File size: 14,900 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import itertools
import functools
import operator
import numpy as np

from math import prod

from . import _bspl   # type: ignore[attr-defined]

import scipy.sparse.linalg as ssl
from scipy.sparse import csr_array

from ._bsplines import _not_a_knot

__all__ = ["NdBSpline"]


def _get_dtype(dtype):
    """Return np.complex128 for complex dtypes, np.float64 otherwise."""
    if np.issubdtype(dtype, np.complexfloating):
        return np.complex128
    else:
        return np.float64


class NdBSpline:
    """Tensor product spline object.

    The value at point ``xp = (x1, x2, ..., xN)`` is evaluated as a linear
    combination of products of one-dimensional b-splines in each of the ``N``
    dimensions::

       c[i1, i2, ..., iN] * B(x1; i1, t1) * B(x2; i2, t2) * ... * B(xN; iN, tN)


    Here ``B(x; i, t)`` is the ``i``-th b-spline defined by the knot vector
    ``t`` evaluated at ``x``.

    Parameters
    ----------
    t : tuple of 1D ndarrays
        knot vectors in directions 1, 2, ... N,
        ``len(t[i]) == n[i] + k + 1``
    c : ndarray, shape (n1, n2, ..., nN, ...)
        b-spline coefficients
    k : int or length-d tuple of integers
        spline degrees.
        A single integer is interpreted as having this degree for
        all dimensions.
    extrapolate : bool, optional
        Whether to extrapolate out-of-bounds inputs, or return `nan`.
        Default is to extrapolate.

    Attributes
    ----------
    t : tuple of ndarrays
        Knots vectors.
    c : ndarray
        Coefficients of the tensor-product spline.
    k : tuple of integers
        Degrees for each dimension.
    extrapolate : bool, optional
        Whether to extrapolate or return nans for out-of-bounds inputs.
        Defaults to true.

    Methods
    -------
    __call__
    design_matrix

    See Also
    --------
    BSpline : a one-dimensional B-spline object
    NdPPoly : an N-dimensional piecewise tensor product polynomial

    """
    def __init__(self, t, c, k, *, extrapolate=None):
        self._k, self._indices_k1d, (self._t, self._len_t) = _preprocess_inputs(k, t)

        if extrapolate is None:
            extrapolate = True
        self.extrapolate = bool(extrapolate)

        self.c = np.asarray(c)

        ndim = self._t.shape[0]   # == len(self.t)
        if self.c.ndim < ndim:
            raise ValueError(f"Coefficients must be at least {ndim}-dimensional.")

        for d in range(ndim):
            td = self.t[d]
            kd = self.k[d]
            n = td.shape[0] - kd - 1

            if self.c.shape[d] != n:
                raise ValueError(f"Knots, coefficients and degree in dimension"
                                 f" {d} are inconsistent:"
                                 f" got {self.c.shape[d]} coefficients for"
                                 f" {len(td)} knots, need at least {n} for"
                                 f" k={k}.")

        dt = _get_dtype(self.c.dtype)
        self.c = np.ascontiguousarray(self.c, dtype=dt)

    @property
    def k(self):
        return tuple(self._k)

    @property
    def t(self):
        # repack the knots into a tuple
        return tuple(self._t[d, :self._len_t[d]] for d in range(self._t.shape[0]))

    def __call__(self, xi, *, nu=None, extrapolate=None):
        """Evaluate the tensor product b-spline at ``xi``.

        Parameters
        ----------
        xi : array_like, shape(..., ndim)
            The coordinates to evaluate the interpolator at.
            This can be a list or tuple of ndim-dimensional points
            or an array with the shape (num_points, ndim).
        nu : array_like, optional, shape (ndim,)
            Orders of derivatives to evaluate. Each must be non-negative.
            Defaults to the zeroth derivivative.
        extrapolate : bool, optional
            Whether to exrapolate based on first and last intervals in each
            dimension, or return `nan`. Default is to ``self.extrapolate``.

        Returns
        -------
        values : ndarray, shape ``xi.shape[:-1] + self.c.shape[ndim:]``
            Interpolated values at ``xi``
        """
        ndim = self._t.shape[0]  # == len(self.t)

        if extrapolate is None:
            extrapolate = self.extrapolate
        extrapolate = bool(extrapolate)

        if nu is None:
            nu = np.zeros((ndim,), dtype=np.intc)
        else:
            nu = np.asarray(nu, dtype=np.intc)
            if nu.ndim != 1 or nu.shape[0] != ndim:
                raise ValueError(
                    f"invalid number of derivative orders {nu = } for "
                    f"ndim = {len(self.t)}.")
            if any(nu < 0):
                raise ValueError(f"derivatives must be positive, got {nu = }")

        # prepare xi : shape (..., m1, ..., md) -> (1, m1, ..., md)
        xi = np.asarray(xi, dtype=float)
        xi_shape = xi.shape
        xi = xi.reshape(-1, xi_shape[-1])
        xi = np.ascontiguousarray(xi)

        if xi_shape[-1] != ndim:
            raise ValueError(f"Shapes: xi.shape={xi_shape} and ndim={ndim}")

        # complex -> double
        was_complex = self.c.dtype.kind == 'c'
        cc = self.c
        if was_complex and self.c.ndim == ndim:
            # make sure that core dimensions are intact, and complex->float
            # size doubling only adds a trailing dimension
            cc = self.c[..., None]
        cc = cc.view(float)

        # prepare the coefficients: flatten the trailing dimensions
        c1 = cc.reshape(cc.shape[:ndim] + (-1,))
        c1r = c1.ravel()

        # replacement for np.ravel_multi_index for indexing of `c1`:
        _strides_c1 = np.asarray([s // c1.dtype.itemsize
                                  for s in c1.strides], dtype=np.intp)

        num_c_tr = c1.shape[-1]  # # of trailing coefficients
        out = np.empty(xi.shape[:-1] + (num_c_tr,), dtype=c1.dtype)

        _bspl.evaluate_ndbspline(xi,
                                 self._t,
                                 self._len_t,
                                 self._k,
                                 nu,
                                 extrapolate,
                                 c1r,
                                 num_c_tr,
                                 _strides_c1,
                                 self._indices_k1d,
                                 out,)
        out = out.view(self.c.dtype)
        return out.reshape(xi_shape[:-1] + self.c.shape[ndim:])

    @classmethod
    def design_matrix(cls, xvals, t, k, extrapolate=True):
        """Construct the design matrix as a CSR format sparse array.

        Parameters
        ----------
        xvals :  ndarray, shape(npts, ndim)
            Data points. ``xvals[j, :]`` gives the ``j``-th data point as an
            ``ndim``-dimensional array.
        t : tuple of 1D ndarrays, length-ndim
            Knot vectors in directions 1, 2, ... ndim,
        k : int
            B-spline degree.
        extrapolate : bool, optional
            Whether to extrapolate out-of-bounds values of raise a `ValueError`

        Returns
        -------
        design_matrix : a CSR array
            Each row of the design matrix corresponds to a value in `xvals` and
            contains values of b-spline basis elements which are non-zero
            at this value.

        """
        xvals = np.asarray(xvals, dtype=float)
        ndim = xvals.shape[-1]
        if len(t) != ndim:
            raise ValueError(
                f"Data and knots are inconsistent: len(t) = {len(t)} for "
                f" {ndim = }."
            )

        # tabulate the flat indices for iterating over the (k+1)**ndim subarray
        k, _indices_k1d, (_t, len_t) = _preprocess_inputs(k, t)

        # Precompute the shape and strides of the 'coefficients array'.
        # This would have been the NdBSpline coefficients; in the present context
        # this is a helper to compute the indices into the colocation matrix.
        c_shape = tuple(len_t[d] - k[d] - 1 for d in range(ndim))

        # The strides of the coeffs array: the computation is equivalent to
        # >>> cstrides = [s // 8 for s in np.empty(c_shape).strides]
        cs = c_shape[1:] + (1,)
        cstrides = np.cumprod(cs[::-1], dtype=np.intp)[::-1].copy()

        # heavy lifting happens here
        data, indices, indptr = _bspl._colloc_nd(xvals,
                                                _t,
                                                len_t,
                                                k,
                                                _indices_k1d,
                                                cstrides)
        return csr_array((data, indices, indptr))


def _preprocess_inputs(k, t_tpl):
    """Helpers: validate and preprocess NdBSpline inputs.

       Parameters
       ----------
       k : int or tuple
          Spline orders
       t_tpl : tuple or array-likes
          Knots.
    """
    # 1. Make sure t_tpl is a tuple
    if not isinstance(t_tpl, tuple):
        raise ValueError(f"Expect `t` to be a tuple of array-likes. "
                         f"Got {t_tpl} instead."
        )

    # 2. Make ``k`` a tuple of integers
    ndim = len(t_tpl)
    try:
        len(k)
    except TypeError:
        # make k a tuple
        k = (k,)*ndim

    k = np.asarray([operator.index(ki) for ki in k], dtype=np.int32)

    if len(k) != ndim:
        raise ValueError(f"len(t) = {len(t_tpl)} != {len(k) = }.")

    # 3. Validate inputs
    ndim = len(t_tpl)
    for d in range(ndim):
        td = np.asarray(t_tpl[d])
        kd = k[d]
        n = td.shape[0] - kd - 1
        if kd < 0:
            raise ValueError(f"Spline degree in dimension {d} cannot be"
                             f" negative.")
        if td.ndim != 1:
            raise ValueError(f"Knot vector in dimension {d} must be"
                             f" one-dimensional.")
        if n < kd + 1:
            raise ValueError(f"Need at least {2*kd + 2} knots for degree"
                             f" {kd} in dimension {d}.")
        if (np.diff(td) < 0).any():
            raise ValueError(f"Knots in dimension {d} must be in a"
                             f" non-decreasing order.")
        if len(np.unique(td[kd:n + 1])) < 2:
            raise ValueError(f"Need at least two internal knots in"
                             f" dimension {d}.")
        if not np.isfinite(td).all():
            raise ValueError(f"Knots in dimension {d} should not have"
                             f" nans or infs.")

    # 4. tabulate the flat indices for iterating over the (k+1)**ndim subarray
    # non-zero b-spline elements
    shape = tuple(kd + 1 for kd in k)
    indices = np.unravel_index(np.arange(prod(shape)), shape)
    _indices_k1d = np.asarray(indices, dtype=np.intp).T.copy()

    # 5. pack the knots into a single array:
    #    ([1, 2, 3, 4], [5, 6], (7, 8, 9)) -->
    #    array([[1, 2, 3, 4],
    #           [5, 6, nan, nan],
    #           [7, 8, 9, nan]])
    ndim = len(t_tpl)
    len_t = [len(ti) for ti in t_tpl]
    _t = np.empty((ndim, max(len_t)), dtype=float)
    _t.fill(np.nan)
    for d in range(ndim):
        _t[d, :len(t_tpl[d])] = t_tpl[d]
    len_t = np.asarray(len_t, dtype=np.int32)

    return k, _indices_k1d, (_t, len_t)


def _iter_solve(a, b, solver=ssl.gcrotmk, **solver_args):
    # work around iterative solvers not accepting multiple r.h.s.

    # also work around a.dtype == float64 and b.dtype == complex128
    # cf https://github.com/scipy/scipy/issues/19644
    if np.issubdtype(b.dtype, np.complexfloating):
        real = _iter_solve(a, b.real, solver, **solver_args)
        imag = _iter_solve(a, b.imag, solver, **solver_args)
        return real + 1j*imag

    if b.ndim == 2 and b.shape[1] !=1:
        res = np.empty_like(b)
        for j in range(b.shape[1]):
            res[:, j], info = solver(a, b[:, j], **solver_args)
            if info != 0:
                raise ValueError(f"{solver = } returns {info =} for column {j}.")
        return res
    else:
        res, info = solver(a, b, **solver_args)
        if info != 0:
            raise ValueError(f"{solver = } returns {info = }.")
        return res


def make_ndbspl(points, values, k=3, *, solver=ssl.gcrotmk, **solver_args):
    """Construct an interpolating NdBspline.

    Parameters
    ----------
    points : tuple of ndarrays of float, with shapes (m1,), ... (mN,)
        The points defining the regular grid in N dimensions. The points in
        each dimension (i.e. every element of the `points` tuple) must be
        strictly ascending or descending.      
    values : ndarray of float, shape (m1, ..., mN, ...)
        The data on the regular grid in n dimensions.
    k : int, optional
        The spline degree. Must be odd. Default is cubic, k=3
    solver : a `scipy.sparse.linalg` solver (iterative or direct), optional.
        An iterative solver from `scipy.sparse.linalg` or a direct one,
        `sparse.sparse.linalg.spsolve`.
        Used to solve the sparse linear system
        ``design_matrix @ coefficients = rhs`` for the coefficients.
        Default is `scipy.sparse.linalg.gcrotmk`
    solver_args : dict, optional
        Additional arguments for the solver. The call signature is
        ``solver(csr_array, rhs_vector, **solver_args)``

    Returns
    -------
    spl : NdBSpline object

    Notes
    -----
    Boundary conditions are not-a-knot in all dimensions.
    """
    ndim = len(points)
    xi_shape = tuple(len(x) for x in points)

    try:
        len(k)
    except TypeError:
        # make k a tuple
        k = (k,)*ndim

    for d, point in enumerate(points):
        numpts = len(np.atleast_1d(point))
        if numpts <= k[d]:
            raise ValueError(f"There are {numpts} points in dimension {d},"
                             f" but order {k[d]} requires at least "
                             f" {k[d]+1} points per dimension.")

    t = tuple(_not_a_knot(np.asarray(points[d], dtype=float), k[d])
              for d in range(ndim))
    xvals = np.asarray([xv for xv in itertools.product(*points)], dtype=float)

    # construct the colocation matrix
    matr = NdBSpline.design_matrix(xvals, t, k)

    # Solve for the coefficients given `values`.
    # Trailing dimensions: first ndim dimensions are data, the rest are batch
    # dimensions, so stack `values` into a 2D array for `spsolve` to undestand.
    v_shape = values.shape
    vals_shape = (prod(v_shape[:ndim]), prod(v_shape[ndim:]))
    vals = values.reshape(vals_shape)

    if solver != ssl.spsolve:
        solver = functools.partial(_iter_solve, solver=solver)
        if "atol" not in solver_args:
            # avoid a DeprecationWarning, grumble grumble
            solver_args["atol"] = 1e-6

    coef = solver(matr, vals, **solver_args)
    coef = coef.reshape(xi_shape + v_shape[ndim:])
    return NdBSpline(t, coef, k)