File size: 27,865 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
# Copyright (c) 2017, The Chancellor, Masters and Scholars of the University
# of Oxford, and the Chebfun Developers. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the University of Oxford nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import warnings
import operator
import numpy as np
import scipy
__all__ = ["AAA", "FloaterHormannInterpolator"]
class _BarycentricRational:
"""Base class for Barycentric representation of a rational function."""
def __init__(self, x, y, **kwargs):
# input validation
z = np.asarray(x)
f = np.asarray(y)
self._input_validation(z, f, **kwargs)
# Remove infinite or NaN function values and repeated entries
to_keep = np.logical_and.reduce(
((np.isfinite(f)) & (~np.isnan(f))).reshape(f.shape[0], -1),
axis=-1
)
f = f[to_keep, ...]
z = z[to_keep]
z, uni = np.unique(z, return_index=True)
f = f[uni, ...]
self._shape = f.shape[1:]
self._support_points, self._support_values, self.weights = (
self._compute_weights(z, f, **kwargs)
)
# only compute once
self._poles = None
self._residues = None
self._roots = None
def _input_validation(self, x, y, **kwargs):
if x.ndim != 1:
raise ValueError("`x` must be 1-D.")
if not y.ndim >= 1:
raise ValueError("`y` must be at least 1-D.")
if x.size != y.shape[0]:
raise ValueError("`x` be the same size as the first dimension of `y`.")
if not np.all(np.isfinite(x)):
raise ValueError("`x` must be finite.")
def _compute_weights(z, f, **kwargs):
raise NotImplementedError
def __call__(self, z):
"""Evaluate the rational approximation at given values.
Parameters
----------
z : array_like
Input values.
"""
# evaluate rational function in barycentric form.
z = np.asarray(z)
zv = np.ravel(z)
support_values = self._support_values.reshape(
(self._support_values.shape[0], -1)
)
weights = self.weights[..., np.newaxis]
# Cauchy matrix
# Ignore errors due to inf/inf at support points, these will be fixed later
with np.errstate(invalid="ignore", divide="ignore"):
CC = 1 / np.subtract.outer(zv, self._support_points)
# Vector of values
r = CC @ (weights * support_values) / (CC @ weights)
# Deal with input inf: `r(inf) = lim r(z) = sum(w*f) / sum(w)`
if np.any(np.isinf(zv)):
r[np.isinf(zv)] = (np.sum(weights * support_values)
/ np.sum(weights))
# Deal with NaN
ii = np.nonzero(np.isnan(r))[0]
for jj in ii:
if np.isnan(zv[jj]) or not np.any(zv[jj] == self._support_points):
# r(NaN) = NaN is fine.
# The second case may happen if `r(zv[ii]) = 0/0` at some point.
pass
else:
# Clean up values `NaN = inf/inf` at support points.
# Find the corresponding node and set entry to correct value:
r[jj] = support_values[zv[jj] == self._support_points].squeeze()
return np.reshape(r, z.shape + self._shape)
def poles(self):
"""Compute the poles of the rational approximation.
Returns
-------
poles : array
Poles of the AAA approximation, repeated according to their multiplicity
but not in any specific order.
"""
if self._poles is None:
# Compute poles via generalized eigenvalue problem
m = self.weights.size
B = np.eye(m + 1, dtype=self.weights.dtype)
B[0, 0] = 0
E = np.zeros_like(B, dtype=np.result_type(self.weights,
self._support_points))
E[0, 1:] = self.weights
E[1:, 0] = 1
np.fill_diagonal(E[1:, 1:], self._support_points)
pol = scipy.linalg.eigvals(E, B)
self._poles = pol[np.isfinite(pol)]
return self._poles
def residues(self):
"""Compute the residues of the poles of the approximation.
Returns
-------
residues : array
Residues associated with the `poles` of the approximation
"""
if self._residues is None:
# Compute residues via formula for res of quotient of analytic functions
with np.errstate(divide="ignore", invalid="ignore"):
N = (1/(np.subtract.outer(self.poles(), self._support_points))) @ (
self._support_values * self.weights
)
Ddiff = (
-((1/np.subtract.outer(self.poles(), self._support_points))**2)
@ self.weights
)
self._residues = N / Ddiff
return self._residues
def roots(self):
"""Compute the zeros of the rational approximation.
Returns
-------
zeros : array
Zeros of the AAA approximation, repeated according to their multiplicity
but not in any specific order.
"""
if self._roots is None:
# Compute zeros via generalized eigenvalue problem
m = self.weights.size
B = np.eye(m + 1, dtype=self.weights.dtype)
B[0, 0] = 0
E = np.zeros_like(B, dtype=np.result_type(self.weights,
self._support_values,
self._support_points))
E[0, 1:] = self.weights * self._support_values
E[1:, 0] = 1
np.fill_diagonal(E[1:, 1:], self._support_points)
zer = scipy.linalg.eigvals(E, B)
self._roots = zer[np.isfinite(zer)]
return self._roots
class AAA(_BarycentricRational):
r"""
AAA real or complex rational approximation.
As described in [1]_, the AAA algorithm is a greedy algorithm for approximation by
rational functions on a real or complex set of points. The rational approximation is
represented in a barycentric form from which the roots (zeros), poles, and residues
can be computed.
Parameters
----------
x : 1D array_like, shape (n,)
1-D array containing values of the independent variable. Values may be real or
complex but must be finite.
y : 1D array_like, shape (n,)
Function values ``f(x)``. Infinite and NaN values of `values` and
corresponding values of `points` will be discarded.
rtol : float, optional
Relative tolerance, defaults to ``eps**0.75``. If a small subset of the entries
in `values` are much larger than the rest the default tolerance may be too
loose. If the tolerance is too tight then the approximation may contain
Froissart doublets or the algorithm may fail to converge entirely.
max_terms : int, optional
Maximum number of terms in the barycentric representation, defaults to ``100``.
Must be greater than or equal to one.
clean_up : bool, optional
Automatic removal of Froissart doublets, defaults to ``True``. See notes for
more details.
clean_up_tol : float, optional
Poles with residues less than this number times the geometric mean
of `values` times the minimum distance to `points` are deemed spurious by the
cleanup procedure, defaults to 1e-13. See notes for more details.
Attributes
----------
support_points : array
Support points of the approximation. These are a subset of the provided `x` at
which the approximation strictly interpolates `y`.
See notes for more details.
support_values : array
Value of the approximation at the `support_points`.
weights : array
Weights of the barycentric approximation.
errors : array
Error :math:`|f(z) - r(z)|_\infty` over `points` in the successive iterations
of AAA.
Warns
-----
RuntimeWarning
If `rtol` is not achieved in `max_terms` iterations.
See Also
--------
FloaterHormannInterpolator : Floater-Hormann barycentric rational interpolation.
pade : Padé approximation.
Notes
-----
At iteration :math:`m` (at which point there are :math:`m` terms in the both the
numerator and denominator of the approximation), the
rational approximation in the AAA algorithm takes the barycentric form
.. math::
r(z) = n(z)/d(z) =
\frac{\sum_{j=1}^m\ w_j f_j / (z - z_j)}{\sum_{j=1}^m w_j / (z - z_j)},
where :math:`z_1,\dots,z_m` are real or complex support points selected from
`x`, :math:`f_1,\dots,f_m` are the corresponding real or complex data values
from `y`, and :math:`w_1,\dots,w_m` are real or complex weights.
Each iteration of the algorithm has two parts: the greedy selection the next support
point and the computation of the weights. The first part of each iteration is to
select the next support point to be added :math:`z_{m+1}` from the remaining
unselected `x`, such that the nonlinear residual
:math:`|f(z_{m+1}) - n(z_{m+1})/d(z_{m+1})|` is maximised. The algorithm terminates
when this maximum is less than ``rtol * np.linalg.norm(f, ord=np.inf)``. This means
the interpolation property is only satisfied up to a tolerance, except at the
support points where approximation exactly interpolates the supplied data.
In the second part of each iteration, the weights :math:`w_j` are selected to solve
the least-squares problem
.. math::
\text{minimise}_{w_j}|fd - n| \quad \text{subject to} \quad
\sum_{j=1}^{m+1} w_j = 1,
over the unselected elements of `x`.
One of the challenges with working with rational approximations is the presence of
Froissart doublets, which are either poles with vanishingly small residues or
pole-zero pairs that are close enough together to nearly cancel, see [2]_. The
greedy nature of the AAA algorithm means Froissart doublets are rare. However, if
`rtol` is set too tight then the approximation will stagnate and many Froissart
doublets will appear. Froissart doublets can usually be removed by removing support
points and then resolving the least squares problem. The support point :math:`z_j`,
which is the closest support point to the pole :math:`a` with residue
:math:`\alpha`, is removed if the following is satisfied
.. math::
|\alpha| / |z_j - a| < \verb|clean_up_tol| \cdot \tilde{f},
where :math:`\tilde{f}` is the geometric mean of `support_values`.
References
----------
.. [1] Y. Nakatsukasa, O. Sete, and L. N. Trefethen, "The AAA algorithm for
rational approximation", SIAM J. Sci. Comp. 40 (2018), A1494-A1522.
:doi:`10.1137/16M1106122`
.. [2] J. Gilewicz and M. Pindor, Pade approximants and noise: rational functions,
J. Comp. Appl. Math. 105 (1999), pp. 285-297.
:doi:`10.1016/S0377-0427(02)00674-X`
Examples
--------
Here we reproduce a number of the numerical examples from [1]_ as a demonstration
of the functionality offered by this method.
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import AAA
>>> import warnings
For the first example we approximate the gamma function on ``[-3.5, 4.5]`` by
extrapolating from 100 samples in ``[-1.5, 1.5]``.
>>> from scipy.special import gamma
>>> sample_points = np.linspace(-1.5, 1.5, num=100)
>>> r = AAA(sample_points, gamma(sample_points))
>>> z = np.linspace(-3.5, 4.5, num=1000)
>>> fig, ax = plt.subplots()
>>> ax.plot(z, gamma(z), label="Gamma")
>>> ax.plot(sample_points, gamma(sample_points), label="Sample points")
>>> ax.plot(z, r(z).real, '--', label="AAA approximation")
>>> ax.set(xlabel="z", ylabel="r(z)", ylim=[-8, 8], xlim=[-3.5, 4.5])
>>> ax.legend()
>>> plt.show()
We can also view the poles of the rational approximation and their residues:
>>> order = np.argsort(r.poles())
>>> r.poles()[order]
array([-3.81591039e+00+0.j , -3.00269049e+00+0.j ,
-1.99999988e+00+0.j , -1.00000000e+00+0.j ,
5.85842812e-17+0.j , 4.77485458e+00-3.06919376j,
4.77485458e+00+3.06919376j, 5.29095868e+00-0.97373072j,
5.29095868e+00+0.97373072j])
>>> r.residues()[order]
array([ 0.03658074 +0.j , -0.16915426 -0.j ,
0.49999915 +0.j , -1. +0.j ,
1. +0.j , -0.81132013 -2.30193429j,
-0.81132013 +2.30193429j, 0.87326839+10.70148546j,
0.87326839-10.70148546j])
For the second example, we call `AAA` with a spiral of 1000 points that wind 7.5
times around the origin in the complex plane.
>>> z = np.exp(np.linspace(-0.5, 0.5 + 15j*np.pi, 1000))
>>> r = AAA(z, np.tan(np.pi*z/2), rtol=1e-13)
We see that AAA takes 12 steps to converge with the following errors:
>>> r.errors.size
12
>>> r.errors
array([2.49261500e+01, 4.28045609e+01, 1.71346935e+01, 8.65055336e-02,
1.27106444e-02, 9.90889874e-04, 5.86910543e-05, 1.28735561e-06,
3.57007424e-08, 6.37007837e-10, 1.67103357e-11, 1.17112299e-13])
We can also plot the computed poles:
>>> fig, ax = plt.subplots()
>>> ax.plot(z.real, z.imag, '.', markersize=2, label="Sample points")
>>> ax.plot(r.poles().real, r.poles().imag, '.', markersize=5,
... label="Computed poles")
>>> ax.set(xlim=[-3.5, 3.5], ylim=[-3.5, 3.5], aspect="equal")
>>> ax.legend()
>>> plt.show()
We now demonstrate the removal of Froissart doublets using the `clean_up` method
using an example from [1]_. Here we approximate the function
:math:`f(z)=\log(2 + z^4)/(1 + 16z^4)` by sampling it at 1000 roots of unity. The
algorithm is run with ``rtol=0`` and ``clean_up=False`` to deliberately cause
Froissart doublets to appear.
>>> z = np.exp(1j*2*np.pi*np.linspace(0,1, num=1000))
>>> def f(z):
... return np.log(2 + z**4)/(1 - 16*z**4)
>>> with warnings.catch_warnings(): # filter convergence warning due to rtol=0
... warnings.simplefilter('ignore', RuntimeWarning)
... r = AAA(z, f(z), rtol=0, max_terms=50, clean_up=False)
>>> mask = np.abs(r.residues()) < 1e-13
>>> fig, axs = plt.subplots(ncols=2)
>>> axs[0].plot(r.poles().real[~mask], r.poles().imag[~mask], '.')
>>> axs[0].plot(r.poles().real[mask], r.poles().imag[mask], 'r.')
Now we call the `clean_up` method to remove Froissart doublets.
>>> with warnings.catch_warnings():
... warnings.simplefilter('ignore', RuntimeWarning)
... r.clean_up()
4
>>> mask = np.abs(r.residues()) < 1e-13
>>> axs[1].plot(r.poles().real[~mask], r.poles().imag[~mask], '.')
>>> axs[1].plot(r.poles().real[mask], r.poles().imag[mask], 'r.')
>>> plt.show()
The left image shows the poles prior of the approximation ``clean_up=False`` with
poles with residue less than ``10^-13`` in absolute value shown in red. The right
image then shows the poles after the `clean_up` method has been called.
"""
def __init__(self, x, y, *, rtol=None, max_terms=100, clean_up=True,
clean_up_tol=1e-13):
super().__init__(x, y, rtol=rtol, max_terms=max_terms)
if clean_up:
self.clean_up(clean_up_tol)
def _input_validation(self, x, y, rtol=None, max_terms=100, clean_up=True,
clean_up_tol=1e-13):
max_terms = operator.index(max_terms)
if max_terms < 1:
raise ValueError("`max_terms` must be an integer value greater than or "
"equal to one.")
if y.ndim != 1:
raise ValueError("`y` must be 1-D.")
super()._input_validation(x, y)
@property
def support_points(self):
return self._support_points
@property
def support_values(self):
return self._support_values
def _compute_weights(self, z, f, rtol, max_terms):
# Initialization for AAA iteration
M = np.size(z)
mask = np.ones(M, dtype=np.bool_)
dtype = np.result_type(z, f, 1.0)
rtol = np.finfo(dtype).eps**0.75 if rtol is None else rtol
atol = rtol * np.linalg.norm(f, ord=np.inf)
zj = np.empty(max_terms, dtype=dtype)
fj = np.empty(max_terms, dtype=dtype)
# Cauchy matrix
C = np.empty((M, max_terms), dtype=dtype)
# Loewner matrix
A = np.empty((M, max_terms), dtype=dtype)
errors = np.empty(max_terms, dtype=A.real.dtype)
R = np.repeat(np.mean(f), M)
# AAA iteration
for m in range(max_terms):
# Introduce next support point
# Select next support point
jj = np.argmax(np.abs(f[mask] - R[mask]))
# Update support points
zj[m] = z[mask][jj]
# Update data values
fj[m] = f[mask][jj]
# Next column of Cauchy matrix
# Ignore errors as we manually interpolate at support points
with np.errstate(divide="ignore", invalid="ignore"):
C[:, m] = 1 / (z - z[mask][jj])
# Update mask
mask[np.nonzero(mask)[0][jj]] = False
# Update Loewner matrix
# Ignore errors as inf values will be masked out in SVD call
with np.errstate(invalid="ignore"):
A[:, m] = (f - fj[m]) * C[:, m]
# Compute weights
rows = mask.sum()
if rows >= m + 1:
# The usual tall-skinny case
_, s, V = scipy.linalg.svd(
A[mask, : m + 1], full_matrices=False, check_finite=False,
)
# Treat case of multiple min singular values
mm = s == np.min(s)
# Aim for non-sparse weight vector
wj = (V.conj()[mm, :].sum(axis=0) / np.sqrt(mm.sum())).astype(dtype)
else:
# Fewer rows than columns
V = scipy.linalg.null_space(A[mask, : m + 1], check_finite=False)
nm = V.shape[-1]
# Aim for non-sparse wt vector
wj = V.sum(axis=-1) / np.sqrt(nm)
# Compute rational approximant
# Omit columns with `wj == 0`
i0 = wj != 0
# Ignore errors as we manually interpolate at support points
with np.errstate(invalid="ignore"):
# Numerator
N = C[:, : m + 1][:, i0] @ (wj[i0] * fj[: m + 1][i0])
# Denominator
D = C[:, : m + 1][:, i0] @ wj[i0]
# Interpolate at support points with `wj !=0`
D_inf = np.isinf(D) | np.isnan(D)
D[D_inf] = 1
N[D_inf] = f[D_inf]
R = N / D
# Check if converged
max_error = np.linalg.norm(f - R, ord=np.inf)
errors[m] = max_error
if max_error <= atol:
break
if m == max_terms - 1:
warnings.warn(f"AAA failed to converge within {max_terms} iterations.",
RuntimeWarning, stacklevel=2)
# Trim off unused array allocation
zj = zj[: m + 1]
fj = fj[: m + 1]
# Remove support points with zero weight
i_non_zero = wj != 0
self.errors = errors[: m + 1]
self._points = z
self._values = f
return zj[i_non_zero], fj[i_non_zero], wj[i_non_zero]
def clean_up(self, cleanup_tol=1e-13):
"""Automatic removal of Froissart doublets.
Parameters
----------
cleanup_tol : float, optional
Poles with residues less than this number times the geometric mean
of `values` times the minimum distance to `points` are deemed spurious by
the cleanup procedure, defaults to 1e-13.
Returns
-------
int
Number of Froissart doublets detected
"""
# Find negligible residues
geom_mean_abs_f = scipy.stats.gmean(np.abs(self._values))
Z_distances = np.min(
np.abs(np.subtract.outer(self.poles(), self._points)), axis=1
)
with np.errstate(divide="ignore", invalid="ignore"):
ii = np.nonzero(
np.abs(self.residues()) / Z_distances < cleanup_tol * geom_mean_abs_f
)
ni = ii[0].size
if ni == 0:
return ni
warnings.warn(f"{ni} Froissart doublets detected.", RuntimeWarning,
stacklevel=2)
# For each spurious pole find and remove closest support point
closest_spt_point = np.argmin(
np.abs(np.subtract.outer(self._support_points, self.poles()[ii])), axis=0
)
self._support_points = np.delete(self._support_points, closest_spt_point)
self._support_values = np.delete(self._support_values, closest_spt_point)
# Remove support points z from sample set
mask = np.logical_and.reduce(
np.not_equal.outer(self._points, self._support_points), axis=1
)
f = self._values[mask]
z = self._points[mask]
# recompute weights, we resolve the least squares problem for the remaining
# support points
m = self._support_points.size
# Cauchy matrix
C = 1 / np.subtract.outer(z, self._support_points)
# Loewner matrix
A = f[:, np.newaxis] * C - C * self._support_values
# Solve least-squares problem to obtain weights
_, _, V = scipy.linalg.svd(A, check_finite=False)
self.weights = np.conj(V[m - 1,:])
# reset roots, poles, residues as cached values will be wrong with new weights
self._poles = None
self._residues = None
self._roots = None
return ni
class FloaterHormannInterpolator(_BarycentricRational):
r"""
Floater-Hormann barycentric rational interpolation.
As described in [1]_, the method of Floater and Hormann computes weights for a
Barycentric rational interpolant with no poles on the real axis.
Parameters
----------
x : 1D array_like, shape (n,)
1-D array containing values of the independent variable. Values may be real or
complex but must be finite.
y : array_like, shape (n, ...)
Array containing values of the dependent variable. Infinite and NaN values
of `values` and corresponding values of `x` will be discarded.
d : int, optional
Blends ``n - d`` degree `d` polynomials together. For ``d = n - 1`` it is
equivalent to polynomial interpolation. Must satisfy ``0 <= d < n``,
defaults to 3.
Attributes
----------
weights : array
Weights of the barycentric approximation.
See Also
--------
AAA : Barycentric rational approximation of real and complex functions.
pade : Padé approximation.
Notes
-----
The Floater-Hormann interpolant is a rational function that interpolates the data
with approximation order :math:`O(h^{d+1})`. The rational function blends ``n - d``
polynomials of degree `d` together to produce a rational interpolant that contains
no poles on the real axis, unlike `AAA`. The interpolant is given
by
.. math::
r(x) = \frac{\sum_{i=0}^{n-d} \lambda_i(x) p_i(x)}
{\sum_{i=0}^{n-d} \lambda_i(x)},
where :math:`p_i(x)` is an interpolating polynomials of at most degree `d` through
the points :math:`(x_i,y_i),\dots,(x_{i+d},y_{i+d}), and :math:`\lambda_i(z)` are
blending functions defined by
.. math::
\lambda_i(x) = \frac{(-1)^i}{(x - x_i)\cdots(x - x_{i+d})}.
When ``d = n - 1`` this reduces to polynomial interpolation.
Due to its stability following barycentric representation of the above equation
is used instead for computation
.. math::
r(z) = \frac{\sum_{k=1}^m\ w_k f_k / (x - x_k)}{\sum_{k=1}^m w_k / (x - x_k)},
where the weights :math:`w_j` are computed as
.. math::
w_k &= (-1)^{k - d} \sum_{i \in J_k} \prod_{j = i, j \neq k}^{i + d}
1/|x_k - x_j|, \\
J_k &= \{ i \in I: k - d \leq i \leq k\},\\
I &= \{0, 1, \dots, n - d\}.
References
----------
.. [1] M.S. Floater and K. Hormann, "Barycentric rational interpolation with no
poles and high rates of approximation", Numer. Math. 107, 315 (2007).
:doi:`10.1007/s00211-007-0093-y`
Examples
--------
Here we compare the method against polynomial interpolation for an example where
the polynomial interpolation fails due to Runge's phenomenon.
>>> import numpy as np
>>> from scipy.interpolate import (FloaterHormannInterpolator,
... BarycentricInterpolator)
>>> def f(z):
... return 1/(1 + z**2)
>>> z = np.linspace(-5, 5, num=15)
>>> r = FloaterHormannInterpolator(z, f(z))
>>> p = BarycentricInterpolator(z, f(z))
>>> zz = np.linspace(-5, 5, num=1000)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(zz, r(zz), label="Floater=Hormann")
>>> ax.plot(zz, p(zz), label="Polynomial")
>>> ax.legend()
>>> plt.show()
"""
def __init__(self, points, values, *, d=3):
super().__init__(points, values, d=d)
def _input_validation(self, x, y, d):
d = operator.index(d)
if not (0 <= d < len(x)):
raise ValueError("`d` must satisfy 0 <= d < n")
super()._input_validation(x, y)
def _compute_weights(self, z, f, d):
# Floater and Hormann 2007 Eqn. (18) 3 equations later
w = np.zeros_like(z, dtype=np.result_type(z, 1.0))
n = w.size
for k in range(n):
for i in range(max(k-d, 0), min(k+1, n-d)):
w[k] += 1/np.prod(np.abs(np.delete(z[k] - z[i : i + d + 1], k - i)))
w *= (-1.)**(np.arange(n) - d)
return z, f, w
|