File size: 25,752 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# Last Change: Mon Aug 20 08:00 PM 2007 J
import re
import datetime

import numpy as np

import csv
import ctypes

"""A module to read arff files."""

__all__ = ['MetaData', 'loadarff', 'ArffError', 'ParseArffError']

# An Arff file is basically two parts:
#   - header
#   - data
#
# A header has each of its components starting by @META where META is one of
# the keyword (attribute of relation, for now).

# TODO:
#   - both integer and reals are treated as numeric -> the integer info
#    is lost!
#   - Replace ValueError by ParseError or something

# We know can handle the following:
#   - numeric and nominal attributes
#   - missing values for numeric attributes

r_meta = re.compile(r'^\s*@')
# Match a comment
r_comment = re.compile(r'^%')
# Match an empty line
r_empty = re.compile(r'^\s+$')
# Match a header line, that is a line which starts by @ + a word
r_headerline = re.compile(r'^\s*@\S*')
r_datameta = re.compile(r'^@[Dd][Aa][Tt][Aa]')
r_relation = re.compile(r'^@[Rr][Ee][Ll][Aa][Tt][Ii][Oo][Nn]\s*(\S*)')
r_attribute = re.compile(r'^\s*@[Aa][Tt][Tt][Rr][Ii][Bb][Uu][Tt][Ee]\s*(..*$)')

r_nominal = re.compile(r'{(.+)}')
r_date = re.compile(r"[Dd][Aa][Tt][Ee]\s+[\"']?(.+?)[\"']?$")

# To get attributes name enclosed with ''
r_comattrval = re.compile(r"'(..+)'\s+(..+$)")
# To get normal attributes
r_wcomattrval = re.compile(r"(\S+)\s+(..+$)")

# ------------------------
# Module defined exception
# ------------------------


class ArffError(OSError):
    pass


class ParseArffError(ArffError):
    pass


# ----------
# Attributes
# ----------
class Attribute:

    type_name = None

    def __init__(self, name):
        self.name = name
        self.range = None
        self.dtype = np.object_

    @classmethod
    def parse_attribute(cls, name, attr_string):
        """
        Parse the attribute line if it knows how. Returns the parsed
        attribute, or None.
        """
        return None

    def parse_data(self, data_str):
        """
        Parse a value of this type.
        """
        return None

    def __str__(self):
        """
        Parse a value of this type.
        """
        return self.name + ',' + self.type_name


class NominalAttribute(Attribute):

    type_name = 'nominal'

    def __init__(self, name, values):
        super().__init__(name)
        self.values = values
        self.range = values
        self.dtype = (np.bytes_, max(len(i) for i in values))

    @staticmethod
    def _get_nom_val(atrv):
        """Given a string containing a nominal type, returns a tuple of the
        possible values.

        A nominal type is defined as something framed between braces ({}).

        Parameters
        ----------
        atrv : str
           Nominal type definition

        Returns
        -------
        poss_vals : tuple
           possible values

        Examples
        --------
        >>> from scipy.io.arff._arffread import NominalAttribute
        >>> NominalAttribute._get_nom_val("{floup, bouga, fl, ratata}")
        ('floup', 'bouga', 'fl', 'ratata')
        """
        m = r_nominal.match(atrv)
        if m:
            attrs, _ = split_data_line(m.group(1))
            return tuple(attrs)
        else:
            raise ValueError("This does not look like a nominal string")

    @classmethod
    def parse_attribute(cls, name, attr_string):
        """
        Parse the attribute line if it knows how. Returns the parsed
        attribute, or None.

        For nominal attributes, the attribute string would be like '{<attr_1>,
         <attr2>, <attr_3>}'.
        """
        if attr_string[0] == '{':
            values = cls._get_nom_val(attr_string)
            return cls(name, values)
        else:
            return None

    def parse_data(self, data_str):
        """
        Parse a value of this type.
        """
        if data_str in self.values:
            return data_str
        elif data_str == '?':
            return data_str
        else:
            raise ValueError(f"{str(data_str)} value not in {str(self.values)}")

    def __str__(self):
        msg = self.name + ",{"
        for i in range(len(self.values)-1):
            msg += self.values[i] + ","
        msg += self.values[-1]
        msg += "}"
        return msg


class NumericAttribute(Attribute):

    def __init__(self, name):
        super().__init__(name)
        self.type_name = 'numeric'
        self.dtype = np.float64

    @classmethod
    def parse_attribute(cls, name, attr_string):
        """
        Parse the attribute line if it knows how. Returns the parsed
        attribute, or None.

        For numeric attributes, the attribute string would be like
        'numeric' or 'int' or 'real'.
        """

        attr_string = attr_string.lower().strip()

        if (attr_string[:len('numeric')] == 'numeric' or
           attr_string[:len('int')] == 'int' or
           attr_string[:len('real')] == 'real'):
            return cls(name)
        else:
            return None

    def parse_data(self, data_str):
        """
        Parse a value of this type.

        Parameters
        ----------
        data_str : str
           string to convert

        Returns
        -------
        f : float
           where float can be nan

        Examples
        --------
        >>> from scipy.io.arff._arffread import NumericAttribute
        >>> atr = NumericAttribute('atr')
        >>> atr.parse_data('1')
        1.0
        >>> atr.parse_data('1\\n')
        1.0
        >>> atr.parse_data('?\\n')
        nan
        """
        if '?' in data_str:
            return np.nan
        else:
            return float(data_str)

    def _basic_stats(self, data):
        nbfac = data.size * 1. / (data.size - 1)
        return (np.nanmin(data), np.nanmax(data),
                np.mean(data), np.std(data) * nbfac)


class StringAttribute(Attribute):

    def __init__(self, name):
        super().__init__(name)
        self.type_name = 'string'

    @classmethod
    def parse_attribute(cls, name, attr_string):
        """
        Parse the attribute line if it knows how. Returns the parsed
        attribute, or None.

        For string attributes, the attribute string would be like
        'string'.
        """

        attr_string = attr_string.lower().strip()

        if attr_string[:len('string')] == 'string':
            return cls(name)
        else:
            return None


class DateAttribute(Attribute):

    def __init__(self, name, date_format, datetime_unit):
        super().__init__(name)
        self.date_format = date_format
        self.datetime_unit = datetime_unit
        self.type_name = 'date'
        self.range = date_format
        self.dtype = np.datetime64(0, self.datetime_unit)

    @staticmethod
    def _get_date_format(atrv):
        m = r_date.match(atrv)
        if m:
            pattern = m.group(1).strip()
            # convert time pattern from Java's SimpleDateFormat to C's format
            datetime_unit = None
            if "yyyy" in pattern:
                pattern = pattern.replace("yyyy", "%Y")
                datetime_unit = "Y"
            elif "yy":
                pattern = pattern.replace("yy", "%y")
                datetime_unit = "Y"
            if "MM" in pattern:
                pattern = pattern.replace("MM", "%m")
                datetime_unit = "M"
            if "dd" in pattern:
                pattern = pattern.replace("dd", "%d")
                datetime_unit = "D"
            if "HH" in pattern:
                pattern = pattern.replace("HH", "%H")
                datetime_unit = "h"
            if "mm" in pattern:
                pattern = pattern.replace("mm", "%M")
                datetime_unit = "m"
            if "ss" in pattern:
                pattern = pattern.replace("ss", "%S")
                datetime_unit = "s"
            if "z" in pattern or "Z" in pattern:
                raise ValueError("Date type attributes with time zone not "
                                 "supported, yet")

            if datetime_unit is None:
                raise ValueError("Invalid or unsupported date format")

            return pattern, datetime_unit
        else:
            raise ValueError("Invalid or no date format")

    @classmethod
    def parse_attribute(cls, name, attr_string):
        """
        Parse the attribute line if it knows how. Returns the parsed
        attribute, or None.

        For date attributes, the attribute string would be like
        'date <format>'.
        """

        attr_string_lower = attr_string.lower().strip()

        if attr_string_lower[:len('date')] == 'date':
            date_format, datetime_unit = cls._get_date_format(attr_string)
            return cls(name, date_format, datetime_unit)
        else:
            return None

    def parse_data(self, data_str):
        """
        Parse a value of this type.
        """
        date_str = data_str.strip().strip("'").strip('"')
        if date_str == '?':
            return np.datetime64('NaT', self.datetime_unit)
        else:
            dt = datetime.datetime.strptime(date_str, self.date_format)
            return np.datetime64(dt).astype(
                f"datetime64[{self.datetime_unit}]")

    def __str__(self):
        return super().__str__() + ',' + self.date_format


class RelationalAttribute(Attribute):

    def __init__(self, name):
        super().__init__(name)
        self.type_name = 'relational'
        self.dtype = np.object_
        self.attributes = []
        self.dialect = None

    @classmethod
    def parse_attribute(cls, name, attr_string):
        """
        Parse the attribute line if it knows how. Returns the parsed
        attribute, or None.

        For date attributes, the attribute string would be like
        'date <format>'.
        """

        attr_string_lower = attr_string.lower().strip()

        if attr_string_lower[:len('relational')] == 'relational':
            return cls(name)
        else:
            return None

    def parse_data(self, data_str):
        # Copy-pasted
        elems = list(range(len(self.attributes)))

        escaped_string = data_str.encode().decode("unicode-escape")

        row_tuples = []

        for raw in escaped_string.split("\n"):
            row, self.dialect = split_data_line(raw, self.dialect)

            row_tuples.append(tuple(
                [self.attributes[i].parse_data(row[i]) for i in elems]))

        return np.array(row_tuples,
                        [(a.name, a.dtype) for a in self.attributes])

    def __str__(self):
        return (super().__str__() + '\n\t' +
                '\n\t'.join(str(a) for a in self.attributes))


# -----------------
# Various utilities
# -----------------
def to_attribute(name, attr_string):
    attr_classes = (NominalAttribute, NumericAttribute, DateAttribute,
                    StringAttribute, RelationalAttribute)

    for cls in attr_classes:
        attr = cls.parse_attribute(name, attr_string)
        if attr is not None:
            return attr

    raise ParseArffError(f"unknown attribute {attr_string}")


def csv_sniffer_has_bug_last_field():
    """
    Checks if the bug https://bugs.python.org/issue30157 is unpatched.
    """

    # We only compute this once.
    has_bug = getattr(csv_sniffer_has_bug_last_field, "has_bug", None)

    if has_bug is None:
        dialect = csv.Sniffer().sniff("3, 'a'")
        csv_sniffer_has_bug_last_field.has_bug = dialect.quotechar != "'"
        has_bug = csv_sniffer_has_bug_last_field.has_bug

    return has_bug


def workaround_csv_sniffer_bug_last_field(sniff_line, dialect, delimiters):
    """
    Workaround for the bug https://bugs.python.org/issue30157 if is unpatched.
    """
    if csv_sniffer_has_bug_last_field():
        # Reuses code from the csv module
        right_regex = r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'  # noqa: E501

        for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)',  # ,".*?",  # noqa: E501
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',  # .*?",  # noqa: E501
                      right_regex,  # ,".*?"
                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):  # ".*?" (no delim, no space)  # noqa: E501
            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
            matches = regexp.findall(sniff_line)
            if matches:
                break

        # If it does not match the expression that was bugged,
        # then this bug does not apply
        if restr != right_regex:
            return

        groupindex = regexp.groupindex

        # There is only one end of the string
        assert len(matches) == 1
        m = matches[0]

        n = groupindex['quote'] - 1
        quote = m[n]

        n = groupindex['delim'] - 1
        delim = m[n]

        n = groupindex['space'] - 1
        space = bool(m[n])

        dq_regexp = re.compile(
            rf"(({re.escape(delim)})|^)\W*{quote}[^{re.escape(delim)}\n]*{quote}[^{re.escape(delim)}\n]*{quote}\W*(({re.escape(delim)})|$)", re.MULTILINE  # noqa: E501
        )

        doublequote = bool(dq_regexp.search(sniff_line))

        dialect.quotechar = quote
        if delim in delimiters:
            dialect.delimiter = delim
        dialect.doublequote = doublequote
        dialect.skipinitialspace = space


def split_data_line(line, dialect=None):
    delimiters = ",\t"

    # This can not be done in a per reader basis, and relational fields
    # can be HUGE
    csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2))

    # Remove the line end if any
    if line[-1] == '\n':
        line = line[:-1]
    
    # Remove potential trailing whitespace
    line = line.strip()
    
    sniff_line = line

    # Add a delimiter if none is present, so that the csv.Sniffer
    # does not complain for a single-field CSV.
    if not any(d in line for d in delimiters):
        sniff_line += ","

    if dialect is None:
        dialect = csv.Sniffer().sniff(sniff_line, delimiters=delimiters)
        workaround_csv_sniffer_bug_last_field(sniff_line=sniff_line,
                                              dialect=dialect,
                                              delimiters=delimiters)

    row = next(csv.reader([line], dialect))

    return row, dialect


# --------------
# Parsing header
# --------------
def tokenize_attribute(iterable, attribute):
    """Parse a raw string in header (e.g., starts by @attribute).

    Given a raw string attribute, try to get the name and type of the
    attribute. Constraints:

    * The first line must start with @attribute (case insensitive, and
      space like characters before @attribute are allowed)
    * Works also if the attribute is spread on multilines.
    * Works if empty lines or comments are in between

    Parameters
    ----------
    attribute : str
       the attribute string.

    Returns
    -------
    name : str
       name of the attribute
    value : str
       value of the attribute
    next : str
       next line to be parsed

    Examples
    --------
    If attribute is a string defined in python as r"floupi real", will
    return floupi as name, and real as value.

    >>> from scipy.io.arff._arffread import tokenize_attribute
    >>> iterable = iter([0] * 10) # dummy iterator
    >>> tokenize_attribute(iterable, r"@attribute floupi real")
    ('floupi', 'real', 0)

    If attribute is r"'floupi 2' real", will return 'floupi 2' as name,
    and real as value.

    >>> tokenize_attribute(iterable, r"  @attribute 'floupi 2' real   ")
    ('floupi 2', 'real', 0)

    """
    sattr = attribute.strip()
    mattr = r_attribute.match(sattr)
    if mattr:
        # atrv is everything after @attribute
        atrv = mattr.group(1)
        if r_comattrval.match(atrv):
            name, type = tokenize_single_comma(atrv)
            next_item = next(iterable)
        elif r_wcomattrval.match(atrv):
            name, type = tokenize_single_wcomma(atrv)
            next_item = next(iterable)
        else:
            # Not sure we should support this, as it does not seem supported by
            # weka.
            raise ValueError("multi line not supported yet")
    else:
        raise ValueError(f"First line unparsable: {sattr}")

    attribute = to_attribute(name, type)

    if type.lower() == 'relational':
        next_item = read_relational_attribute(iterable, attribute, next_item)
    #    raise ValueError("relational attributes not supported yet")

    return attribute, next_item


def tokenize_single_comma(val):
    # XXX we match twice the same string (here and at the caller level). It is
    # stupid, but it is easier for now...
    m = r_comattrval.match(val)
    if m:
        try:
            name = m.group(1).strip()
            type = m.group(2).strip()
        except IndexError as e:
            raise ValueError("Error while tokenizing attribute") from e
    else:
        raise ValueError(f"Error while tokenizing single {val}")
    return name, type


def tokenize_single_wcomma(val):
    # XXX we match twice the same string (here and at the caller level). It is
    # stupid, but it is easier for now...
    m = r_wcomattrval.match(val)
    if m:
        try:
            name = m.group(1).strip()
            type = m.group(2).strip()
        except IndexError as e:
            raise ValueError("Error while tokenizing attribute") from e
    else:
        raise ValueError(f"Error while tokenizing single {val}")
    return name, type


def read_relational_attribute(ofile, relational_attribute, i):
    """Read the nested attributes of a relational attribute"""

    r_end_relational = re.compile(r'^@[Ee][Nn][Dd]\s*' +
                                  relational_attribute.name + r'\s*$')

    while not r_end_relational.match(i):
        m = r_headerline.match(i)
        if m:
            isattr = r_attribute.match(i)
            if isattr:
                attr, i = tokenize_attribute(ofile, i)
                relational_attribute.attributes.append(attr)
            else:
                raise ValueError(f"Error parsing line {i}")
        else:
            i = next(ofile)

    i = next(ofile)
    return i


def read_header(ofile):
    """Read the header of the iterable ofile."""
    i = next(ofile)

    # Pass first comments
    while r_comment.match(i):
        i = next(ofile)

    # Header is everything up to DATA attribute ?
    relation = None
    attributes = []
    while not r_datameta.match(i):
        m = r_headerline.match(i)
        if m:
            isattr = r_attribute.match(i)
            if isattr:
                attr, i = tokenize_attribute(ofile, i)
                attributes.append(attr)
            else:
                isrel = r_relation.match(i)
                if isrel:
                    relation = isrel.group(1)
                else:
                    raise ValueError(f"Error parsing line {i}")
                i = next(ofile)
        else:
            i = next(ofile)

    return relation, attributes


class MetaData:
    """Small container to keep useful information on a ARFF dataset.

    Knows about attributes names and types.

    Examples
    --------
    ::

        data, meta = loadarff('iris.arff')
        # This will print the attributes names of the iris.arff dataset
        for i in meta:
            print(i)
        # This works too
        meta.names()
        # Getting attribute type
        types = meta.types()

    Methods
    -------
    names
    types

    Notes
    -----
    Also maintains the list of attributes in order, i.e., doing for i in
    meta, where meta is an instance of MetaData, will return the
    different attribute names in the order they were defined.
    """
    def __init__(self, rel, attr):
        self.name = rel
        self._attributes = {a.name: a for a in attr}

    def __repr__(self):
        msg = ""
        msg += f"Dataset: {self.name}\n"
        for i in self._attributes:
            msg += f"\t{i}'s type is {self._attributes[i].type_name}"
            if self._attributes[i].range:
                msg += f", range is {str(self._attributes[i].range)}"
            msg += '\n'
        return msg

    def __iter__(self):
        return iter(self._attributes)

    def __getitem__(self, key):
        attr = self._attributes[key]

        return (attr.type_name, attr.range)

    def names(self):
        """Return the list of attribute names.

        Returns
        -------
        attrnames : list of str
            The attribute names.
        """
        return list(self._attributes)

    def types(self):
        """Return the list of attribute types.

        Returns
        -------
        attr_types : list of str
            The attribute types.
        """
        attr_types = [self._attributes[name].type_name
                      for name in self._attributes]
        return attr_types


def loadarff(f):
    """
    Read an arff file.

    The data is returned as a record array, which can be accessed much like
    a dictionary of NumPy arrays. For example, if one of the attributes is
    called 'pressure', then its first 10 data points can be accessed from the
    ``data`` record array like so: ``data['pressure'][0:10]``


    Parameters
    ----------
    f : file-like or str
       File-like object to read from, or filename to open.

    Returns
    -------
    data : record array
       The data of the arff file, accessible by attribute names.
    meta : `MetaData`
       Contains information about the arff file such as name and
       type of attributes, the relation (name of the dataset), etc.

    Raises
    ------
    ParseArffError
        This is raised if the given file is not ARFF-formatted.
    NotImplementedError
        The ARFF file has an attribute which is not supported yet.

    Notes
    -----

    This function should be able to read most arff files. Not
    implemented functionality include:

    * date type attributes
    * string type attributes

    It can read files with numeric and nominal attributes. It cannot read
    files with sparse data ({} in the file). However, this function can
    read files with missing data (? in the file), representing the data
    points as NaNs.

    Examples
    --------
    >>> from scipy.io import arff
    >>> from io import StringIO
    >>> content = \"\"\"
    ... @relation foo
    ... @attribute width  numeric
    ... @attribute height numeric
    ... @attribute color  {red,green,blue,yellow,black}
    ... @data
    ... 5.0,3.25,blue
    ... 4.5,3.75,green
    ... 3.0,4.00,red
    ... \"\"\"
    >>> f = StringIO(content)
    >>> data, meta = arff.loadarff(f)
    >>> data
    array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')],
          dtype=[('width', '<f8'), ('height', '<f8'), ('color', '|S6')])
    >>> meta
    Dataset: foo
    \twidth's type is numeric
    \theight's type is numeric
    \tcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black')

    """
    if hasattr(f, 'read'):
        ofile = f
    else:
        ofile = open(f)
    try:
        return _loadarff(ofile)
    finally:
        if ofile is not f:  # only close what we opened
            ofile.close()


def _loadarff(ofile):
    # Parse the header file
    try:
        rel, attr = read_header(ofile)
    except ValueError as e:
        msg = "Error while parsing header, error was: " + str(e)
        raise ParseArffError(msg) from e

    # Check whether we have a string attribute (not supported yet)
    hasstr = False
    for a in attr:
        if isinstance(a, StringAttribute):
            hasstr = True

    meta = MetaData(rel, attr)

    # XXX The following code is not great
    # Build the type descriptor descr and the list of converters to convert
    # each attribute to the suitable type (which should match the one in
    # descr).

    # This can be used once we want to support integer as integer values and
    # not as numeric anymore (using masked arrays ?).

    if hasstr:
        # How to support string efficiently ? Ideally, we should know the max
        # size of the string before allocating the numpy array.
        raise NotImplementedError("String attributes not supported yet, sorry")

    ni = len(attr)

    def generator(row_iter, delim=','):
        # TODO: this is where we are spending time (~80%). I think things
        # could be made more efficiently:
        #   - We could for example "compile" the function, because some values
        #   do not change here.
        #   - The function to convert a line to dtyped values could also be
        #   generated on the fly from a string and be executed instead of
        #   looping.
        #   - The regex are overkill: for comments, checking that a line starts
        #   by % should be enough and faster, and for empty lines, same thing
        #   --> this does not seem to change anything.

        # 'compiling' the range since it does not change
        # Note, I have already tried zipping the converters and
        # row elements and got slightly worse performance.
        elems = list(range(ni))

        dialect = None
        for raw in row_iter:
            # We do not abstract skipping comments and empty lines for
            # performance reasons.
            if r_comment.match(raw) or r_empty.match(raw):
                continue

            row, dialect = split_data_line(raw, dialect)

            yield tuple([attr[i].parse_data(row[i]) for i in elems])

    a = list(generator(ofile))
    # No error should happen here: it is a bug otherwise
    data = np.array(a, [(a.name, a.dtype) for a in attr])
    return data, meta