File size: 28,678 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
"""
fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx).
        FITPACK is a collection of FORTRAN programs for curve and surface
        fitting with splines and tensor product splines.

See
 https://web.archive.org/web/20010524124604/http://www.cs.kuleuven.ac.be:80/cwis/research/nalag/research/topics/fitpack.html
or
 http://www.netlib.org/dierckx/

Copyright 2002 Pearu Peterson all rights reserved,
Pearu Peterson <[email protected]>
Permission to use, modify, and distribute this software is given under the
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
this distribution for specifics.

NO WARRANTY IS EXPRESSED OR IMPLIED.  USE AT YOUR OWN RISK.

TODO: Make interfaces to the following fitpack functions:
    For univariate splines: cocosp, concon, fourco, insert
    For bivariate splines: profil, regrid, parsur, surev
"""

__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde',
           'bisplrep', 'bisplev', 'insert', 'splder', 'splantider']

import warnings
import numpy as np
from . import _fitpack
from numpy import (atleast_1d, array, ones, zeros, sqrt, ravel, transpose,
                   empty, iinfo, asarray)

# Try to replace _fitpack interface with
#  f2py-generated version
from . import _dfitpack as dfitpack


dfitpack_int = dfitpack.types.intvar.dtype


def _int_overflow(x, exception, msg=None):
    """Cast the value to an dfitpack_int and raise an OverflowError if the value
    cannot fit.
    """
    if x > iinfo(dfitpack_int).max:
        if msg is None:
            msg = f'{x!r} cannot fit into an {dfitpack_int!r}'
        raise exception(msg)
    return dfitpack_int.type(x)


_iermess = {
    0: ["The spline has a residual sum of squares fp such that "
        "abs(fp-s)/s<=0.001", None],
    -1: ["The spline is an interpolating spline (fp=0)", None],
    -2: ["The spline is weighted least-squares polynomial of degree k.\n"
         "fp gives the upper bound fp0 for the smoothing factor s", None],
    1: ["The required storage space exceeds the available storage space.\n"
        "Probable causes: data (x,y) size is too small or smoothing parameter"
        "\ns is too small (fp>s).", ValueError],
    2: ["A theoretically impossible result when finding a smoothing spline\n"
        "with fp = s. Probable cause: s too small. (abs(fp-s)/s>0.001)",
        ValueError],
    3: ["The maximal number of iterations (20) allowed for finding smoothing\n"
        "spline with fp=s has been reached. Probable cause: s too small.\n"
        "(abs(fp-s)/s>0.001)", ValueError],
    10: ["Error on input data", ValueError],
    'unknown': ["An error occurred", TypeError]
}

_iermess2 = {
    0: ["The spline has a residual sum of squares fp such that "
        "abs(fp-s)/s<=0.001", None],
    -1: ["The spline is an interpolating spline (fp=0)", None],
    -2: ["The spline is weighted least-squares polynomial of degree kx and ky."
         "\nfp gives the upper bound fp0 for the smoothing factor s", None],
    -3: ["Warning. The coefficients of the spline have been computed as the\n"
         "minimal norm least-squares solution of a rank deficient system.",
         None],
    1: ["The required storage space exceeds the available storage space.\n"
        "Probable causes: nxest or nyest too small or s is too small. (fp>s)",
        ValueError],
    2: ["A theoretically impossible result when finding a smoothing spline\n"
        "with fp = s. Probable causes: s too small or badly chosen eps.\n"
        "(abs(fp-s)/s>0.001)", ValueError],
    3: ["The maximal number of iterations (20) allowed for finding smoothing\n"
        "spline with fp=s has been reached. Probable cause: s too small.\n"
        "(abs(fp-s)/s>0.001)", ValueError],
    4: ["No more knots can be added because the number of B-spline\n"
        "coefficients already exceeds the number of data points m.\n"
        "Probable causes: either s or m too small. (fp>s)", ValueError],
    5: ["No more knots can be added because the additional knot would\n"
        "coincide with an old one. Probable cause: s too small or too large\n"
        "a weight to an inaccurate data point. (fp>s)", ValueError],
    10: ["Error on input data", ValueError],
    11: ["rwrk2 too small, i.e., there is not enough workspace for computing\n"
         "the minimal least-squares solution of a rank deficient system of\n"
         "linear equations.", ValueError],
    'unknown': ["An error occurred", TypeError]
}

_parcur_cache = {'t': array([], float), 'wrk': array([], float),
                 'iwrk': array([], dfitpack_int), 'u': array([], float),
                 'ub': 0, 'ue': 1}


def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
            full_output=0, nest=None, per=0, quiet=1):
    # see the docstring of `_fitpack_py/splprep`
    if task <= 0:
        _parcur_cache = {'t': array([], float), 'wrk': array([], float),
                         'iwrk': array([], dfitpack_int), 'u': array([], float),
                         'ub': 0, 'ue': 1}
    x = atleast_1d(x)
    idim, m = x.shape
    if per:
        for i in range(idim):
            if x[i][0] != x[i][-1]:
                if not quiet:
                    warnings.warn(RuntimeWarning('Setting x[%d][%d]=x[%d][0]' %
                                                 (i, m, i)),
                                  stacklevel=2)
                x[i][-1] = x[i][0]
    if not 0 < idim < 11:
        raise TypeError('0 < idim < 11 must hold')
    if w is None:
        w = ones(m, float)
    else:
        w = atleast_1d(w)
    ipar = (u is not None)
    if ipar:
        _parcur_cache['u'] = u
        if ub is None:
            _parcur_cache['ub'] = u[0]
        else:
            _parcur_cache['ub'] = ub
        if ue is None:
            _parcur_cache['ue'] = u[-1]
        else:
            _parcur_cache['ue'] = ue
    else:
        _parcur_cache['u'] = zeros(m, float)
    if not (1 <= k <= 5):
        raise TypeError('1 <= k= %d <=5 must hold' % k)
    if not (-1 <= task <= 1):
        raise TypeError('task must be -1, 0 or 1')
    if (not len(w) == m) or (ipar == 1 and (not len(u) == m)):
        raise TypeError('Mismatch of input dimensions')
    if s is None:
        s = m - sqrt(2*m)
    if t is None and task == -1:
        raise TypeError('Knots must be given for task=-1')
    if t is not None:
        _parcur_cache['t'] = atleast_1d(t)
    n = len(_parcur_cache['t'])
    if task == -1 and n < 2*k + 2:
        raise TypeError('There must be at least 2*k+2 knots for task=-1')
    if m <= k:
        raise TypeError('m > k must hold')
    if nest is None:
        nest = m + 2*k

    if (task >= 0 and s == 0) or (nest < 0):
        if per:
            nest = m + 2*k
        else:
            nest = m + k + 1
    nest = max(nest, 2*k + 3)
    u = _parcur_cache['u']
    ub = _parcur_cache['ub']
    ue = _parcur_cache['ue']
    t = _parcur_cache['t']
    wrk = _parcur_cache['wrk']
    iwrk = _parcur_cache['iwrk']
    t, c, o = _fitpack._parcur(ravel(transpose(x)), w, u, ub, ue, k,
                               task, ipar, s, t, nest, wrk, iwrk, per)
    _parcur_cache['u'] = o['u']
    _parcur_cache['ub'] = o['ub']
    _parcur_cache['ue'] = o['ue']
    _parcur_cache['t'] = t
    _parcur_cache['wrk'] = o['wrk']
    _parcur_cache['iwrk'] = o['iwrk']
    ier = o['ier']
    fp = o['fp']
    n = len(t)
    u = o['u']
    c.shape = idim, n - k - 1
    tcku = [t, list(c), k], u
    if ier <= 0 and not quiet:
        warnings.warn(RuntimeWarning(_iermess[ier][0] +
                                     "\tk=%d n=%d m=%d fp=%f s=%f" %
                                     (k, len(t), m, fp, s)),
                      stacklevel=2)
    if ier > 0 and not full_output:
        if ier in [1, 2, 3]:
            warnings.warn(RuntimeWarning(_iermess[ier][0]), stacklevel=2)
        else:
            try:
                raise _iermess[ier][1](_iermess[ier][0])
            except KeyError as e:
                raise _iermess['unknown'][1](_iermess['unknown'][0]) from e
    if full_output:
        try:
            return tcku, fp, ier, _iermess[ier][0]
        except KeyError:
            return tcku, fp, ier, _iermess['unknown'][0]
    else:
        return tcku


_curfit_cache = {'t': array([], float), 'wrk': array([], float),
                 'iwrk': array([], dfitpack_int)}


def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
           full_output=0, per=0, quiet=1):
    # see the docstring of `_fitpack_py/splrep`
    if task <= 0:
        _curfit_cache = {}
    x, y = map(atleast_1d, [x, y])
    m = len(x)
    if w is None:
        w = ones(m, float)
        if s is None:
            s = 0.0
    else:
        w = atleast_1d(w)
        if s is None:
            s = m - sqrt(2*m)
    if not len(w) == m:
        raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m))
    if (m != len(y)) or (m != len(w)):
        raise TypeError('Lengths of the first three arguments (x,y,w) must '
                        'be equal')
    if not (1 <= k <= 5):
        raise TypeError('Given degree of the spline (k=%d) is not supported. '
                        '(1<=k<=5)' % k)
    if m <= k:
        raise TypeError('m > k must hold')
    if xb is None:
        xb = x[0]
    if xe is None:
        xe = x[-1]
    if not (-1 <= task <= 1):
        raise TypeError('task must be -1, 0 or 1')
    if t is not None:
        task = -1
    if task == -1:
        if t is None:
            raise TypeError('Knots must be given for task=-1')
        numknots = len(t)
        _curfit_cache['t'] = empty((numknots + 2*k + 2,), float)
        _curfit_cache['t'][k+1:-k-1] = t
        nest = len(_curfit_cache['t'])
    elif task == 0:
        if per:
            nest = max(m + 2*k, 2*k + 3)
        else:
            nest = max(m + k + 1, 2*k + 3)
        t = empty((nest,), float)
        _curfit_cache['t'] = t
    if task <= 0:
        if per:
            _curfit_cache['wrk'] = empty((m*(k + 1) + nest*(8 + 5*k),), float)
        else:
            _curfit_cache['wrk'] = empty((m*(k + 1) + nest*(7 + 3*k),), float)
        _curfit_cache['iwrk'] = empty((nest,), dfitpack_int)
    try:
        t = _curfit_cache['t']
        wrk = _curfit_cache['wrk']
        iwrk = _curfit_cache['iwrk']
    except KeyError as e:
        raise TypeError("must call with task=1 only after"
                        " call with task=0,-1") from e
    if not per:
        n, c, fp, ier = dfitpack.curfit(task, x, y, w, t, wrk, iwrk,
                                        xb, xe, k, s)
    else:
        n, c, fp, ier = dfitpack.percur(task, x, y, w, t, wrk, iwrk, k, s)
    tck = (t[:n], c[:n], k)
    if ier <= 0 and not quiet:
        _mess = (_iermess[ier][0] + "\tk=%d n=%d m=%d fp=%f s=%f" %
                 (k, len(t), m, fp, s))
        warnings.warn(RuntimeWarning(_mess), stacklevel=2)
    if ier > 0 and not full_output:
        if ier in [1, 2, 3]:
            warnings.warn(RuntimeWarning(_iermess[ier][0]), stacklevel=2)
        else:
            try:
                raise _iermess[ier][1](_iermess[ier][0])
            except KeyError as e:
                raise _iermess['unknown'][1](_iermess['unknown'][0]) from e
    if full_output:
        try:
            return tck, fp, ier, _iermess[ier][0]
        except KeyError:
            return tck, fp, ier, _iermess['unknown'][0]
    else:
        return tck


def splev(x, tck, der=0, ext=0):
    # see the docstring of `_fitpack_py/splev`
    t, c, k = tck
    try:
        c[0][0]
        parametric = True
    except Exception:
        parametric = False
    if parametric:
        return list(map(lambda c, x=x, t=t, k=k, der=der:
                        splev(x, [t, c, k], der, ext), c))
    else:
        if not (0 <= der <= k):
            raise ValueError("0<=der=%d<=k=%d must hold" % (der, k))
        if ext not in (0, 1, 2, 3):
            raise ValueError(f"ext = {ext} not in (0, 1, 2, 3) ")

        x = asarray(x)
        shape = x.shape
        x = atleast_1d(x).ravel()
        if der == 0:
            y, ier = dfitpack.splev(t, c, k, x, ext)
        else:
            y, ier = dfitpack.splder(t, c, k, x, der, ext)

        if ier == 10:
            raise ValueError("Invalid input data")
        if ier == 1:
            raise ValueError("Found x value not in the domain")
        if ier:
            raise TypeError("An error occurred")

        return y.reshape(shape)


def splint(a, b, tck, full_output=0):
    # see the docstring of `_fitpack_py/splint`
    t, c, k = tck
    try:
        c[0][0]
        parametric = True
    except Exception:
        parametric = False
    if parametric:
        return list(map(lambda c, a=a, b=b, t=t, k=k:
                        splint(a, b, [t, c, k]), c))
    else:
        aint, wrk = dfitpack.splint(t, c, k, a, b)
        if full_output:
            return aint, wrk
        else:
            return aint


def sproot(tck, mest=10):
    # see the docstring of `_fitpack_py/sproot`
    t, c, k = tck
    if k != 3:
        raise ValueError("sproot works only for cubic (k=3) splines")
    try:
        c[0][0]
        parametric = True
    except Exception:
        parametric = False
    if parametric:
        return list(map(lambda c, t=t, k=k, mest=mest:
                        sproot([t, c, k], mest), c))
    else:
        if len(t) < 8:
            raise TypeError(f"The number of knots {len(t)}>=8")
        z, m, ier = dfitpack.sproot(t, c, mest)
        if ier == 10:
            raise TypeError("Invalid input data. "
                            "t1<=..<=t4<t5<..<tn-3<=..<=tn must hold.")
        if ier == 0:
            return z[:m]
        if ier == 1:
            warnings.warn(RuntimeWarning("The number of zeros exceeds mest"),
                          stacklevel=2)
            return z[:m]
        raise TypeError("Unknown error")


def spalde(x, tck):
    # see the docstring of `_fitpack_py/spalde`
    t, c, k = tck
    try:
        c[0][0]
        parametric = True
    except Exception:
        parametric = False
    if parametric:
        return list(map(lambda c, x=x, t=t, k=k:
                        spalde(x, [t, c, k]), c))
    else:
        x = atleast_1d(x)
        if len(x) > 1:
            return list(map(lambda x, tck=tck: spalde(x, tck), x))
        d, ier = dfitpack.spalde(t, c, k+1, x[0])
        if ier == 0:
            return d
        if ier == 10:
            raise TypeError("Invalid input data. t(k)<=x<=t(n-k+1) must hold.")
        raise TypeError("Unknown error")

# def _curfit(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None,
#           full_output=0,nest=None,per=0,quiet=1):


_surfit_cache = {'tx': array([], float), 'ty': array([], float),
                 'wrk': array([], float), 'iwrk': array([], dfitpack_int)}


def bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None,
             kx=3, ky=3, task=0, s=None, eps=1e-16, tx=None, ty=None,
             full_output=0, nxest=None, nyest=None, quiet=1):
    """
    Find a bivariate B-spline representation of a surface.

    Given a set of data points (x[i], y[i], z[i]) representing a surface
    z=f(x,y), compute a B-spline representation of the surface. Based on
    the routine SURFIT from FITPACK.

    Parameters
    ----------
    x, y, z : ndarray
        Rank-1 arrays of data points.
    w : ndarray, optional
        Rank-1 array of weights. By default ``w=np.ones(len(x))``.
    xb, xe : float, optional
        End points of approximation interval in `x`.
        By default ``xb = x.min(), xe=x.max()``.
    yb, ye : float, optional
        End points of approximation interval in `y`.
        By default ``yb=y.min(), ye = y.max()``.
    kx, ky : int, optional
        The degrees of the spline (1 <= kx, ky <= 5).
        Third order (kx=ky=3) is recommended.
    task : int, optional
        If task=0, find knots in x and y and coefficients for a given
        smoothing factor, s.
        If task=1, find knots and coefficients for another value of the
        smoothing factor, s.  bisplrep must have been previously called
        with task=0 or task=1.
        If task=-1, find coefficients for a given set of knots tx, ty.
    s : float, optional
        A non-negative smoothing factor. If weights correspond
        to the inverse of the standard-deviation of the errors in z,
        then a good s-value should be found in the range
        ``(m-sqrt(2*m),m+sqrt(2*m))`` where m=len(x).
    eps : float, optional
        A threshold for determining the effective rank of an
        over-determined linear system of equations (0 < eps < 1).
        `eps` is not likely to need changing.
    tx, ty : ndarray, optional
        Rank-1 arrays of the knots of the spline for task=-1
    full_output : int, optional
        Non-zero to return optional outputs.
    nxest, nyest : int, optional
        Over-estimates of the total number of knots. If None then
        ``nxest = max(kx+sqrt(m/2),2*kx+3)``,
        ``nyest = max(ky+sqrt(m/2),2*ky+3)``.
    quiet : int, optional
        Non-zero to suppress printing of messages.

    Returns
    -------
    tck : array_like
        A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
        coefficients (c) of the bivariate B-spline representation of the
        surface along with the degree of the spline.
    fp : ndarray
        The weighted sum of squared residuals of the spline approximation.
    ier : int
        An integer flag about splrep success. Success is indicated if
        ier<=0. If ier in [1,2,3] an error occurred but was not raised.
        Otherwise an error is raised.
    msg : str
        A message corresponding to the integer flag, ier.

    See Also
    --------
    splprep, splrep, splint, sproot, splev
    UnivariateSpline, BivariateSpline

    Notes
    -----
    See `bisplev` to evaluate the value of the B-spline given its tck
    representation.

    If the input data is such that input dimensions have incommensurate
    units and differ by many orders of magnitude, the interpolant may have
    numerical artifacts. Consider rescaling the data before interpolation.

    References
    ----------
    .. [1] Dierckx P.:An algorithm for surface fitting with spline functions
       Ima J. Numer. Anal. 1 (1981) 267-283.
    .. [2] Dierckx P.:An algorithm for surface fitting with spline functions
       report tw50, Dept. Computer Science,K.U.Leuven, 1980.
    .. [3] Dierckx P.:Curve and surface fitting with splines, Monographs on
       Numerical Analysis, Oxford University Press, 1993.

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-interpolate_2d_spline>`.

    """
    x, y, z = map(ravel, [x, y, z])  # ensure 1-d arrays.
    m = len(x)
    if not (m == len(y) == len(z)):
        raise TypeError('len(x)==len(y)==len(z) must hold.')
    if w is None:
        w = ones(m, float)
    else:
        w = atleast_1d(w)
    if not len(w) == m:
        raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m))
    if xb is None:
        xb = x.min()
    if xe is None:
        xe = x.max()
    if yb is None:
        yb = y.min()
    if ye is None:
        ye = y.max()
    if not (-1 <= task <= 1):
        raise TypeError('task must be -1, 0 or 1')
    if s is None:
        s = m - sqrt(2*m)
    if tx is None and task == -1:
        raise TypeError('Knots_x must be given for task=-1')
    if tx is not None:
        _surfit_cache['tx'] = atleast_1d(tx)
    nx = len(_surfit_cache['tx'])
    if ty is None and task == -1:
        raise TypeError('Knots_y must be given for task=-1')
    if ty is not None:
        _surfit_cache['ty'] = atleast_1d(ty)
    ny = len(_surfit_cache['ty'])
    if task == -1 and nx < 2*kx+2:
        raise TypeError('There must be at least 2*kx+2 knots_x for task=-1')
    if task == -1 and ny < 2*ky+2:
        raise TypeError('There must be at least 2*ky+2 knots_x for task=-1')
    if not ((1 <= kx <= 5) and (1 <= ky <= 5)):
        raise TypeError('Given degree of the spline (kx,ky=%d,%d) is not '
                        'supported. (1<=k<=5)' % (kx, ky))
    if m < (kx + 1)*(ky + 1):
        raise TypeError('m >= (kx+1)(ky+1) must hold')
    if nxest is None:
        nxest = int(kx + sqrt(m/2))
    if nyest is None:
        nyest = int(ky + sqrt(m/2))
    nxest, nyest = max(nxest, 2*kx + 3), max(nyest, 2*ky + 3)
    if task >= 0 and s == 0:
        nxest = int(kx + sqrt(3*m))
        nyest = int(ky + sqrt(3*m))
    if task == -1:
        _surfit_cache['tx'] = atleast_1d(tx)
        _surfit_cache['ty'] = atleast_1d(ty)
    tx, ty = _surfit_cache['tx'], _surfit_cache['ty']
    wrk = _surfit_cache['wrk']
    u = nxest - kx - 1
    v = nyest - ky - 1
    km = max(kx, ky) + 1
    ne = max(nxest, nyest)
    bx, by = kx*v + ky + 1, ky*u + kx + 1
    b1, b2 = bx, bx + v - ky
    if bx > by:
        b1, b2 = by, by + u - kx
    msg = "Too many data points to interpolate"
    lwrk1 = _int_overflow(u*v*(2 + b1 + b2) +
                          2*(u + v + km*(m + ne) + ne - kx - ky) + b2 + 1,
                          OverflowError,
                          msg=msg)
    lwrk2 = _int_overflow(u*v*(b2 + 1) + b2, OverflowError, msg=msg)
    tx, ty, c, o = _fitpack._surfit(x, y, z, w, xb, xe, yb, ye, kx, ky,
                                    task, s, eps, tx, ty, nxest, nyest,
                                    wrk, lwrk1, lwrk2)
    _curfit_cache['tx'] = tx
    _curfit_cache['ty'] = ty
    _curfit_cache['wrk'] = o['wrk']
    ier, fp = o['ier'], o['fp']
    tck = [tx, ty, c, kx, ky]

    ierm = min(11, max(-3, ier))
    if ierm <= 0 and not quiet:
        _mess = (_iermess2[ierm][0] +
                 "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" %
                 (kx, ky, len(tx), len(ty), m, fp, s))
        warnings.warn(RuntimeWarning(_mess), stacklevel=2)
    if ierm > 0 and not full_output:
        if ier in [1, 2, 3, 4, 5]:
            _mess = ("\n\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" %
                     (kx, ky, len(tx), len(ty), m, fp, s))
            warnings.warn(RuntimeWarning(_iermess2[ierm][0] + _mess), stacklevel=2)
        else:
            try:
                raise _iermess2[ierm][1](_iermess2[ierm][0])
            except KeyError as e:
                raise _iermess2['unknown'][1](_iermess2['unknown'][0]) from e
    if full_output:
        try:
            return tck, fp, ier, _iermess2[ierm][0]
        except KeyError:
            return tck, fp, ier, _iermess2['unknown'][0]
    else:
        return tck


def bisplev(x, y, tck, dx=0, dy=0):
    """
    Evaluate a bivariate B-spline and its derivatives.

    Return a rank-2 array of spline function values (or spline derivative
    values) at points given by the cross-product of the rank-1 arrays `x` and
    `y`.  In special cases, return an array or just a float if either `x` or
    `y` or both are floats.  Based on BISPEV and PARDER from FITPACK.

    Parameters
    ----------
    x, y : ndarray
        Rank-1 arrays specifying the domain over which to evaluate the
        spline or its derivative.
    tck : tuple
        A sequence of length 5 returned by `bisplrep` containing the knot
        locations, the coefficients, and the degree of the spline:
        [tx, ty, c, kx, ky].
    dx, dy : int, optional
        The orders of the partial derivatives in `x` and `y` respectively.

    Returns
    -------
    vals : ndarray
        The B-spline or its derivative evaluated over the set formed by
        the cross-product of `x` and `y`.

    See Also
    --------
    splprep, splrep, splint, sproot, splev
    UnivariateSpline, BivariateSpline

    Notes
    -----
        See `bisplrep` to generate the `tck` representation.

    References
    ----------
    .. [1] Dierckx P. : An algorithm for surface fitting
       with spline functions
       Ima J. Numer. Anal. 1 (1981) 267-283.
    .. [2] Dierckx P. : An algorithm for surface fitting
       with spline functions
       report tw50, Dept. Computer Science,K.U.Leuven, 1980.
    .. [3] Dierckx P. : Curve and surface fitting with splines,
       Monographs on Numerical Analysis, Oxford University Press, 1993.

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-interpolate_2d_spline>`.

    """
    tx, ty, c, kx, ky = tck
    if not (0 <= dx < kx):
        raise ValueError("0 <= dx = %d < kx = %d must hold" % (dx, kx))
    if not (0 <= dy < ky):
        raise ValueError("0 <= dy = %d < ky = %d must hold" % (dy, ky))
    x, y = map(atleast_1d, [x, y])
    if (len(x.shape) != 1) or (len(y.shape) != 1):
        raise ValueError("First two entries should be rank-1 arrays.")

    msg = "Too many data points to interpolate."

    _int_overflow(x.size * y.size, MemoryError, msg=msg)

    if dx != 0 or dy != 0:
        _int_overflow((tx.size - kx - 1)*(ty.size - ky - 1),
                      MemoryError, msg=msg)
        z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
    else:
        z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)

    if ier == 10:
        raise ValueError("Invalid input data")
    if ier:
        raise TypeError("An error occurred")
    z.shape = len(x), len(y)
    if len(z) > 1:
        return z
    if len(z[0]) > 1:
        return z[0]
    return z[0][0]


def dblint(xa, xb, ya, yb, tck):
    """Evaluate the integral of a spline over area [xa,xb] x [ya,yb].

    Parameters
    ----------
    xa, xb : float
        The end-points of the x integration interval.
    ya, yb : float
        The end-points of the y integration interval.
    tck : list [tx, ty, c, kx, ky]
        A sequence of length 5 returned by bisplrep containing the knot
        locations tx, ty, the coefficients c, and the degrees kx, ky
        of the spline.

    Returns
    -------
    integ : float
        The value of the resulting integral.
    """
    tx, ty, c, kx, ky = tck
    return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)


def insert(x, tck, m=1, per=0):
    # see the docstring of `_fitpack_py/insert`
    t, c, k = tck
    try:
        c[0][0]
        parametric = True
    except Exception:
        parametric = False
    if parametric:
        cc = []
        for c_vals in c:
            tt, cc_val, kk = insert(x, [t, c_vals, k], m)
            cc.append(cc_val)
        return (tt, cc, kk)
    else:
        tt, cc, ier = _fitpack._insert(per, t, c, k, x, m)
        if ier == 10:
            raise ValueError("Invalid input data")
        if ier:
            raise TypeError("An error occurred")
        return (tt, cc, k)


def splder(tck, n=1):
    # see the docstring of `_fitpack_py/splder`
    if n < 0:
        return splantider(tck, -n)

    t, c, k = tck

    if n > k:
        raise ValueError(f"Order of derivative (n = {n!r}) must be <= "
                         f"order of spline (k = {tck[2]!r})")

    # Extra axes for the trailing dims of the `c` array:
    sh = (slice(None),) + ((None,)*len(c.shape[1:]))

    with np.errstate(invalid='raise', divide='raise'):
        try:
            for j in range(n):
                # See e.g. Schumaker, Spline Functions: Basic Theory, Chapter 5

                # Compute the denominator in the differentiation formula.
                # (and append trailing dims, if necessary)
                dt = t[k+1:-1] - t[1:-k-1]
                dt = dt[sh]
                # Compute the new coefficients
                c = (c[1:-1-k] - c[:-2-k]) * k / dt
                # Pad coefficient array to same size as knots (FITPACK
                # convention)
                c = np.r_[c, np.zeros((k,) + c.shape[1:])]
                # Adjust knots
                t = t[1:-1]
                k -= 1
        except FloatingPointError as e:
            raise ValueError(("The spline has internal repeated knots "
                              "and is not differentiable %d times") % n) from e

    return t, c, k


def splantider(tck, n=1):
    # see the docstring of `_fitpack_py/splantider`
    if n < 0:
        return splder(tck, -n)

    t, c, k = tck

    # Extra axes for the trailing dims of the `c` array:
    sh = (slice(None),) + (None,)*len(c.shape[1:])

    for j in range(n):
        # This is the inverse set of operations to splder.

        # Compute the multiplier in the antiderivative formula.
        dt = t[k+1:] - t[:-k-1]
        dt = dt[sh]
        # Compute the new coefficients
        c = np.cumsum(c[:-k-1] * dt, axis=0) / (k + 1)
        c = np.r_[np.zeros((1,) + c.shape[1:]),
                  c,
                  [c[-1]] * (k+2)]
        # New knots
        t = np.r_[t[0], t, t[-1]]
        k += 1

    return t, c, k