File size: 28,066 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
import sys
import math
import numpy as np
from numpy import sqrt, cos, sin, arctan, exp, log, pi
from numpy.testing import (assert_,
        assert_allclose, assert_array_less, assert_almost_equal)
import pytest

from scipy.integrate import quad, dblquad, tplquad, nquad
from scipy.special import erf, erfc
from scipy._lib._ccallback import LowLevelCallable

import ctypes
import ctypes.util
from scipy._lib._ccallback_c import sine_ctypes

import scipy.integrate._test_multivariate as clib_test


def assert_quad(value_and_err, tabled_value, error_tolerance=1.5e-8):
    value, err = value_and_err
    assert_allclose(value, tabled_value, atol=err, rtol=0)
    if error_tolerance is not None:
        assert_array_less(err, error_tolerance)


def get_clib_test_routine(name, restype, *argtypes):
    ptr = getattr(clib_test, name)
    return ctypes.cast(ptr, ctypes.CFUNCTYPE(restype, *argtypes))


class TestCtypesQuad:
    def setup_method(self):
        if sys.platform == 'win32':
            files = ['api-ms-win-crt-math-l1-1-0.dll']
        elif sys.platform == 'darwin':
            files = ['libm.dylib']
        else:
            files = ['libm.so', 'libm.so.6']

        for file in files:
            try:
                self.lib = ctypes.CDLL(file)
                break
            except OSError:
                pass
        else:
            # This test doesn't work on some Linux platforms (Fedora for
            # example) that put an ld script in libm.so - see gh-5370
            pytest.skip("Ctypes can't import libm.so")

        restype = ctypes.c_double
        argtypes = (ctypes.c_double,)
        for name in ['sin', 'cos', 'tan']:
            func = getattr(self.lib, name)
            func.restype = restype
            func.argtypes = argtypes

    def test_typical(self):
        assert_quad(quad(self.lib.sin, 0, 5), quad(math.sin, 0, 5)[0])
        assert_quad(quad(self.lib.cos, 0, 5), quad(math.cos, 0, 5)[0])
        assert_quad(quad(self.lib.tan, 0, 1), quad(math.tan, 0, 1)[0])

    def test_ctypes_sine(self):
        quad(LowLevelCallable(sine_ctypes), 0, 1)

    def test_ctypes_variants(self):
        sin_0 = get_clib_test_routine('_sin_0', ctypes.c_double,
                                      ctypes.c_double, ctypes.c_void_p)

        sin_1 = get_clib_test_routine('_sin_1', ctypes.c_double,
                                      ctypes.c_int, ctypes.POINTER(ctypes.c_double),
                                      ctypes.c_void_p)

        sin_2 = get_clib_test_routine('_sin_2', ctypes.c_double,
                                      ctypes.c_double)

        sin_3 = get_clib_test_routine('_sin_3', ctypes.c_double,
                                      ctypes.c_int, ctypes.POINTER(ctypes.c_double))

        sin_4 = get_clib_test_routine('_sin_3', ctypes.c_double,
                                      ctypes.c_int, ctypes.c_double)

        all_sigs = [sin_0, sin_1, sin_2, sin_3, sin_4]
        legacy_sigs = [sin_2, sin_4]
        legacy_only_sigs = [sin_4]

        # LowLevelCallables work for new signatures
        for j, func in enumerate(all_sigs):
            callback = LowLevelCallable(func)
            if func in legacy_only_sigs:
                pytest.raises(ValueError, quad, callback, 0, pi)
            else:
                assert_allclose(quad(callback, 0, pi)[0], 2.0)

        # Plain ctypes items work only for legacy signatures
        for j, func in enumerate(legacy_sigs):
            if func in legacy_sigs:
                assert_allclose(quad(func, 0, pi)[0], 2.0)
            else:
                pytest.raises(ValueError, quad, func, 0, pi)


class TestMultivariateCtypesQuad:
    def setup_method(self):
        restype = ctypes.c_double
        argtypes = (ctypes.c_int, ctypes.c_double)
        for name in ['_multivariate_typical', '_multivariate_indefinite',
                     '_multivariate_sin']:
            func = get_clib_test_routine(name, restype, *argtypes)
            setattr(self, name, func)

    def test_typical(self):
        # 1) Typical function with two extra arguments:
        assert_quad(quad(self._multivariate_typical, 0, pi, (2, 1.8)),
                    0.30614353532540296487)

    def test_indefinite(self):
        # 2) Infinite integration limits --- Euler's constant
        assert_quad(quad(self._multivariate_indefinite, 0, np.inf),
                    0.577215664901532860606512)

    def test_threadsafety(self):
        # Ensure multivariate ctypes are threadsafe
        def threadsafety(y):
            return y + quad(self._multivariate_sin, 0, 1)[0]
        assert_quad(quad(threadsafety, 0, 1), 0.9596976941318602)


class TestQuad:
    def test_typical(self):
        # 1) Typical function with two extra arguments:
        def myfunc(x, n, z):       # Bessel function integrand
            return cos(n*x-z*sin(x))/pi
        assert_quad(quad(myfunc, 0, pi, (2, 1.8)), 0.30614353532540296487)

    def test_indefinite(self):
        # 2) Infinite integration limits --- Euler's constant
        def myfunc(x):           # Euler's constant integrand
            return -exp(-x)*log(x)
        assert_quad(quad(myfunc, 0, np.inf), 0.577215664901532860606512)

    def test_singular(self):
        # 3) Singular points in region of integration.
        def myfunc(x):
            if 0 < x < 2.5:
                return sin(x)
            elif 2.5 <= x <= 5.0:
                return exp(-x)
            else:
                return 0.0

        assert_quad(quad(myfunc, 0, 10, points=[2.5, 5.0]),
                    1 - cos(2.5) + exp(-2.5) - exp(-5.0))

    def test_sine_weighted_finite(self):
        # 4) Sine weighted integral (finite limits)
        def myfunc(x, a):
            return exp(a*(x-1))

        ome = 2.0**3.4
        assert_quad(quad(myfunc, 0, 1, args=20, weight='sin', wvar=ome),
                    (20*sin(ome)-ome*cos(ome)+ome*exp(-20))/(20**2 + ome**2))

    def test_sine_weighted_infinite(self):
        # 5) Sine weighted integral (infinite limits)
        def myfunc(x, a):
            return exp(-x*a)

        a = 4.0
        ome = 3.0
        assert_quad(quad(myfunc, 0, np.inf, args=a, weight='sin', wvar=ome),
                    ome/(a**2 + ome**2))

    def test_cosine_weighted_infinite(self):
        # 6) Cosine weighted integral (negative infinite limits)
        def myfunc(x, a):
            return exp(x*a)

        a = 2.5
        ome = 2.3
        assert_quad(quad(myfunc, -np.inf, 0, args=a, weight='cos', wvar=ome),
                    a/(a**2 + ome**2))

    def test_algebraic_log_weight(self):
        # 6) Algebraic-logarithmic weight.
        def myfunc(x, a):
            return 1/(1+x+2**(-a))

        a = 1.5
        assert_quad(quad(myfunc, -1, 1, args=a, weight='alg',
                         wvar=(-0.5, -0.5)),
                    pi/sqrt((1+2**(-a))**2 - 1))

    def test_cauchypv_weight(self):
        # 7) Cauchy prinicpal value weighting w(x) = 1/(x-c)
        def myfunc(x, a):
            return 2.0**(-a)/((x-1)**2+4.0**(-a))

        a = 0.4
        tabledValue = ((2.0**(-0.4)*log(1.5) -
                        2.0**(-1.4)*log((4.0**(-a)+16) / (4.0**(-a)+1)) -
                        arctan(2.0**(a+2)) -
                        arctan(2.0**a)) /
                       (4.0**(-a) + 1))
        assert_quad(quad(myfunc, 0, 5, args=0.4, weight='cauchy', wvar=2.0),
                    tabledValue, error_tolerance=1.9e-8)

    def test_b_less_than_a(self):
        def f(x, p, q):
            return p * np.exp(-q*x)

        val_1, err_1 = quad(f, 0, np.inf, args=(2, 3))
        val_2, err_2 = quad(f, np.inf, 0, args=(2, 3))
        assert_allclose(val_1, -val_2, atol=max(err_1, err_2))

    def test_b_less_than_a_2(self):
        def f(x, s):
            return np.exp(-x**2 / 2 / s) / np.sqrt(2.*s)

        val_1, err_1 = quad(f, -np.inf, np.inf, args=(2,))
        val_2, err_2 = quad(f, np.inf, -np.inf, args=(2,))
        assert_allclose(val_1, -val_2, atol=max(err_1, err_2))

    def test_b_less_than_a_3(self):
        def f(x):
            return 1.0

        val_1, err_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0))
        val_2, err_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0))
        assert_allclose(val_1, -val_2, atol=max(err_1, err_2))

    def test_b_less_than_a_full_output(self):
        def f(x):
            return 1.0

        res_1 = quad(f, 0, 1, weight='alg', wvar=(0, 0), full_output=True)
        res_2 = quad(f, 1, 0, weight='alg', wvar=(0, 0), full_output=True)
        err = max(res_1[1], res_2[1])
        assert_allclose(res_1[0], -res_2[0], atol=err)

    def test_double_integral(self):
        # 8) Double Integral test
        def simpfunc(y, x):       # Note order of arguments.
            return x+y

        a, b = 1.0, 2.0
        assert_quad(dblquad(simpfunc, a, b, lambda x: x, lambda x: 2*x),
                    5/6.0 * (b**3.0-a**3.0))

    def test_double_integral2(self):
        def func(x0, x1, t0, t1):
            return x0 + x1 + t0 + t1
        def g(x):
            return x
        def h(x):
            return 2 * x
        args = 1, 2
        assert_quad(dblquad(func, 1, 2, g, h, args=args),35./6 + 9*.5)

    def test_double_integral3(self):
        def func(x0, x1):
            return x0 + x1 + 1 + 2
        assert_quad(dblquad(func, 1, 2, 1, 2),6.)

    @pytest.mark.parametrize(
        "x_lower, x_upper, y_lower, y_upper, expected",
        [
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-inf, 0] for all n.
            (-np.inf, 0, -np.inf, 0, np.pi / 4),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-inf, -1] for each n (one at a time).
            (-np.inf, -1, -np.inf, 0, np.pi / 4 * erfc(1)),
            (-np.inf, 0, -np.inf, -1, np.pi / 4 * erfc(1)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-inf, -1] for all n.
            (-np.inf, -1, -np.inf, -1, np.pi / 4 * (erfc(1) ** 2)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-inf, 1] for each n (one at a time).
            (-np.inf, 1, -np.inf, 0, np.pi / 4 * (erf(1) + 1)),
            (-np.inf, 0, -np.inf, 1, np.pi / 4 * (erf(1) + 1)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-inf, 1] for all n.
            (-np.inf, 1, -np.inf, 1, np.pi / 4 * ((erf(1) + 1) ** 2)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain Dx = [-inf, -1] and Dy = [-inf, 1].
            (-np.inf, -1, -np.inf, 1, np.pi / 4 * ((erf(1) + 1) * erfc(1))),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain Dx = [-inf, 1] and Dy = [-inf, -1].
            (-np.inf, 1, -np.inf, -1, np.pi / 4 * ((erf(1) + 1) * erfc(1))),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [0, inf] for all n.
            (0, np.inf, 0, np.inf, np.pi / 4),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [1, inf] for each n (one at a time).
            (1, np.inf, 0, np.inf, np.pi / 4 * erfc(1)),
            (0, np.inf, 1, np.inf, np.pi / 4 * erfc(1)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [1, inf] for all n.
            (1, np.inf, 1, np.inf, np.pi / 4 * (erfc(1) ** 2)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-1, inf] for each n (one at a time).
            (-1, np.inf, 0, np.inf, np.pi / 4 * (erf(1) + 1)),
            (0, np.inf, -1, np.inf, np.pi / 4 * (erf(1) + 1)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-1, inf] for all n.
            (-1, np.inf, -1, np.inf, np.pi / 4 * ((erf(1) + 1) ** 2)),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain Dx = [-1, inf] and Dy = [1, inf].
            (-1, np.inf, 1, np.inf, np.pi / 4 * ((erf(1) + 1) * erfc(1))),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain Dx = [1, inf] and Dy = [-1, inf].
            (1, np.inf, -1, np.inf, np.pi / 4 * ((erf(1) + 1) * erfc(1))),
            # Multiple integration of a function in n = 2 variables: f(x, y, z)
            # over domain D = [-inf, inf] for all n.
            (-np.inf, np.inf, -np.inf, np.inf, np.pi)
        ]
    )
    def test_double_integral_improper(
            self, x_lower, x_upper, y_lower, y_upper, expected
    ):
        # The Gaussian Integral.
        def f(x, y):
            return np.exp(-x ** 2 - y ** 2)

        assert_quad(
            dblquad(f, x_lower, x_upper, y_lower, y_upper),
            expected,
            error_tolerance=3e-8
        )

    def test_triple_integral(self):
        # 9) Triple Integral test
        def simpfunc(z, y, x, t):      # Note order of arguments.
            return (x+y+z)*t

        a, b = 1.0, 2.0
        assert_quad(tplquad(simpfunc, a, b,
                            lambda x: x, lambda x: 2*x,
                            lambda x, y: x - y, lambda x, y: x + y,
                            (2.,)),
                     2*8/3.0 * (b**4.0 - a**4.0))

    @pytest.mark.xslow
    @pytest.mark.parametrize(
        "x_lower, x_upper, y_lower, y_upper, z_lower, z_upper, expected",
        [
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, 0] for all n.
            (-np.inf, 0, -np.inf, 0, -np.inf, 0, (np.pi ** (3 / 2)) / 8),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, -1] for each n (one at a time).
            (-np.inf, -1, -np.inf, 0, -np.inf, 0,
             (np.pi ** (3 / 2)) / 8 * erfc(1)),
            (-np.inf, 0, -np.inf, -1, -np.inf, 0,
             (np.pi ** (3 / 2)) / 8 * erfc(1)),
            (-np.inf, 0, -np.inf, 0, -np.inf, -1,
             (np.pi ** (3 / 2)) / 8 * erfc(1)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, -1] for each n (two at a time).
            (-np.inf, -1, -np.inf, -1, -np.inf, 0,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 2)),
            (-np.inf, -1, -np.inf, 0, -np.inf, -1,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 2)),
            (-np.inf, 0, -np.inf, -1, -np.inf, -1,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 2)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, -1] for all n.
            (-np.inf, -1, -np.inf, -1, -np.inf, -1,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 3)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = [-inf, -1] and Dy = Dz = [-inf, 1].
            (-np.inf, -1, -np.inf, 1, -np.inf, 1,
             (np.pi ** (3 / 2)) / 8 * (((erf(1) + 1) ** 2) * erfc(1))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dy = [-inf, -1] and Dz = [-inf, 1].
            (-np.inf, -1, -np.inf, -1, -np.inf, 1,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) * (erfc(1) ** 2))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dz = [-inf, -1] and Dy = [-inf, 1].
            (-np.inf, -1, -np.inf, 1, -np.inf, -1,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) * (erfc(1) ** 2))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = [-inf, 1] and Dy = Dz = [-inf, -1].
            (-np.inf, 1, -np.inf, -1, -np.inf, -1,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) * (erfc(1) ** 2))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dy = [-inf, 1] and Dz = [-inf, -1].
            (-np.inf, 1, -np.inf, 1, -np.inf, -1,
             (np.pi ** (3 / 2)) / 8 * (((erf(1) + 1) ** 2) * erfc(1))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dz = [-inf, 1] and Dy = [-inf, -1].
            (-np.inf, 1, -np.inf, -1, -np.inf, 1,
             (np.pi ** (3 / 2)) / 8 * (((erf(1) + 1) ** 2) * erfc(1))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, 1] for each n (one at a time).
            (-np.inf, 1, -np.inf, 0, -np.inf, 0,
             (np.pi ** (3 / 2)) / 8 * (erf(1) + 1)),
            (-np.inf, 0, -np.inf, 1, -np.inf, 0,
             (np.pi ** (3 / 2)) / 8 * (erf(1) + 1)),
            (-np.inf, 0, -np.inf, 0, -np.inf, 1,
             (np.pi ** (3 / 2)) / 8 * (erf(1) + 1)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, 1] for each n (two at a time).
            (-np.inf, 1, -np.inf, 1, -np.inf, 0,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 2)),
            (-np.inf, 1, -np.inf, 0, -np.inf, 1,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 2)),
            (-np.inf, 0, -np.inf, 1, -np.inf, 1,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 2)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, 1] for all n.
            (-np.inf, 1, -np.inf, 1, -np.inf, 1,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 3)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [0, inf] for all n.
            (0, np.inf, 0, np.inf, 0, np.inf, (np.pi ** (3 / 2)) / 8),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [1, inf] for each n (one at a time).
            (1, np.inf, 0, np.inf, 0, np.inf,
             (np.pi ** (3 / 2)) / 8 * erfc(1)),
            (0, np.inf, 1, np.inf, 0, np.inf,
             (np.pi ** (3 / 2)) / 8 * erfc(1)),
            (0, np.inf, 0, np.inf, 1, np.inf,
             (np.pi ** (3 / 2)) / 8 * erfc(1)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [1, inf] for each n (two at a time).
            (1, np.inf, 1, np.inf, 0, np.inf,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 2)),
            (1, np.inf, 0, np.inf, 1, np.inf,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 2)),
            (0, np.inf, 1, np.inf, 1, np.inf,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 2)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [1, inf] for all n.
            (1, np.inf, 1, np.inf, 1, np.inf,
             (np.pi ** (3 / 2)) / 8 * (erfc(1) ** 3)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-1, inf] for each n (one at a time).
            (-1, np.inf, 0, np.inf, 0, np.inf,
             (np.pi ** (3 / 2)) / 8 * (erf(1) + 1)),
            (0, np.inf, -1, np.inf, 0, np.inf,
             (np.pi ** (3 / 2)) / 8 * (erf(1) + 1)),
            (0, np.inf, 0, np.inf, -1, np.inf,
             (np.pi ** (3 / 2)) / 8 * (erf(1) + 1)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-1, inf] for each n (two at a time).
            (-1, np.inf, -1, np.inf, 0, np.inf,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 2)),
            (-1, np.inf, 0, np.inf, -1, np.inf,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 2)),
            (0, np.inf, -1, np.inf, -1, np.inf,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 2)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-1, inf] for all n.
            (-1, np.inf, -1, np.inf, -1, np.inf,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) ** 3)),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = [1, inf] and Dy = Dz = [-1, inf].
            (1, np.inf, -1, np.inf, -1, np.inf,
             (np.pi ** (3 / 2)) / 8 * (((erf(1) + 1) ** 2) * erfc(1))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dy = [1, inf] and Dz = [-1, inf].
            (1, np.inf, 1, np.inf, -1, np.inf,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) * (erfc(1) ** 2))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dz = [1, inf] and Dy = [-1, inf].
            (1, np.inf, -1, np.inf, 1, np.inf,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) * (erfc(1) ** 2))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = [-1, inf] and Dy = Dz = [1, inf].
            (-1, np.inf, 1, np.inf, 1, np.inf,
             (np.pi ** (3 / 2)) / 8 * ((erf(1) + 1) * (erfc(1) ** 2))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dy = [-1, inf] and Dz = [1, inf].
            (-1, np.inf, -1, np.inf, 1, np.inf,
             (np.pi ** (3 / 2)) / 8 * (((erf(1) + 1) ** 2) * erfc(1))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain Dx = Dz = [-1, inf] and Dy = [1, inf].
            (-1, np.inf, 1, np.inf, -1, np.inf,
             (np.pi ** (3 / 2)) / 8 * (((erf(1) + 1) ** 2) * erfc(1))),
            # Multiple integration of a function in n = 3 variables: f(x, y, z)
            # over domain D = [-inf, inf] for all n.
            (-np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf,
             np.pi ** (3 / 2)),
        ],
    )
    def test_triple_integral_improper(
            self,
            x_lower,
            x_upper,
            y_lower,
            y_upper,
            z_lower,
            z_upper,
            expected
    ):
        # The Gaussian Integral.
        def f(x, y, z):
            return np.exp(-x ** 2 - y ** 2 - z ** 2)

        assert_quad(
            tplquad(f, x_lower, x_upper, y_lower, y_upper, z_lower, z_upper),
            expected,
            error_tolerance=6e-8
        )

    def test_complex(self):
        def tfunc(x):
            return np.exp(1j*x)

        assert np.allclose(
                    quad(tfunc, 0, np.pi/2, complex_func=True)[0],
                    1+1j)

        # We consider a divergent case in order to force quadpack
        # to return an error message.  The output is compared
        # against what is returned by explicit integration
        # of the parts.
        kwargs = {'a': 0, 'b': np.inf, 'full_output': True,
                  'weight': 'cos', 'wvar': 1}
        res_c = quad(tfunc, complex_func=True, **kwargs)
        res_r = quad(lambda x: np.real(np.exp(1j*x)),
                     complex_func=False,
                     **kwargs)
        res_i = quad(lambda x: np.imag(np.exp(1j*x)),
                     complex_func=False,
                     **kwargs)

        np.testing.assert_equal(res_c[0], res_r[0] + 1j*res_i[0])
        np.testing.assert_equal(res_c[1], res_r[1] + 1j*res_i[1])

        assert len(res_c[2]['real']) == len(res_r[2:]) == 3
        assert res_c[2]['real'][2] == res_r[4]
        assert res_c[2]['real'][1] == res_r[3]
        assert res_c[2]['real'][0]['lst'] == res_r[2]['lst']

        assert len(res_c[2]['imag']) == len(res_i[2:]) == 1
        assert res_c[2]['imag'][0]['lst'] == res_i[2]['lst']


class TestNQuad:
    @pytest.mark.fail_slow(5)
    def test_fixed_limits(self):
        def func1(x0, x1, x2, x3):
            val = (x0**2 + x1*x2 - x3**3 + np.sin(x0) +
                   (1 if (x0 - 0.2*x3 - 0.5 - 0.25*x1 > 0) else 0))
            return val

        def opts_basic(*args):
            return {'points': [0.2*args[2] + 0.5 + 0.25*args[0]]}

        res = nquad(func1, [[0, 1], [-1, 1], [.13, .8], [-.15, 1]],
                    opts=[opts_basic, {}, {}, {}], full_output=True)
        assert_quad(res[:-1], 1.5267454070738635)
        assert_(res[-1]['neval'] > 0 and res[-1]['neval'] < 4e5)

    @pytest.mark.fail_slow(5)
    def test_variable_limits(self):
        scale = .1

        def func2(x0, x1, x2, x3, t0, t1):
            val = (x0*x1*x3**2 + np.sin(x2) + 1 +
                   (1 if x0 + t1*x1 - t0 > 0 else 0))
            return val

        def lim0(x1, x2, x3, t0, t1):
            return [scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) - 1,
                    scale * (x1**2 + x2 + np.cos(x3)*t0*t1 + 1) + 1]

        def lim1(x2, x3, t0, t1):
            return [scale * (t0*x2 + t1*x3) - 1,
                    scale * (t0*x2 + t1*x3) + 1]

        def lim2(x3, t0, t1):
            return [scale * (x3 + t0**2*t1**3) - 1,
                    scale * (x3 + t0**2*t1**3) + 1]

        def lim3(t0, t1):
            return [scale * (t0 + t1) - 1, scale * (t0 + t1) + 1]

        def opts0(x1, x2, x3, t0, t1):
            return {'points': [t0 - t1*x1]}

        def opts1(x2, x3, t0, t1):
            return {}

        def opts2(x3, t0, t1):
            return {}

        def opts3(t0, t1):
            return {}

        res = nquad(func2, [lim0, lim1, lim2, lim3], args=(0, 0),
                    opts=[opts0, opts1, opts2, opts3])
        assert_quad(res, 25.066666666666663)

    def test_square_separate_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        assert_quad(nquad(f, [[-1, 1], [-1, 1]], opts=[{}, {}]), 4.0)

    def test_square_aliased_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        r = [-1, 1]
        opt = {}
        assert_quad(nquad(f, [r, r], opts=[opt, opt]), 4.0)

    def test_square_separate_fn_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        def fn_range0(*args):
            return (-1, 1)

        def fn_range1(*args):
            return (-1, 1)

        def fn_opt0(*args):
            return {}

        def fn_opt1(*args):
            return {}

        ranges = [fn_range0, fn_range1]
        opts = [fn_opt0, fn_opt1]
        assert_quad(nquad(f, ranges, opts=opts), 4.0)

    def test_square_aliased_fn_ranges_and_opts(self):
        def f(y, x):
            return 1.0

        def fn_range(*args):
            return (-1, 1)

        def fn_opt(*args):
            return {}

        ranges = [fn_range, fn_range]
        opts = [fn_opt, fn_opt]
        assert_quad(nquad(f, ranges, opts=opts), 4.0)

    def test_matching_quad(self):
        def func(x):
            return x**2 + 1

        res, reserr = quad(func, 0, 4)
        res2, reserr2 = nquad(func, ranges=[[0, 4]])
        assert_almost_equal(res, res2)
        assert_almost_equal(reserr, reserr2)

    def test_matching_dblquad(self):
        def func2d(x0, x1):
            return x0**2 + x1**3 - x0 * x1 + 1

        res, reserr = dblquad(func2d, -2, 2, lambda x: -3, lambda x: 3)
        res2, reserr2 = nquad(func2d, [[-3, 3], (-2, 2)])
        assert_almost_equal(res, res2)
        assert_almost_equal(reserr, reserr2)

    def test_matching_tplquad(self):
        def func3d(x0, x1, x2, c0, c1):
            return x0**2 + c0 * x1**3 - x0 * x1 + 1 + c1 * np.sin(x2)

        res = tplquad(func3d, -1, 2, lambda x: -2, lambda x: 2,
                      lambda x, y: -np.pi, lambda x, y: np.pi,
                      args=(2, 3))
        res2 = nquad(func3d, [[-np.pi, np.pi], [-2, 2], (-1, 2)], args=(2, 3))
        assert_almost_equal(res, res2)

    def test_dict_as_opts(self):
        try:
            nquad(lambda x, y: x * y, [[0, 1], [0, 1]], opts={'epsrel': 0.0001})
        except TypeError:
            assert False