File size: 6,301 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import numpy as np
from numpy.linalg import LinAlgError
from .blas import get_blas_funcs
from .lapack import get_lapack_funcs
__all__ = ['LinAlgError', 'LinAlgWarning', 'norm']
class LinAlgWarning(RuntimeWarning):
"""
The warning emitted when a linear algebra related operation is close
to fail conditions of the algorithm or loss of accuracy is expected.
"""
pass
def norm(a, ord=None, axis=None, keepdims=False, check_finite=True):
"""
Matrix or vector norm.
This function is able to return one of eight different matrix norms,
or one of an infinite number of vector norms (described below), depending
on the value of the ``ord`` parameter. For tensors with rank different from
1 or 2, only `ord=None` is supported.
Parameters
----------
a : array_like
Input array. If `axis` is None, `a` must be 1-D or 2-D, unless `ord`
is None. If both `axis` and `ord` are None, the 2-norm of
``a.ravel`` will be returned.
ord : {int, inf, -inf, 'fro', 'nuc', None}, optional
Order of the norm (see table under ``Notes``). inf means NumPy's
`inf` object.
axis : {int, 2-tuple of ints, None}, optional
If `axis` is an integer, it specifies the axis of `a` along which to
compute the vector norms. If `axis` is a 2-tuple, it specifies the
axes that hold 2-D matrices, and the matrix norms of these matrices
are computed. If `axis` is None then either a vector norm (when `a`
is 1-D) or a matrix norm (when `a` is 2-D) is returned.
keepdims : bool, optional
If this is set to True, the axes which are normed over are left in the
result as dimensions with size one. With this option the result will
broadcast correctly against the original `a`.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
n : float or ndarray
Norm of the matrix or vector(s).
Notes
-----
For values of ``ord <= 0``, the result is, strictly speaking, not a
mathematical 'norm', but it may still be useful for various numerical
purposes.
The following norms can be calculated:
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm --
'nuc' nuclear norm --
inf max(sum(abs(a), axis=1)) max(abs(a))
-inf min(sum(abs(a), axis=1)) min(abs(a))
0 -- sum(a != 0)
1 max(sum(abs(a), axis=0)) as below
-1 min(sum(abs(a), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other -- sum(abs(a)**ord)**(1./ord)
===== ============================ ==========================
The Frobenius norm is given by [1]_:
:math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
The nuclear norm is the sum of the singular values.
Both the Frobenius and nuclear norm orders are only defined for
matrices.
References
----------
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples
--------
>>> import numpy as np
>>> from scipy.linalg import norm
>>> a = np.arange(9) - 4.0
>>> a
array([-4., -3., -2., -1., 0., 1., 2., 3., 4.])
>>> b = a.reshape((3, 3))
>>> b
array([[-4., -3., -2.],
[-1., 0., 1.],
[ 2., 3., 4.]])
>>> norm(a)
7.745966692414834
>>> norm(b)
7.745966692414834
>>> norm(b, 'fro')
7.745966692414834
>>> norm(a, np.inf)
4.0
>>> norm(b, np.inf)
9.0
>>> norm(a, -np.inf)
0.0
>>> norm(b, -np.inf)
2.0
>>> norm(a, 1)
20.0
>>> norm(b, 1)
7.0
>>> norm(a, -1)
-4.6566128774142013e-010
>>> norm(b, -1)
6.0
>>> norm(a, 2)
7.745966692414834
>>> norm(b, 2)
7.3484692283495345
>>> norm(a, -2)
0.0
>>> norm(b, -2)
1.8570331885190563e-016
>>> norm(a, 3)
5.8480354764257312
>>> norm(a, -3)
0.0
"""
# Differs from numpy only in non-finite handling and the use of blas.
if check_finite:
a = np.asarray_chkfinite(a)
else:
a = np.asarray(a)
if a.size and a.dtype.char in 'fdFD' and axis is None and not keepdims:
if ord in (None, 2) and (a.ndim == 1):
# use blas for fast and stable euclidean norm
nrm2 = get_blas_funcs('nrm2', dtype=a.dtype, ilp64='preferred')
return nrm2(a)
if a.ndim == 2:
# Use lapack for a couple fast matrix norms.
# For some reason the *lange frobenius norm is slow.
lange_args = None
# Make sure this works if the user uses the axis keywords
# to apply the norm to the transpose.
if ord == 1:
if np.isfortran(a):
lange_args = '1', a
elif np.isfortran(a.T):
lange_args = 'i', a.T
elif ord == np.inf:
if np.isfortran(a):
lange_args = 'i', a
elif np.isfortran(a.T):
lange_args = '1', a.T
if lange_args:
lange = get_lapack_funcs('lange', dtype=a.dtype, ilp64='preferred')
return lange(*lange_args)
# fall back to numpy in every other case
return np.linalg.norm(a, ord=ord, axis=axis, keepdims=keepdims)
def _datacopied(arr, original):
"""
Strict check for `arr` not sharing any data with `original`,
under the assumption that arr = asarray(original)
"""
if arr is original:
return False
if not isinstance(original, np.ndarray) and hasattr(original, '__array__'):
return False
return arr.base is None
|