File size: 47,907 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
import numpy as np
import numpy.typing as npt
import math
import warnings
from collections import namedtuple
from collections.abc import Callable
from scipy.special import roots_legendre
from scipy.special import gammaln, logsumexp
from scipy._lib._util import _rng_spawn
from scipy._lib._array_api import _asarray, array_namespace, xp_broadcast_promote
__all__ = ['fixed_quad', 'romb',
'trapezoid', 'simpson',
'cumulative_trapezoid', 'newton_cotes',
'qmc_quad', 'cumulative_simpson']
def trapezoid(y, x=None, dx=1.0, axis=-1):
r"""
Integrate along the given axis using the composite trapezoidal rule.
If `x` is provided, the integration happens in sequence along its
elements - they are not sorted.
Integrate `y` (`x`) along each 1d slice on the given axis, compute
:math:`\int y(x) dx`.
When `x` is specified, this integrates along the parametric curve,
computing :math:`\int_t y(t) dt =
\int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`.
Parameters
----------
y : array_like
Input array to integrate.
x : array_like, optional
The sample points corresponding to the `y` values. If `x` is None,
the sample points are assumed to be evenly spaced `dx` apart. The
default is None.
dx : scalar, optional
The spacing between sample points when `x` is None. The default is 1.
axis : int, optional
The axis along which to integrate. The default is the last axis.
Returns
-------
trapezoid : float or ndarray
Definite integral of `y` = n-dimensional array as approximated along
a single axis by the trapezoidal rule. If `y` is a 1-dimensional array,
then the result is a float. If `n` is greater than 1, then the result
is an `n`-1 dimensional array.
See Also
--------
cumulative_trapezoid, simpson, romb
Notes
-----
Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
will be taken from `y` array, by default x-axis distances between
points will be 1.0, alternatively they can be provided with `x` array
or with `dx` scalar. Return value will be equal to combined area under
the red lines.
References
----------
.. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule
.. [2] Illustration image:
https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
Examples
--------
Use the trapezoidal rule on evenly spaced points:
>>> import numpy as np
>>> from scipy import integrate
>>> integrate.trapezoid([1, 2, 3])
4.0
The spacing between sample points can be selected by either the
``x`` or ``dx`` arguments:
>>> integrate.trapezoid([1, 2, 3], x=[4, 6, 8])
8.0
>>> integrate.trapezoid([1, 2, 3], dx=2)
8.0
Using a decreasing ``x`` corresponds to integrating in reverse:
>>> integrate.trapezoid([1, 2, 3], x=[8, 6, 4])
-8.0
More generally ``x`` is used to integrate along a parametric curve. We can
estimate the integral :math:`\int_0^1 x^2 = 1/3` using:
>>> x = np.linspace(0, 1, num=50)
>>> y = x**2
>>> integrate.trapezoid(y, x)
0.33340274885464394
Or estimate the area of a circle, noting we repeat the sample which closes
the curve:
>>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
>>> integrate.trapezoid(np.cos(theta), x=np.sin(theta))
3.141571941375841
``trapezoid`` can be applied along a specified axis to do multiple
computations in one call:
>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> integrate.trapezoid(a, axis=0)
array([1.5, 2.5, 3.5])
>>> integrate.trapezoid(a, axis=1)
array([2., 8.])
"""
xp = array_namespace(y)
y = _asarray(y, xp=xp, subok=True)
# Cannot just use the broadcasted arrays that are returned
# because trapezoid does not follow normal broadcasting rules
# cf. https://github.com/scipy/scipy/pull/21524#issuecomment-2354105942
result_dtype = xp_broadcast_promote(y, force_floating=True, xp=xp)[0].dtype
nd = y.ndim
slice1 = [slice(None)]*nd
slice2 = [slice(None)]*nd
slice1[axis] = slice(1, None)
slice2[axis] = slice(None, -1)
if x is None:
d = dx
else:
x = _asarray(x, xp=xp, subok=True)
if x.ndim == 1:
d = x[1:] - x[:-1]
# make d broadcastable to y
slice3 = [None] * nd
slice3[axis] = slice(None)
d = d[tuple(slice3)]
else:
# if x is n-D it should be broadcastable to y
x = xp.broadcast_to(x, y.shape)
d = x[tuple(slice1)] - x[tuple(slice2)]
try:
ret = xp.sum(
d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0,
axis=axis, dtype=result_dtype
)
except ValueError:
# Operations didn't work, cast to ndarray
d = xp.asarray(d)
y = xp.asarray(y)
ret = xp.sum(
d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0,
axis=axis, dtype=result_dtype
)
return ret
def _cached_roots_legendre(n):
"""
Cache roots_legendre results to speed up calls of the fixed_quad
function.
"""
if n in _cached_roots_legendre.cache:
return _cached_roots_legendre.cache[n]
_cached_roots_legendre.cache[n] = roots_legendre(n)
return _cached_roots_legendre.cache[n]
_cached_roots_legendre.cache = dict()
def fixed_quad(func, a, b, args=(), n=5):
"""
Compute a definite integral using fixed-order Gaussian quadrature.
Integrate `func` from `a` to `b` using Gaussian quadrature of
order `n`.
Parameters
----------
func : callable
A Python function or method to integrate (must accept vector inputs).
If integrating a vector-valued function, the returned array must have
shape ``(..., len(x))``.
a : float
Lower limit of integration.
b : float
Upper limit of integration.
args : tuple, optional
Extra arguments to pass to function, if any.
n : int, optional
Order of quadrature integration. Default is 5.
Returns
-------
val : float
Gaussian quadrature approximation to the integral
none : None
Statically returned value of None
See Also
--------
quad : adaptive quadrature using QUADPACK
dblquad : double integrals
tplquad : triple integrals
romb : integrators for sampled data
simpson : integrators for sampled data
cumulative_trapezoid : cumulative integration for sampled data
Examples
--------
>>> from scipy import integrate
>>> import numpy as np
>>> f = lambda x: x**8
>>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
(0.1110884353741496, None)
>>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
(0.11111111111111102, None)
>>> print(1/9.0) # analytical result
0.1111111111111111
>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
(0.9999999771971152, None)
>>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
(1.000000000039565, None)
>>> np.sin(np.pi/2)-np.sin(0) # analytical result
1.0
"""
x, w = _cached_roots_legendre(n)
x = np.real(x)
if np.isinf(a) or np.isinf(b):
raise ValueError("Gaussian quadrature is only available for "
"finite limits.")
y = (b-a)*(x+1)/2.0 + a
return (b-a)/2.0 * np.sum(w*func(y, *args), axis=-1), None
def tupleset(t, i, value):
l = list(t)
l[i] = value
return tuple(l)
def cumulative_trapezoid(y, x=None, dx=1.0, axis=-1, initial=None):
"""
Cumulatively integrate y(x) using the composite trapezoidal rule.
Parameters
----------
y : array_like
Values to integrate.
x : array_like, optional
The coordinate to integrate along. If None (default), use spacing `dx`
between consecutive elements in `y`.
dx : float, optional
Spacing between elements of `y`. Only used if `x` is None.
axis : int, optional
Specifies the axis to cumulate. Default is -1 (last axis).
initial : scalar, optional
If given, insert this value at the beginning of the returned result.
0 or None are the only values accepted. Default is None, which means
`res` has one element less than `y` along the axis of integration.
Returns
-------
res : ndarray
The result of cumulative integration of `y` along `axis`.
If `initial` is None, the shape is such that the axis of integration
has one less value than `y`. If `initial` is given, the shape is equal
to that of `y`.
See Also
--------
numpy.cumsum, numpy.cumprod
cumulative_simpson : cumulative integration using Simpson's 1/3 rule
quad : adaptive quadrature using QUADPACK
fixed_quad : fixed-order Gaussian quadrature
dblquad : double integrals
tplquad : triple integrals
romb : integrators for sampled data
Examples
--------
>>> from scipy import integrate
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2, 2, num=20)
>>> y = x
>>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
>>> plt.show()
"""
y = np.asarray(y)
if y.shape[axis] == 0:
raise ValueError("At least one point is required along `axis`.")
if x is None:
d = dx
else:
x = np.asarray(x)
if x.ndim == 1:
d = np.diff(x)
# reshape to correct shape
shape = [1] * y.ndim
shape[axis] = -1
d = d.reshape(shape)
elif len(x.shape) != len(y.shape):
raise ValueError("If given, shape of x must be 1-D or the "
"same as y.")
else:
d = np.diff(x, axis=axis)
if d.shape[axis] != y.shape[axis] - 1:
raise ValueError("If given, length of x along axis must be the "
"same as y.")
nd = len(y.shape)
slice1 = tupleset((slice(None),)*nd, axis, slice(1, None))
slice2 = tupleset((slice(None),)*nd, axis, slice(None, -1))
res = np.cumsum(d * (y[slice1] + y[slice2]) / 2.0, axis=axis)
if initial is not None:
if initial != 0:
raise ValueError("`initial` must be `None` or `0`.")
if not np.isscalar(initial):
raise ValueError("`initial` parameter should be a scalar.")
shape = list(res.shape)
shape[axis] = 1
res = np.concatenate([np.full(shape, initial, dtype=res.dtype), res],
axis=axis)
return res
def _basic_simpson(y, start, stop, x, dx, axis):
nd = len(y.shape)
if start is None:
start = 0
step = 2
slice_all = (slice(None),)*nd
slice0 = tupleset(slice_all, axis, slice(start, stop, step))
slice1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
slice2 = tupleset(slice_all, axis, slice(start+2, stop+2, step))
if x is None: # Even-spaced Simpson's rule.
result = np.sum(y[slice0] + 4.0*y[slice1] + y[slice2], axis=axis)
result *= dx / 3.0
else:
# Account for possibly different spacings.
# Simpson's rule changes a bit.
h = np.diff(x, axis=axis)
sl0 = tupleset(slice_all, axis, slice(start, stop, step))
sl1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
h0 = h[sl0].astype(float, copy=False)
h1 = h[sl1].astype(float, copy=False)
hsum = h0 + h1
hprod = h0 * h1
h0divh1 = np.true_divide(h0, h1, out=np.zeros_like(h0), where=h1 != 0)
tmp = hsum/6.0 * (y[slice0] *
(2.0 - np.true_divide(1.0, h0divh1,
out=np.zeros_like(h0divh1),
where=h0divh1 != 0)) +
y[slice1] * (hsum *
np.true_divide(hsum, hprod,
out=np.zeros_like(hsum),
where=hprod != 0)) +
y[slice2] * (2.0 - h0divh1))
result = np.sum(tmp, axis=axis)
return result
def simpson(y, x=None, *, dx=1.0, axis=-1):
"""
Integrate y(x) using samples along the given axis and the composite
Simpson's rule. If x is None, spacing of dx is assumed.
Parameters
----------
y : array_like
Array to be integrated.
x : array_like, optional
If given, the points at which `y` is sampled.
dx : float, optional
Spacing of integration points along axis of `x`. Only used when
`x` is None. Default is 1.
axis : int, optional
Axis along which to integrate. Default is the last axis.
Returns
-------
float
The estimated integral computed with the composite Simpson's rule.
See Also
--------
quad : adaptive quadrature using QUADPACK
fixed_quad : fixed-order Gaussian quadrature
dblquad : double integrals
tplquad : triple integrals
romb : integrators for sampled data
cumulative_trapezoid : cumulative integration for sampled data
cumulative_simpson : cumulative integration using Simpson's 1/3 rule
Notes
-----
For an odd number of samples that are equally spaced the result is
exact if the function is a polynomial of order 3 or less. If
the samples are not equally spaced, then the result is exact only
if the function is a polynomial of order 2 or less.
References
----------
.. [1] Cartwright, Kenneth V. Simpson's Rule Cumulative Integration with
MS Excel and Irregularly-spaced Data. Journal of Mathematical
Sciences and Mathematics Education. 12 (2): 1-9
Examples
--------
>>> from scipy import integrate
>>> import numpy as np
>>> x = np.arange(0, 10)
>>> y = np.arange(0, 10)
>>> integrate.simpson(y, x=x)
40.5
>>> y = np.power(x, 3)
>>> integrate.simpson(y, x=x)
1640.5
>>> integrate.quad(lambda x: x**3, 0, 9)[0]
1640.25
"""
y = np.asarray(y)
nd = len(y.shape)
N = y.shape[axis]
last_dx = dx
returnshape = 0
if x is not None:
x = np.asarray(x)
if len(x.shape) == 1:
shapex = [1] * nd
shapex[axis] = x.shape[0]
saveshape = x.shape
returnshape = 1
x = x.reshape(tuple(shapex))
elif len(x.shape) != len(y.shape):
raise ValueError("If given, shape of x must be 1-D or the "
"same as y.")
if x.shape[axis] != N:
raise ValueError("If given, length of x along axis must be the "
"same as y.")
if N % 2 == 0:
val = 0.0
result = 0.0
slice_all = (slice(None),) * nd
if N == 2:
# need at least 3 points in integration axis to form parabolic
# segment. If there are two points then any of 'avg', 'first',
# 'last' should give the same result.
slice1 = tupleset(slice_all, axis, -1)
slice2 = tupleset(slice_all, axis, -2)
if x is not None:
last_dx = x[slice1] - x[slice2]
val += 0.5 * last_dx * (y[slice1] + y[slice2])
else:
# use Simpson's rule on first intervals
result = _basic_simpson(y, 0, N-3, x, dx, axis)
slice1 = tupleset(slice_all, axis, -1)
slice2 = tupleset(slice_all, axis, -2)
slice3 = tupleset(slice_all, axis, -3)
h = np.asarray([dx, dx], dtype=np.float64)
if x is not None:
# grab the last two spacings from the appropriate axis
hm2 = tupleset(slice_all, axis, slice(-2, -1, 1))
hm1 = tupleset(slice_all, axis, slice(-1, None, 1))
diffs = np.float64(np.diff(x, axis=axis))
h = [np.squeeze(diffs[hm2], axis=axis),
np.squeeze(diffs[hm1], axis=axis)]
# This is the correction for the last interval according to
# Cartwright.
# However, I used the equations given at
# https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule_for_irregularly_spaced_data
# A footnote on Wikipedia says:
# Cartwright 2017, Equation 8. The equation in Cartwright is
# calculating the first interval whereas the equations in the
# Wikipedia article are adjusting for the last integral. If the
# proper algebraic substitutions are made, the equation results in
# the values shown.
num = 2 * h[1] ** 2 + 3 * h[0] * h[1]
den = 6 * (h[1] + h[0])
alpha = np.true_divide(
num,
den,
out=np.zeros_like(den),
where=den != 0
)
num = h[1] ** 2 + 3.0 * h[0] * h[1]
den = 6 * h[0]
beta = np.true_divide(
num,
den,
out=np.zeros_like(den),
where=den != 0
)
num = 1 * h[1] ** 3
den = 6 * h[0] * (h[0] + h[1])
eta = np.true_divide(
num,
den,
out=np.zeros_like(den),
where=den != 0
)
result += alpha*y[slice1] + beta*y[slice2] - eta*y[slice3]
result += val
else:
result = _basic_simpson(y, 0, N-2, x, dx, axis)
if returnshape:
x = x.reshape(saveshape)
return result
def _cumulatively_sum_simpson_integrals(
y: np.ndarray,
dx: np.ndarray,
integration_func: Callable[[np.ndarray, np.ndarray], np.ndarray],
) -> np.ndarray:
"""Calculate cumulative sum of Simpson integrals.
Takes as input the integration function to be used.
The integration_func is assumed to return the cumulative sum using
composite Simpson's rule. Assumes the axis of summation is -1.
"""
sub_integrals_h1 = integration_func(y, dx)
sub_integrals_h2 = integration_func(y[..., ::-1], dx[..., ::-1])[..., ::-1]
shape = list(sub_integrals_h1.shape)
shape[-1] += 1
sub_integrals = np.empty(shape)
sub_integrals[..., :-1:2] = sub_integrals_h1[..., ::2]
sub_integrals[..., 1::2] = sub_integrals_h2[..., ::2]
# Integral over last subinterval can only be calculated from
# formula for h2
sub_integrals[..., -1] = sub_integrals_h2[..., -1]
res = np.cumsum(sub_integrals, axis=-1)
return res
def _cumulative_simpson_equal_intervals(y: np.ndarray, dx: np.ndarray) -> np.ndarray:
"""Calculate the Simpson integrals for all h1 intervals assuming equal interval
widths. The function can also be used to calculate the integral for all
h2 intervals by reversing the inputs, `y` and `dx`.
"""
d = dx[..., :-1]
f1 = y[..., :-2]
f2 = y[..., 1:-1]
f3 = y[..., 2:]
# Calculate integral over the subintervals (eqn (10) of Reference [2])
return d / 3 * (5 * f1 / 4 + 2 * f2 - f3 / 4)
def _cumulative_simpson_unequal_intervals(y: np.ndarray, dx: np.ndarray) -> np.ndarray:
"""Calculate the Simpson integrals for all h1 intervals assuming unequal interval
widths. The function can also be used to calculate the integral for all
h2 intervals by reversing the inputs, `y` and `dx`.
"""
x21 = dx[..., :-1]
x32 = dx[..., 1:]
f1 = y[..., :-2]
f2 = y[..., 1:-1]
f3 = y[..., 2:]
x31 = x21 + x32
x21_x31 = x21/x31
x21_x32 = x21/x32
x21x21_x31x32 = x21_x31 * x21_x32
# Calculate integral over the subintervals (eqn (8) of Reference [2])
coeff1 = 3 - x21_x31
coeff2 = 3 + x21x21_x31x32 + x21_x31
coeff3 = -x21x21_x31x32
return x21/6 * (coeff1*f1 + coeff2*f2 + coeff3*f3)
def _ensure_float_array(arr: npt.ArrayLike) -> np.ndarray:
arr = np.asarray(arr)
if np.issubdtype(arr.dtype, np.integer):
arr = arr.astype(float, copy=False)
return arr
def cumulative_simpson(y, *, x=None, dx=1.0, axis=-1, initial=None):
r"""
Cumulatively integrate y(x) using the composite Simpson's 1/3 rule.
The integral of the samples at every point is calculated by assuming a
quadratic relationship between each point and the two adjacent points.
Parameters
----------
y : array_like
Values to integrate. Requires at least one point along `axis`. If two or fewer
points are provided along `axis`, Simpson's integration is not possible and the
result is calculated with `cumulative_trapezoid`.
x : array_like, optional
The coordinate to integrate along. Must have the same shape as `y` or
must be 1D with the same length as `y` along `axis`. `x` must also be
strictly increasing along `axis`.
If `x` is None (default), integration is performed using spacing `dx`
between consecutive elements in `y`.
dx : scalar or array_like, optional
Spacing between elements of `y`. Only used if `x` is None. Can either
be a float, or an array with the same shape as `y`, but of length one along
`axis`. Default is 1.0.
axis : int, optional
Specifies the axis to integrate along. Default is -1 (last axis).
initial : scalar or array_like, optional
If given, insert this value at the beginning of the returned result,
and add it to the rest of the result. Default is None, which means no
value at ``x[0]`` is returned and `res` has one element less than `y`
along the axis of integration. Can either be a float, or an array with
the same shape as `y`, but of length one along `axis`.
Returns
-------
res : ndarray
The result of cumulative integration of `y` along `axis`.
If `initial` is None, the shape is such that the axis of integration
has one less value than `y`. If `initial` is given, the shape is equal
to that of `y`.
See Also
--------
numpy.cumsum
cumulative_trapezoid : cumulative integration using the composite
trapezoidal rule
simpson : integrator for sampled data using the Composite Simpson's Rule
Notes
-----
.. versionadded:: 1.12.0
The composite Simpson's 1/3 method can be used to approximate the definite
integral of a sampled input function :math:`y(x)` [1]_. The method assumes
a quadratic relationship over the interval containing any three consecutive
sampled points.
Consider three consecutive points:
:math:`(x_1, y_1), (x_2, y_2), (x_3, y_3)`.
Assuming a quadratic relationship over the three points, the integral over
the subinterval between :math:`x_1` and :math:`x_2` is given by formula
(8) of [2]_:
.. math::
\int_{x_1}^{x_2} y(x) dx\ &= \frac{x_2-x_1}{6}\left[\
\left\{3-\frac{x_2-x_1}{x_3-x_1}\right\} y_1 + \
\left\{3 + \frac{(x_2-x_1)^2}{(x_3-x_2)(x_3-x_1)} + \
\frac{x_2-x_1}{x_3-x_1}\right\} y_2\\
- \frac{(x_2-x_1)^2}{(x_3-x_2)(x_3-x_1)} y_3\right]
The integral between :math:`x_2` and :math:`x_3` is given by swapping
appearances of :math:`x_1` and :math:`x_3`. The integral is estimated
separately for each subinterval and then cumulatively summed to obtain
the final result.
For samples that are equally spaced, the result is exact if the function
is a polynomial of order three or less [1]_ and the number of subintervals
is even. Otherwise, the integral is exact for polynomials of order two or
less.
References
----------
.. [1] Wikipedia page: https://en.wikipedia.org/wiki/Simpson's_rule
.. [2] Cartwright, Kenneth V. Simpson's Rule Cumulative Integration with
MS Excel and Irregularly-spaced Data. Journal of Mathematical
Sciences and Mathematics Education. 12 (2): 1-9
Examples
--------
>>> from scipy import integrate
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2, 2, num=20)
>>> y = x**2
>>> y_int = integrate.cumulative_simpson(y, x=x, initial=0)
>>> fig, ax = plt.subplots()
>>> ax.plot(x, y_int, 'ro', x, x**3/3 - (x[0])**3/3, 'b-')
>>> ax.grid()
>>> plt.show()
The output of `cumulative_simpson` is similar to that of iteratively
calling `simpson` with successively higher upper limits of integration, but
not identical.
>>> def cumulative_simpson_reference(y, x):
... return np.asarray([integrate.simpson(y[:i], x=x[:i])
... for i in range(2, len(y) + 1)])
>>>
>>> rng = np.random.default_rng(354673834679465)
>>> x, y = rng.random(size=(2, 10))
>>> x.sort()
>>>
>>> res = integrate.cumulative_simpson(y, x=x)
>>> ref = cumulative_simpson_reference(y, x)
>>> equal = np.abs(res - ref) < 1e-15
>>> equal # not equal when `simpson` has even number of subintervals
array([False, True, False, True, False, True, False, True, True])
This is expected: because `cumulative_simpson` has access to more
information than `simpson`, it can typically produce more accurate
estimates of the underlying integral over subintervals.
"""
y = _ensure_float_array(y)
# validate `axis` and standardize to work along the last axis
original_y = y
original_shape = y.shape
try:
y = np.swapaxes(y, axis, -1)
except IndexError as e:
message = f"`axis={axis}` is not valid for `y` with `y.ndim={y.ndim}`."
raise ValueError(message) from e
if y.shape[-1] < 3:
res = cumulative_trapezoid(original_y, x, dx=dx, axis=axis, initial=None)
res = np.swapaxes(res, axis, -1)
elif x is not None:
x = _ensure_float_array(x)
message = ("If given, shape of `x` must be the same as `y` or 1-D with "
"the same length as `y` along `axis`.")
if not (x.shape == original_shape
or (x.ndim == 1 and len(x) == original_shape[axis])):
raise ValueError(message)
x = np.broadcast_to(x, y.shape) if x.ndim == 1 else np.swapaxes(x, axis, -1)
dx = np.diff(x, axis=-1)
if np.any(dx <= 0):
raise ValueError("Input x must be strictly increasing.")
res = _cumulatively_sum_simpson_integrals(
y, dx, _cumulative_simpson_unequal_intervals
)
else:
dx = _ensure_float_array(dx)
final_dx_shape = tupleset(original_shape, axis, original_shape[axis] - 1)
alt_input_dx_shape = tupleset(original_shape, axis, 1)
message = ("If provided, `dx` must either be a scalar or have the same "
"shape as `y` but with only 1 point along `axis`.")
if not (dx.ndim == 0 or dx.shape == alt_input_dx_shape):
raise ValueError(message)
dx = np.broadcast_to(dx, final_dx_shape)
dx = np.swapaxes(dx, axis, -1)
res = _cumulatively_sum_simpson_integrals(
y, dx, _cumulative_simpson_equal_intervals
)
if initial is not None:
initial = _ensure_float_array(initial)
alt_initial_input_shape = tupleset(original_shape, axis, 1)
message = ("If provided, `initial` must either be a scalar or have the "
"same shape as `y` but with only 1 point along `axis`.")
if not (initial.ndim == 0 or initial.shape == alt_initial_input_shape):
raise ValueError(message)
initial = np.broadcast_to(initial, alt_initial_input_shape)
initial = np.swapaxes(initial, axis, -1)
res += initial
res = np.concatenate((initial, res), axis=-1)
res = np.swapaxes(res, -1, axis)
return res
def romb(y, dx=1.0, axis=-1, show=False):
"""
Romberg integration using samples of a function.
Parameters
----------
y : array_like
A vector of ``2**k + 1`` equally-spaced samples of a function.
dx : float, optional
The sample spacing. Default is 1.
axis : int, optional
The axis along which to integrate. Default is -1 (last axis).
show : bool, optional
When `y` is a single 1-D array, then if this argument is True
print the table showing Richardson extrapolation from the
samples. Default is False.
Returns
-------
romb : ndarray
The integrated result for `axis`.
See Also
--------
quad : adaptive quadrature using QUADPACK
fixed_quad : fixed-order Gaussian quadrature
dblquad : double integrals
tplquad : triple integrals
simpson : integrators for sampled data
cumulative_trapezoid : cumulative integration for sampled data
Examples
--------
>>> from scipy import integrate
>>> import numpy as np
>>> x = np.arange(10, 14.25, 0.25)
>>> y = np.arange(3, 12)
>>> integrate.romb(y)
56.0
>>> y = np.sin(np.power(x, 2.5))
>>> integrate.romb(y)
-0.742561336672229
>>> integrate.romb(y, show=True)
Richardson Extrapolation Table for Romberg Integration
======================================================
-0.81576
4.63862 6.45674
-1.10581 -3.02062 -3.65245
-2.57379 -3.06311 -3.06595 -3.05664
-1.34093 -0.92997 -0.78776 -0.75160 -0.74256
======================================================
-0.742561336672229 # may vary
"""
y = np.asarray(y)
nd = len(y.shape)
Nsamps = y.shape[axis]
Ninterv = Nsamps-1
n = 1
k = 0
while n < Ninterv:
n <<= 1
k += 1
if n != Ninterv:
raise ValueError("Number of samples must be one plus a "
"non-negative power of 2.")
R = {}
slice_all = (slice(None),) * nd
slice0 = tupleset(slice_all, axis, 0)
slicem1 = tupleset(slice_all, axis, -1)
h = Ninterv * np.asarray(dx, dtype=float)
R[(0, 0)] = (y[slice0] + y[slicem1])/2.0*h
slice_R = slice_all
start = stop = step = Ninterv
for i in range(1, k+1):
start >>= 1
slice_R = tupleset(slice_R, axis, slice(start, stop, step))
step >>= 1
R[(i, 0)] = 0.5*(R[(i-1, 0)] + h*y[slice_R].sum(axis=axis))
for j in range(1, i+1):
prev = R[(i, j-1)]
R[(i, j)] = prev + (prev-R[(i-1, j-1)]) / ((1 << (2*j))-1)
h /= 2.0
if show:
if not np.isscalar(R[(0, 0)]):
print("*** Printing table only supported for integrals" +
" of a single data set.")
else:
try:
precis = show[0]
except (TypeError, IndexError):
precis = 5
try:
width = show[1]
except (TypeError, IndexError):
width = 8
formstr = "%%%d.%df" % (width, precis)
title = "Richardson Extrapolation Table for Romberg Integration"
print(title, "=" * len(title), sep="\n", end="\n")
for i in range(k+1):
for j in range(i+1):
print(formstr % R[(i, j)], end=" ")
print()
print("=" * len(title))
return R[(k, k)]
# Coefficients for Newton-Cotes quadrature
#
# These are the points being used
# to construct the local interpolating polynomial
# a are the weights for Newton-Cotes integration
# B is the error coefficient.
# error in these coefficients grows as N gets larger.
# or as samples are closer and closer together
# You can use maxima to find these rational coefficients
# for equally spaced data using the commands
# a(i,N) := (integrate(product(r-j,j,0,i-1) * product(r-j,j,i+1,N),r,0,N)
# / ((N-i)! * i!) * (-1)^(N-i));
# Be(N) := N^(N+2)/(N+2)! * (N/(N+3) - sum((i/N)^(N+2)*a(i,N),i,0,N));
# Bo(N) := N^(N+1)/(N+1)! * (N/(N+2) - sum((i/N)^(N+1)*a(i,N),i,0,N));
# B(N) := (if (mod(N,2)=0) then Be(N) else Bo(N));
#
# pre-computed for equally-spaced weights
#
# num_a, den_a, int_a, num_B, den_B = _builtincoeffs[N]
#
# a = num_a*array(int_a)/den_a
# B = num_B*1.0 / den_B
#
# integrate(f(x),x,x_0,x_N) = dx*sum(a*f(x_i)) + B*(dx)^(2k+3) f^(2k+2)(x*)
# where k = N // 2
#
_builtincoeffs = {
1: (1,2,[1,1],-1,12),
2: (1,3,[1,4,1],-1,90),
3: (3,8,[1,3,3,1],-3,80),
4: (2,45,[7,32,12,32,7],-8,945),
5: (5,288,[19,75,50,50,75,19],-275,12096),
6: (1,140,[41,216,27,272,27,216,41],-9,1400),
7: (7,17280,[751,3577,1323,2989,2989,1323,3577,751],-8183,518400),
8: (4,14175,[989,5888,-928,10496,-4540,10496,-928,5888,989],
-2368,467775),
9: (9,89600,[2857,15741,1080,19344,5778,5778,19344,1080,
15741,2857], -4671, 394240),
10: (5,299376,[16067,106300,-48525,272400,-260550,427368,
-260550,272400,-48525,106300,16067],
-673175, 163459296),
11: (11,87091200,[2171465,13486539,-3237113, 25226685,-9595542,
15493566,15493566,-9595542,25226685,-3237113,
13486539,2171465], -2224234463, 237758976000),
12: (1, 5255250, [1364651,9903168,-7587864,35725120,-51491295,
87516288,-87797136,87516288,-51491295,35725120,
-7587864,9903168,1364651], -3012, 875875),
13: (13, 402361344000,[8181904909, 56280729661, -31268252574,
156074417954,-151659573325,206683437987,
-43111992612,-43111992612,206683437987,
-151659573325,156074417954,-31268252574,
56280729661,8181904909], -2639651053,
344881152000),
14: (7, 2501928000, [90241897,710986864,-770720657,3501442784,
-6625093363,12630121616,-16802270373,19534438464,
-16802270373,12630121616,-6625093363,3501442784,
-770720657,710986864,90241897], -3740727473,
1275983280000)
}
def newton_cotes(rn, equal=0):
r"""
Return weights and error coefficient for Newton-Cotes integration.
Suppose we have (N+1) samples of f at the positions
x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
integral between x_0 and x_N is:
:math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
+ B_N (\Delta x)^{N+2} f^{N+1} (\xi)`
where :math:`\xi \in [x_0,x_N]`
and :math:`\Delta x = \frac{x_N-x_0}{N}` is the average samples spacing.
If the samples are equally-spaced and N is even, then the error
term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`.
Parameters
----------
rn : int
The integer order for equally-spaced data or the relative positions of
the samples with the first sample at 0 and the last at N, where N+1 is
the length of `rn`. N is the order of the Newton-Cotes integration.
equal : int, optional
Set to 1 to enforce equally spaced data.
Returns
-------
an : ndarray
1-D array of weights to apply to the function at the provided sample
positions.
B : float
Error coefficient.
Notes
-----
Normally, the Newton-Cotes rules are used on smaller integration
regions and a composite rule is used to return the total integral.
Examples
--------
Compute the integral of sin(x) in [0, :math:`\pi`]:
>>> from scipy.integrate import newton_cotes
>>> import numpy as np
>>> def f(x):
... return np.sin(x)
>>> a = 0
>>> b = np.pi
>>> exact = 2
>>> for N in [2, 4, 6, 8, 10]:
... x = np.linspace(a, b, N + 1)
... an, B = newton_cotes(N, 1)
... dx = (b - a) / N
... quad = dx * np.sum(an * f(x))
... error = abs(quad - exact)
... print('{:2d} {:10.9f} {:.5e}'.format(N, quad, error))
...
2 2.094395102 9.43951e-02
4 1.998570732 1.42927e-03
6 2.000017814 1.78136e-05
8 1.999999835 1.64725e-07
10 2.000000001 1.14677e-09
"""
try:
N = len(rn)-1
if equal:
rn = np.arange(N+1)
elif np.all(np.diff(rn) == 1):
equal = 1
except Exception:
N = rn
rn = np.arange(N+1)
equal = 1
if equal and N in _builtincoeffs:
na, da, vi, nb, db = _builtincoeffs[N]
an = na * np.array(vi, dtype=float) / da
return an, float(nb)/db
if (rn[0] != 0) or (rn[-1] != N):
raise ValueError("The sample positions must start at 0"
" and end at N")
yi = rn / float(N)
ti = 2 * yi - 1
nvec = np.arange(N+1)
C = ti ** nvec[:, np.newaxis]
Cinv = np.linalg.inv(C)
# improve precision of result
for i in range(2):
Cinv = 2*Cinv - Cinv.dot(C).dot(Cinv)
vec = 2.0 / (nvec[::2]+1)
ai = Cinv[:, ::2].dot(vec) * (N / 2.)
if (N % 2 == 0) and equal:
BN = N/(N+3.)
power = N+2
else:
BN = N/(N+2.)
power = N+1
BN = BN - np.dot(yi**power, ai)
p1 = power+1
fac = power*math.log(N) - gammaln(p1)
fac = math.exp(fac)
return ai, BN*fac
def _qmc_quad_iv(func, a, b, n_points, n_estimates, qrng, log):
# lazy import to avoid issues with partially-initialized submodule
if not hasattr(qmc_quad, 'qmc'):
from scipy import stats
qmc_quad.stats = stats
else:
stats = qmc_quad.stats
if not callable(func):
message = "`func` must be callable."
raise TypeError(message)
# a, b will be modified, so copy. Oh well if it's copied twice.
a = np.atleast_1d(a).copy()
b = np.atleast_1d(b).copy()
a, b = np.broadcast_arrays(a, b)
dim = a.shape[0]
try:
func((a + b) / 2)
except Exception as e:
message = ("`func` must evaluate the integrand at points within "
"the integration range; e.g. `func( (a + b) / 2)` "
"must return the integrand at the centroid of the "
"integration volume.")
raise ValueError(message) from e
try:
func(np.array([a, b]).T)
vfunc = func
except Exception as e:
message = ("Exception encountered when attempting vectorized call to "
f"`func`: {e}. For better performance, `func` should "
"accept two-dimensional array `x` with shape `(len(a), "
"n_points)` and return an array of the integrand value at "
"each of the `n_points.")
warnings.warn(message, stacklevel=3)
def vfunc(x):
return np.apply_along_axis(func, axis=-1, arr=x)
n_points_int = np.int64(n_points)
if n_points != n_points_int:
message = "`n_points` must be an integer."
raise TypeError(message)
n_estimates_int = np.int64(n_estimates)
if n_estimates != n_estimates_int:
message = "`n_estimates` must be an integer."
raise TypeError(message)
if qrng is None:
qrng = stats.qmc.Halton(dim)
elif not isinstance(qrng, stats.qmc.QMCEngine):
message = "`qrng` must be an instance of scipy.stats.qmc.QMCEngine."
raise TypeError(message)
if qrng.d != a.shape[0]:
message = ("`qrng` must be initialized with dimensionality equal to "
"the number of variables in `a`, i.e., "
"`qrng.random().shape[-1]` must equal `a.shape[0]`.")
raise ValueError(message)
rng_seed = getattr(qrng, 'rng_seed', None)
rng = stats._qmc.check_random_state(rng_seed)
if log not in {True, False}:
message = "`log` must be boolean (`True` or `False`)."
raise TypeError(message)
return (vfunc, a, b, n_points_int, n_estimates_int, qrng, rng, log, stats)
QMCQuadResult = namedtuple('QMCQuadResult', ['integral', 'standard_error'])
def qmc_quad(func, a, b, *, n_estimates=8, n_points=1024, qrng=None,
log=False):
"""
Compute an integral in N-dimensions using Quasi-Monte Carlo quadrature.
Parameters
----------
func : callable
The integrand. Must accept a single argument ``x``, an array which
specifies the point(s) at which to evaluate the scalar-valued
integrand, and return the value(s) of the integrand.
For efficiency, the function should be vectorized to accept an array of
shape ``(d, n_points)``, where ``d`` is the number of variables (i.e.
the dimensionality of the function domain) and `n_points` is the number
of quadrature points, and return an array of shape ``(n_points,)``,
the integrand at each quadrature point.
a, b : array-like
One-dimensional arrays specifying the lower and upper integration
limits, respectively, of each of the ``d`` variables.
n_estimates, n_points : int, optional
`n_estimates` (default: 8) statistically independent QMC samples, each
of `n_points` (default: 1024) points, will be generated by `qrng`.
The total number of points at which the integrand `func` will be
evaluated is ``n_points * n_estimates``. See Notes for details.
qrng : `~scipy.stats.qmc.QMCEngine`, optional
An instance of the QMCEngine from which to sample QMC points.
The QMCEngine must be initialized to a number of dimensions ``d``
corresponding with the number of variables ``x1, ..., xd`` passed to
`func`.
The provided QMCEngine is used to produce the first integral estimate.
If `n_estimates` is greater than one, additional QMCEngines are
spawned from the first (with scrambling enabled, if it is an option.)
If a QMCEngine is not provided, the default `scipy.stats.qmc.Halton`
will be initialized with the number of dimensions determine from
the length of `a`.
log : boolean, default: False
When set to True, `func` returns the log of the integrand, and
the result object contains the log of the integral.
Returns
-------
result : object
A result object with attributes:
integral : float
The estimate of the integral.
standard_error :
The error estimate. See Notes for interpretation.
Notes
-----
Values of the integrand at each of the `n_points` points of a QMC sample
are used to produce an estimate of the integral. This estimate is drawn
from a population of possible estimates of the integral, the value of
which we obtain depends on the particular points at which the integral
was evaluated. We perform this process `n_estimates` times, each time
evaluating the integrand at different scrambled QMC points, effectively
drawing i.i.d. random samples from the population of integral estimates.
The sample mean :math:`m` of these integral estimates is an
unbiased estimator of the true value of the integral, and the standard
error of the mean :math:`s` of these estimates may be used to generate
confidence intervals using the t distribution with ``n_estimates - 1``
degrees of freedom. Perhaps counter-intuitively, increasing `n_points`
while keeping the total number of function evaluation points
``n_points * n_estimates`` fixed tends to reduce the actual error, whereas
increasing `n_estimates` tends to decrease the error estimate.
Examples
--------
QMC quadrature is particularly useful for computing integrals in higher
dimensions. An example integrand is the probability density function
of a multivariate normal distribution.
>>> import numpy as np
>>> from scipy import stats
>>> dim = 8
>>> mean = np.zeros(dim)
>>> cov = np.eye(dim)
>>> def func(x):
... # `multivariate_normal` expects the _last_ axis to correspond with
... # the dimensionality of the space, so `x` must be transposed
... return stats.multivariate_normal.pdf(x.T, mean, cov)
To compute the integral over the unit hypercube:
>>> from scipy.integrate import qmc_quad
>>> a = np.zeros(dim)
>>> b = np.ones(dim)
>>> rng = np.random.default_rng()
>>> qrng = stats.qmc.Halton(d=dim, seed=rng)
>>> n_estimates = 8
>>> res = qmc_quad(func, a, b, n_estimates=n_estimates, qrng=qrng)
>>> res.integral, res.standard_error
(0.00018429555666024108, 1.0389431116001344e-07)
A two-sided, 99% confidence interval for the integral may be estimated
as:
>>> t = stats.t(df=n_estimates-1, loc=res.integral,
... scale=res.standard_error)
>>> t.interval(0.99)
(0.0001839319802536469, 0.00018465913306683527)
Indeed, the value reported by `scipy.stats.multivariate_normal` is
within this range.
>>> stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
0.00018430867675187443
"""
args = _qmc_quad_iv(func, a, b, n_points, n_estimates, qrng, log)
func, a, b, n_points, n_estimates, qrng, rng, log, stats = args
def sum_product(integrands, dA, log=False):
if log:
return logsumexp(integrands) + np.log(dA)
else:
return np.sum(integrands * dA)
def mean(estimates, log=False):
if log:
return logsumexp(estimates) - np.log(n_estimates)
else:
return np.mean(estimates)
def std(estimates, m=None, ddof=0, log=False):
m = m or mean(estimates, log)
if log:
estimates, m = np.broadcast_arrays(estimates, m)
temp = np.vstack((estimates, m + np.pi * 1j))
diff = logsumexp(temp, axis=0)
return np.real(0.5 * (logsumexp(2 * diff)
- np.log(n_estimates - ddof)))
else:
return np.std(estimates, ddof=ddof)
def sem(estimates, m=None, s=None, log=False):
m = m or mean(estimates, log)
s = s or std(estimates, m, ddof=1, log=log)
if log:
return s - 0.5*np.log(n_estimates)
else:
return s / np.sqrt(n_estimates)
# The sign of the integral depends on the order of the limits. Fix this by
# ensuring that lower bounds are indeed lower and setting sign of resulting
# integral manually
if np.any(a == b):
message = ("A lower limit was equal to an upper limit, so the value "
"of the integral is zero by definition.")
warnings.warn(message, stacklevel=2)
return QMCQuadResult(-np.inf if log else 0, 0)
i_swap = b < a
sign = (-1)**(i_swap.sum(axis=-1)) # odd # of swaps -> negative
a[i_swap], b[i_swap] = b[i_swap], a[i_swap]
A = np.prod(b - a)
dA = A / n_points
estimates = np.zeros(n_estimates)
rngs = _rng_spawn(qrng.rng, n_estimates)
for i in range(n_estimates):
# Generate integral estimate
sample = qrng.random(n_points)
# The rationale for transposing is that this allows users to easily
# unpack `x` into separate variables, if desired. This is consistent
# with the `xx` array passed into the `scipy.integrate.nquad` `func`.
x = stats.qmc.scale(sample, a, b).T # (n_dim, n_points)
integrands = func(x)
estimates[i] = sum_product(integrands, dA, log)
# Get a new, independently-scrambled QRNG for next time
qrng = type(qrng)(seed=rngs[i], **qrng._init_quad)
integral = mean(estimates, log)
standard_error = sem(estimates, m=integral, log=log)
integral = integral + np.pi*1j if (log and sign < 0) else integral*sign
return QMCQuadResult(integral, standard_error)
|