.0, 5.0)
        y = 1.0 * x + 2.0
        data = Data(x, y)

        obj_pickle = pickle.dumps(data)
        del data
        pickle.loads(obj_pickle)

    def test_pickling_real_data(self):
        x = np.linspace(0.0, 5.0)
        y = 1.0 * x + 2.0
        data = RealData(x, y)

        obj_pickle = pickle.dumps(data)
        del data
        pickle.loads(obj_pickle)

    def test_pickling_model(self):
        obj_pickle = pickle.dumps(unilinear)
        pickle.loads(obj_pickle)

    def test_pickling_odr(self):
        x = np.linspace(0.0, 5.0)
        y = 1.0 * x + 2.0
        odr_obj = ODR(Data(x, y), unilinear)

        obj_pickle = pickle.dumps(odr_obj)
        del odr_obj
        pickle.loads(obj_pickle)

    def test_pickling_output(self):
        x = np.linspace(0.0, 5.0)
        y = 1.0 * x + 2.0
        output = ODR(Data(x, y), unilinear).run

        obj_pickle = pickle.dumps(output)
        del output
        pickle.loads(obj_pickle)