File size: 40,897 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
"""Boundary value problem solver."""
from warnings import warn

import numpy as np
from numpy.linalg import pinv

from scipy.sparse import coo_matrix, csc_matrix
from scipy.sparse.linalg import splu
from scipy.optimize import OptimizeResult


EPS = np.finfo(float).eps


def estimate_fun_jac(fun, x, y, p, f0=None):
    """Estimate derivatives of an ODE system rhs with forward differences.

    Returns
    -------
    df_dy : ndarray, shape (n, n, m)
        Derivatives with respect to y. An element (i, j, q) corresponds to
        d f_i(x_q, y_q) / d (y_q)_j.
    df_dp : ndarray with shape (n, k, m) or None
        Derivatives with respect to p. An element (i, j, q) corresponds to
        d f_i(x_q, y_q, p) / d p_j. If `p` is empty, None is returned.
    """
    n, m = y.shape
    if f0 is None:
        f0 = fun(x, y, p)

    dtype = y.dtype

    df_dy = np.empty((n, n, m), dtype=dtype)
    h = EPS**0.5 * (1 + np.abs(y))
    for i in range(n):
        y_new = y.copy()
        y_new[i] += h[i]
        hi = y_new[i] - y[i]
        f_new = fun(x, y_new, p)
        df_dy[:, i, :] = (f_new - f0) / hi

    k = p.shape[0]
    if k == 0:
        df_dp = None
    else:
        df_dp = np.empty((n, k, m), dtype=dtype)
        h = EPS**0.5 * (1 + np.abs(p))
        for i in range(k):
            p_new = p.copy()
            p_new[i] += h[i]
            hi = p_new[i] - p[i]
            f_new = fun(x, y, p_new)
            df_dp[:, i, :] = (f_new - f0) / hi

    return df_dy, df_dp


def estimate_bc_jac(bc, ya, yb, p, bc0=None):
    """Estimate derivatives of boundary conditions with forward differences.

    Returns
    -------
    dbc_dya : ndarray, shape (n + k, n)
        Derivatives with respect to ya. An element (i, j) corresponds to
        d bc_i / d ya_j.
    dbc_dyb : ndarray, shape (n + k, n)
        Derivatives with respect to yb. An element (i, j) corresponds to
        d bc_i / d ya_j.
    dbc_dp : ndarray with shape (n + k, k) or None
        Derivatives with respect to p. An element (i, j) corresponds to
        d bc_i / d p_j. If `p` is empty, None is returned.
    """
    n = ya.shape[0]
    k = p.shape[0]

    if bc0 is None:
        bc0 = bc(ya, yb, p)

    dtype = ya.dtype

    dbc_dya = np.empty((n, n + k), dtype=dtype)
    h = EPS**0.5 * (1 + np.abs(ya))
    for i in range(n):
        ya_new = ya.copy()
        ya_new[i] += h[i]
        hi = ya_new[i] - ya[i]
        bc_new = bc(ya_new, yb, p)
        dbc_dya[i] = (bc_new - bc0) / hi
    dbc_dya = dbc_dya.T

    h = EPS**0.5 * (1 + np.abs(yb))
    dbc_dyb = np.empty((n, n + k), dtype=dtype)
    for i in range(n):
        yb_new = yb.copy()
        yb_new[i] += h[i]
        hi = yb_new[i] - yb[i]
        bc_new = bc(ya, yb_new, p)
        dbc_dyb[i] = (bc_new - bc0) / hi
    dbc_dyb = dbc_dyb.T

    if k == 0:
        dbc_dp = None
    else:
        h = EPS**0.5 * (1 + np.abs(p))
        dbc_dp = np.empty((k, n + k), dtype=dtype)
        for i in range(k):
            p_new = p.copy()
            p_new[i] += h[i]
            hi = p_new[i] - p[i]
            bc_new = bc(ya, yb, p_new)
            dbc_dp[i] = (bc_new - bc0) / hi
        dbc_dp = dbc_dp.T

    return dbc_dya, dbc_dyb, dbc_dp


def compute_jac_indices(n, m, k):
    """Compute indices for the collocation system Jacobian construction.

    See `construct_global_jac` for the explanation.
    """
    i_col = np.repeat(np.arange((m - 1) * n), n)
    j_col = (np.tile(np.arange(n), n * (m - 1)) +
             np.repeat(np.arange(m - 1) * n, n**2))

    i_bc = np.repeat(np.arange((m - 1) * n, m * n + k), n)
    j_bc = np.tile(np.arange(n), n + k)

    i_p_col = np.repeat(np.arange((m - 1) * n), k)
    j_p_col = np.tile(np.arange(m * n, m * n + k), (m - 1) * n)

    i_p_bc = np.repeat(np.arange((m - 1) * n, m * n + k), k)
    j_p_bc = np.tile(np.arange(m * n, m * n + k), n + k)

    i = np.hstack((i_col, i_col, i_bc, i_bc, i_p_col, i_p_bc))
    j = np.hstack((j_col, j_col + n,
                   j_bc, j_bc + (m - 1) * n,
                   j_p_col, j_p_bc))

    return i, j


def stacked_matmul(a, b):
    """Stacked matrix multiply: out[i,:,:] = np.dot(a[i,:,:], b[i,:,:]).

    Empirical optimization. Use outer Python loop and BLAS for large
    matrices, otherwise use a single einsum call.
    """
    if a.shape[1] > 50:
        out = np.empty((a.shape[0], a.shape[1], b.shape[2]))
        for i in range(a.shape[0]):
            out[i] = np.dot(a[i], b[i])
        return out
    else:
        return np.einsum('...ij,...jk->...ik', a, b)


def construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy, df_dy_middle, df_dp,
                         df_dp_middle, dbc_dya, dbc_dyb, dbc_dp):
    """Construct the Jacobian of the collocation system.

    There are n * m + k functions: m - 1 collocations residuals, each
    containing n components, followed by n + k boundary condition residuals.

    There are n * m + k variables: m vectors of y, each containing n
    components, followed by k values of vector p.

    For example, let m = 4, n = 2 and k = 1, then the Jacobian will have
    the following sparsity structure:

        1 1 2 2 0 0 0 0  5
        1 1 2 2 0 0 0 0  5
        0 0 1 1 2 2 0 0  5
        0 0 1 1 2 2 0 0  5
        0 0 0 0 1 1 2 2  5
        0 0 0 0 1 1 2 2  5

        3 3 0 0 0 0 4 4  6
        3 3 0 0 0 0 4 4  6
        3 3 0 0 0 0 4 4  6

    Zeros denote identically zero values, other values denote different kinds
    of blocks in the matrix (see below). The blank row indicates the separation
    of collocation residuals from boundary conditions. And the blank column
    indicates the separation of y values from p values.

    Refer to [1]_  (p. 306) for the formula of n x n blocks for derivatives
    of collocation residuals with respect to y.

    Parameters
    ----------
    n : int
        Number of equations in the ODE system.
    m : int
        Number of nodes in the mesh.
    k : int
        Number of the unknown parameters.
    i_jac, j_jac : ndarray
        Row and column indices returned by `compute_jac_indices`. They
        represent different blocks in the Jacobian matrix in the following
        order (see the scheme above):

            * 1: m - 1 diagonal n x n blocks for the collocation residuals.
            * 2: m - 1 off-diagonal n x n blocks for the collocation residuals.
            * 3 : (n + k) x n block for the dependency of the boundary
              conditions on ya.
            * 4: (n + k) x n block for the dependency of the boundary
              conditions on yb.
            * 5: (m - 1) * n x k block for the dependency of the collocation
              residuals on p.
            * 6: (n + k) x k block for the dependency of the boundary
              conditions on p.

    df_dy : ndarray, shape (n, n, m)
        Jacobian of f with respect to y computed at the mesh nodes.
    df_dy_middle : ndarray, shape (n, n, m - 1)
        Jacobian of f with respect to y computed at the middle between the
        mesh nodes.
    df_dp : ndarray with shape (n, k, m) or None
        Jacobian of f with respect to p computed at the mesh nodes.
    df_dp_middle : ndarray with shape (n, k, m - 1) or None
        Jacobian of f with respect to p computed at the middle between the
        mesh nodes.
    dbc_dya, dbc_dyb : ndarray, shape (n, n)
        Jacobian of bc with respect to ya and yb.
    dbc_dp : ndarray with shape (n, k) or None
        Jacobian of bc with respect to p.

    Returns
    -------
    J : csc_matrix, shape (n * m + k, n * m + k)
        Jacobian of the collocation system in a sparse form.

    References
    ----------
    .. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
       Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
       Number 3, pp. 299-316, 2001.
    """
    df_dy = np.transpose(df_dy, (2, 0, 1))
    df_dy_middle = np.transpose(df_dy_middle, (2, 0, 1))

    h = h[:, np.newaxis, np.newaxis]

    dtype = df_dy.dtype

    # Computing diagonal n x n blocks.
    dPhi_dy_0 = np.empty((m - 1, n, n), dtype=dtype)
    dPhi_dy_0[:] = -np.identity(n)
    dPhi_dy_0 -= h / 6 * (df_dy[:-1] + 2 * df_dy_middle)
    T = stacked_matmul(df_dy_middle, df_dy[:-1])
    dPhi_dy_0 -= h**2 / 12 * T

    # Computing off-diagonal n x n blocks.
    dPhi_dy_1 = np.empty((m - 1, n, n), dtype=dtype)
    dPhi_dy_1[:] = np.identity(n)
    dPhi_dy_1 -= h / 6 * (df_dy[1:] + 2 * df_dy_middle)
    T = stacked_matmul(df_dy_middle, df_dy[1:])
    dPhi_dy_1 += h**2 / 12 * T

    values = np.hstack((dPhi_dy_0.ravel(), dPhi_dy_1.ravel(), dbc_dya.ravel(),
                        dbc_dyb.ravel()))

    if k > 0:
        df_dp = np.transpose(df_dp, (2, 0, 1))
        df_dp_middle = np.transpose(df_dp_middle, (2, 0, 1))
        T = stacked_matmul(df_dy_middle, df_dp[:-1] - df_dp[1:])
        df_dp_middle += 0.125 * h * T
        dPhi_dp = -h/6 * (df_dp[:-1] + df_dp[1:] + 4 * df_dp_middle)
        values = np.hstack((values, dPhi_dp.ravel(), dbc_dp.ravel()))

    J = coo_matrix((values, (i_jac, j_jac)))
    return csc_matrix(J)


def collocation_fun(fun, y, p, x, h):
    """Evaluate collocation residuals.

    This function lies in the core of the method. The solution is sought
    as a cubic C1 continuous spline with derivatives matching the ODE rhs
    at given nodes `x`. Collocation conditions are formed from the equality
    of the spline derivatives and rhs of the ODE system in the middle points
    between nodes.

    Such method is classified to Lobbato IIIA family in ODE literature.
    Refer to [1]_ for the formula and some discussion.

    Returns
    -------
    col_res : ndarray, shape (n, m - 1)
        Collocation residuals at the middle points of the mesh intervals.
    y_middle : ndarray, shape (n, m - 1)
        Values of the cubic spline evaluated at the middle points of the mesh
        intervals.
    f : ndarray, shape (n, m)
        RHS of the ODE system evaluated at the mesh nodes.
    f_middle : ndarray, shape (n, m - 1)
        RHS of the ODE system evaluated at the middle points of the mesh
        intervals (and using `y_middle`).

    References
    ----------
    .. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
           Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
           Number 3, pp. 299-316, 2001.
    """
    f = fun(x, y, p)
    y_middle = (0.5 * (y[:, 1:] + y[:, :-1]) -
                0.125 * h * (f[:, 1:] - f[:, :-1]))
    f_middle = fun(x[:-1] + 0.5 * h, y_middle, p)
    col_res = y[:, 1:] - y[:, :-1] - h / 6 * (f[:, :-1] + f[:, 1:] +
                                              4 * f_middle)

    return col_res, y_middle, f, f_middle


def prepare_sys(n, m, k, fun, bc, fun_jac, bc_jac, x, h):
    """Create the function and the Jacobian for the collocation system."""
    x_middle = x[:-1] + 0.5 * h
    i_jac, j_jac = compute_jac_indices(n, m, k)

    def col_fun(y, p):
        return collocation_fun(fun, y, p, x, h)

    def sys_jac(y, p, y_middle, f, f_middle, bc0):
        if fun_jac is None:
            df_dy, df_dp = estimate_fun_jac(fun, x, y, p, f)
            df_dy_middle, df_dp_middle = estimate_fun_jac(
                fun, x_middle, y_middle, p, f_middle)
        else:
            df_dy, df_dp = fun_jac(x, y, p)
            df_dy_middle, df_dp_middle = fun_jac(x_middle, y_middle, p)

        if bc_jac is None:
            dbc_dya, dbc_dyb, dbc_dp = estimate_bc_jac(bc, y[:, 0], y[:, -1],
                                                       p, bc0)
        else:
            dbc_dya, dbc_dyb, dbc_dp = bc_jac(y[:, 0], y[:, -1], p)

        return construct_global_jac(n, m, k, i_jac, j_jac, h, df_dy,
                                    df_dy_middle, df_dp, df_dp_middle, dbc_dya,
                                    dbc_dyb, dbc_dp)

    return col_fun, sys_jac


def solve_newton(n, m, h, col_fun, bc, jac, y, p, B, bvp_tol, bc_tol):
    """Solve the nonlinear collocation system by a Newton method.

    This is a simple Newton method with a backtracking line search. As
    advised in [1]_, an affine-invariant criterion function F = ||J^-1 r||^2
    is used, where J is the Jacobian matrix at the current iteration and r is
    the vector or collocation residuals (values of the system lhs).

    The method alters between full Newton iterations and the fixed-Jacobian
    iterations based

    There are other tricks proposed in [1]_, but they are not used as they
    don't seem to improve anything significantly, and even break the
    convergence on some test problems I tried.

    All important parameters of the algorithm are defined inside the function.

    Parameters
    ----------
    n : int
        Number of equations in the ODE system.
    m : int
        Number of nodes in the mesh.
    h : ndarray, shape (m-1,)
        Mesh intervals.
    col_fun : callable
        Function computing collocation residuals.
    bc : callable
        Function computing boundary condition residuals.
    jac : callable
        Function computing the Jacobian of the whole system (including
        collocation and boundary condition residuals). It is supposed to
        return csc_matrix.
    y : ndarray, shape (n, m)
        Initial guess for the function values at the mesh nodes.
    p : ndarray, shape (k,)
        Initial guess for the unknown parameters.
    B : ndarray with shape (n, n) or None
        Matrix to force the S y(a) = 0 condition for a problems with the
        singular term. If None, the singular term is assumed to be absent.
    bvp_tol : float
        Tolerance to which we want to solve a BVP.
    bc_tol : float
        Tolerance to which we want to satisfy the boundary conditions.

    Returns
    -------
    y : ndarray, shape (n, m)
        Final iterate for the function values at the mesh nodes.
    p : ndarray, shape (k,)
        Final iterate for the unknown parameters.
    singular : bool
        True, if the LU decomposition failed because Jacobian turned out
        to be singular.

    References
    ----------
    .. [1]  U. Ascher, R. Mattheij and R. Russell "Numerical Solution of
       Boundary Value Problems for Ordinary Differential Equations"
    """
    # We know that the solution residuals at the middle points of the mesh
    # are connected with collocation residuals  r_middle = 1.5 * col_res / h.
    # As our BVP solver tries to decrease relative residuals below a certain
    # tolerance, it seems reasonable to terminated Newton iterations by
    # comparison of r_middle / (1 + np.abs(f_middle)) with a certain threshold,
    # which we choose to be 1.5 orders lower than the BVP tolerance. We rewrite
    # the condition as col_res < tol_r * (1 + np.abs(f_middle)), then tol_r
    # should be computed as follows:
    tol_r = 2/3 * h * 5e-2 * bvp_tol

    # Maximum allowed number of Jacobian evaluation and factorization, in
    # other words, the maximum number of full Newton iterations. A small value
    # is recommended in the literature.
    max_njev = 4

    # Maximum number of iterations, considering that some of them can be
    # performed with the fixed Jacobian. In theory, such iterations are cheap,
    # but it's not that simple in Python.
    max_iter = 8

    # Minimum relative improvement of the criterion function to accept the
    # step (Armijo constant).
    sigma = 0.2

    # Step size decrease factor for backtracking.
    tau = 0.5

    # Maximum number of backtracking steps, the minimum step is then
    # tau ** n_trial.
    n_trial = 4

    col_res, y_middle, f, f_middle = col_fun(y, p)
    bc_res = bc(y[:, 0], y[:, -1], p)
    res = np.hstack((col_res.ravel(order='F'), bc_res))

    njev = 0
    singular = False
    recompute_jac = True
    for iteration in range(max_iter):
        if recompute_jac:
            J = jac(y, p, y_middle, f, f_middle, bc_res)
            njev += 1
            try:
                LU = splu(J)
            except RuntimeError:
                singular = True
                break

            step = LU.solve(res)
            cost = np.dot(step, step)

        y_step = step[:m * n].reshape((n, m), order='F')
        p_step = step[m * n:]

        alpha = 1
        for trial in range(n_trial + 1):
            y_new = y - alpha * y_step
            if B is not None:
                y_new[:, 0] = np.dot(B, y_new[:, 0])
            p_new = p - alpha * p_step

            col_res, y_middle, f, f_middle = col_fun(y_new, p_new)
            bc_res = bc(y_new[:, 0], y_new[:, -1], p_new)
            res = np.hstack((col_res.ravel(order='F'), bc_res))

            step_new = LU.solve(res)
            cost_new = np.dot(step_new, step_new)
            if cost_new < (1 - 2 * alpha * sigma) * cost:
                break

            if trial < n_trial:
                alpha *= tau

        y = y_new
        p = p_new

        if njev == max_njev:
            break

        if (np.all(np.abs(col_res) < tol_r * (1 + np.abs(f_middle))) and
                np.all(np.abs(bc_res) < bc_tol)):
            break

        # If the full step was taken, then we are going to continue with
        # the same Jacobian. This is the approach of BVP_SOLVER.
        if alpha == 1:
            step = step_new
            cost = cost_new
            recompute_jac = False
        else:
            recompute_jac = True

    return y, p, singular


def print_iteration_header():
    print(f"{'Iteration':^15}{'Max residual':^15}{'Max BC residual':^15}"
          f"{'Total nodes':^15}{'Nodes added':^15}")


def print_iteration_progress(iteration, residual, bc_residual, total_nodes,
                             nodes_added):
    print(f"{iteration:^15}{residual:^15.2e}{bc_residual:^15.2e}"
          f"{total_nodes:^15}{nodes_added:^15}")


class BVPResult(OptimizeResult):
    pass


TERMINATION_MESSAGES = {
    0: "The algorithm converged to the desired accuracy.",
    1: "The maximum number of mesh nodes is exceeded.",
    2: "A singular Jacobian encountered when solving the collocation system.",
    3: "The solver was unable to satisfy boundary conditions tolerance on iteration 10."
}


def estimate_rms_residuals(fun, sol, x, h, p, r_middle, f_middle):
    """Estimate rms values of collocation residuals using Lobatto quadrature.

    The residuals are defined as the difference between the derivatives of
    our solution and rhs of the ODE system. We use relative residuals, i.e.,
    normalized by 1 + np.abs(f). RMS values are computed as sqrt from the
    normalized integrals of the squared relative residuals over each interval.
    Integrals are estimated using 5-point Lobatto quadrature [1]_, we use the
    fact that residuals at the mesh nodes are identically zero.

    In [2] they don't normalize integrals by interval lengths, which gives
    a higher rate of convergence of the residuals by the factor of h**0.5.
    I chose to do such normalization for an ease of interpretation of return
    values as RMS estimates.

    Returns
    -------
    rms_res : ndarray, shape (m - 1,)
        Estimated rms values of the relative residuals over each interval.

    References
    ----------
    .. [1] http://mathworld.wolfram.com/LobattoQuadrature.html
    .. [2] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
       Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
       Number 3, pp. 299-316, 2001.
    """
    x_middle = x[:-1] + 0.5 * h
    s = 0.5 * h * (3/7)**0.5
    x1 = x_middle + s
    x2 = x_middle - s
    y1 = sol(x1)
    y2 = sol(x2)
    y1_prime = sol(x1, 1)
    y2_prime = sol(x2, 1)
    f1 = fun(x1, y1, p)
    f2 = fun(x2, y2, p)
    r1 = y1_prime - f1
    r2 = y2_prime - f2

    r_middle /= 1 + np.abs(f_middle)
    r1 /= 1 + np.abs(f1)
    r2 /= 1 + np.abs(f2)

    r1 = np.sum(np.real(r1 * np.conj(r1)), axis=0)
    r2 = np.sum(np.real(r2 * np.conj(r2)), axis=0)
    r_middle = np.sum(np.real(r_middle * np.conj(r_middle)), axis=0)

    return (0.5 * (32 / 45 * r_middle + 49 / 90 * (r1 + r2))) ** 0.5


def create_spline(y, yp, x, h):
    """Create a cubic spline given values and derivatives.

    Formulas for the coefficients are taken from interpolate.CubicSpline.

    Returns
    -------
    sol : PPoly
        Constructed spline as a PPoly instance.
    """
    from scipy.interpolate import PPoly

    n, m = y.shape
    c = np.empty((4, n, m - 1), dtype=y.dtype)
    slope = (y[:, 1:] - y[:, :-1]) / h
    t = (yp[:, :-1] + yp[:, 1:] - 2 * slope) / h
    c[0] = t / h
    c[1] = (slope - yp[:, :-1]) / h - t
    c[2] = yp[:, :-1]
    c[3] = y[:, :-1]
    c = np.moveaxis(c, 1, 0)

    return PPoly(c, x, extrapolate=True, axis=1)


def modify_mesh(x, insert_1, insert_2):
    """Insert nodes into a mesh.

    Nodes removal logic is not established, its impact on the solver is
    presumably negligible. So, only insertion is done in this function.

    Parameters
    ----------
    x : ndarray, shape (m,)
        Mesh nodes.
    insert_1 : ndarray
        Intervals to each insert 1 new node in the middle.
    insert_2 : ndarray
        Intervals to each insert 2 new nodes, such that divide an interval
        into 3 equal parts.

    Returns
    -------
    x_new : ndarray
        New mesh nodes.

    Notes
    -----
    `insert_1` and `insert_2` should not have common values.
    """
    # Because np.insert implementation apparently varies with a version of
    # NumPy, we use a simple and reliable approach with sorting.
    return np.sort(np.hstack((
        x,
        0.5 * (x[insert_1] + x[insert_1 + 1]),
        (2 * x[insert_2] + x[insert_2 + 1]) / 3,
        (x[insert_2] + 2 * x[insert_2 + 1]) / 3
    )))


def wrap_functions(fun, bc, fun_jac, bc_jac, k, a, S, D, dtype):
    """Wrap functions for unified usage in the solver."""
    if fun_jac is None:
        fun_jac_wrapped = None

    if bc_jac is None:
        bc_jac_wrapped = None

    if k == 0:
        def fun_p(x, y, _):
            return np.asarray(fun(x, y), dtype)

        def bc_wrapped(ya, yb, _):
            return np.asarray(bc(ya, yb), dtype)

        if fun_jac is not None:
            def fun_jac_p(x, y, _):
                return np.asarray(fun_jac(x, y), dtype), None

        if bc_jac is not None:
            def bc_jac_wrapped(ya, yb, _):
                dbc_dya, dbc_dyb = bc_jac(ya, yb)
                return (np.asarray(dbc_dya, dtype),
                        np.asarray(dbc_dyb, dtype), None)
    else:
        def fun_p(x, y, p):
            return np.asarray(fun(x, y, p), dtype)

        def bc_wrapped(x, y, p):
            return np.asarray(bc(x, y, p), dtype)

        if fun_jac is not None:
            def fun_jac_p(x, y, p):
                df_dy, df_dp = fun_jac(x, y, p)
                return np.asarray(df_dy, dtype), np.asarray(df_dp, dtype)

        if bc_jac is not None:
            def bc_jac_wrapped(ya, yb, p):
                dbc_dya, dbc_dyb, dbc_dp = bc_jac(ya, yb, p)
                return (np.asarray(dbc_dya, dtype), np.asarray(dbc_dyb, dtype),
                        np.asarray(dbc_dp, dtype))

    if S is None:
        fun_wrapped = fun_p
    else:
        def fun_wrapped(x, y, p):
            f = fun_p(x, y, p)
            if x[0] == a:
                f[:, 0] = np.dot(D, f[:, 0])
                f[:, 1:] += np.dot(S, y[:, 1:]) / (x[1:] - a)
            else:
                f += np.dot(S, y) / (x - a)
            return f

    if fun_jac is not None:
        if S is None:
            fun_jac_wrapped = fun_jac_p
        else:
            Sr = S[:, :, np.newaxis]

            def fun_jac_wrapped(x, y, p):
                df_dy, df_dp = fun_jac_p(x, y, p)
                if x[0] == a:
                    df_dy[:, :, 0] = np.dot(D, df_dy[:, :, 0])
                    df_dy[:, :, 1:] += Sr / (x[1:] - a)
                else:
                    df_dy += Sr / (x - a)

                return df_dy, df_dp

    return fun_wrapped, bc_wrapped, fun_jac_wrapped, bc_jac_wrapped


def solve_bvp(fun, bc, x, y, p=None, S=None, fun_jac=None, bc_jac=None,
              tol=1e-3, max_nodes=1000, verbose=0, bc_tol=None):
    """Solve a boundary value problem for a system of ODEs.

    This function numerically solves a first order system of ODEs subject to
    two-point boundary conditions::

        dy / dx = f(x, y, p) + S * y / (x - a), a <= x <= b
        bc(y(a), y(b), p) = 0

    Here x is a 1-D independent variable, y(x) is an n-D
    vector-valued function and p is a k-D vector of unknown
    parameters which is to be found along with y(x). For the problem to be
    determined, there must be n + k boundary conditions, i.e., bc must be an
    (n + k)-D function.

    The last singular term on the right-hand side of the system is optional.
    It is defined by an n-by-n matrix S, such that the solution must satisfy
    S y(a) = 0. This condition will be forced during iterations, so it must not
    contradict boundary conditions. See [2]_ for the explanation how this term
    is handled when solving BVPs numerically.

    Problems in a complex domain can be solved as well. In this case, y and p
    are considered to be complex, and f and bc are assumed to be complex-valued
    functions, but x stays real. Note that f and bc must be complex
    differentiable (satisfy Cauchy-Riemann equations [4]_), otherwise you
    should rewrite your problem for real and imaginary parts separately. To
    solve a problem in a complex domain, pass an initial guess for y with a
    complex data type (see below).

    Parameters
    ----------
    fun : callable
        Right-hand side of the system. The calling signature is ``fun(x, y)``,
        or ``fun(x, y, p)`` if parameters are present. All arguments are
        ndarray: ``x`` with shape (m,), ``y`` with shape (n, m), meaning that
        ``y[:, i]`` corresponds to ``x[i]``, and ``p`` with shape (k,). The
        return value must be an array with shape (n, m) and with the same
        layout as ``y``.
    bc : callable
        Function evaluating residuals of the boundary conditions. The calling
        signature is ``bc(ya, yb)``, or ``bc(ya, yb, p)`` if parameters are
        present. All arguments are ndarray: ``ya`` and ``yb`` with shape (n,),
        and ``p`` with shape (k,). The return value must be an array with
        shape (n + k,).
    x : array_like, shape (m,)
        Initial mesh. Must be a strictly increasing sequence of real numbers
        with ``x[0]=a`` and ``x[-1]=b``.
    y : array_like, shape (n, m)
        Initial guess for the function values at the mesh nodes, ith column
        corresponds to ``x[i]``. For problems in a complex domain pass `y`
        with a complex data type (even if the initial guess is purely real).
    p : array_like with shape (k,) or None, optional
        Initial guess for the unknown parameters. If None (default), it is
        assumed that the problem doesn't depend on any parameters.
    S : array_like with shape (n, n) or None
        Matrix defining the singular term. If None (default), the problem is
        solved without the singular term.
    fun_jac : callable or None, optional
        Function computing derivatives of f with respect to y and p. The
        calling signature is ``fun_jac(x, y)``, or ``fun_jac(x, y, p)`` if
        parameters are present. The return must contain 1 or 2 elements in the
        following order:

            * df_dy : array_like with shape (n, n, m), where an element
              (i, j, q) equals to d f_i(x_q, y_q, p) / d (y_q)_j.
            * df_dp : array_like with shape (n, k, m), where an element
              (i, j, q) equals to d f_i(x_q, y_q, p) / d p_j.

        Here q numbers nodes at which x and y are defined, whereas i and j
        number vector components. If the problem is solved without unknown
        parameters, df_dp should not be returned.

        If `fun_jac` is None (default), the derivatives will be estimated
        by the forward finite differences.
    bc_jac : callable or None, optional
        Function computing derivatives of bc with respect to ya, yb, and p.
        The calling signature is ``bc_jac(ya, yb)``, or ``bc_jac(ya, yb, p)``
        if parameters are present. The return must contain 2 or 3 elements in
        the following order:

            * dbc_dya : array_like with shape (n, n), where an element (i, j)
              equals to d bc_i(ya, yb, p) / d ya_j.
            * dbc_dyb : array_like with shape (n, n), where an element (i, j)
              equals to d bc_i(ya, yb, p) / d yb_j.
            * dbc_dp : array_like with shape (n, k), where an element (i, j)
              equals to d bc_i(ya, yb, p) / d p_j.

        If the problem is solved without unknown parameters, dbc_dp should not
        be returned.

        If `bc_jac` is None (default), the derivatives will be estimated by
        the forward finite differences.
    tol : float, optional
        Desired tolerance of the solution. If we define ``r = y' - f(x, y)``,
        where y is the found solution, then the solver tries to achieve on each
        mesh interval ``norm(r / (1 + abs(f)) < tol``, where ``norm`` is
        estimated in a root mean squared sense (using a numerical quadrature
        formula). Default is 1e-3.
    max_nodes : int, optional
        Maximum allowed number of the mesh nodes. If exceeded, the algorithm
        terminates. Default is 1000.
    verbose : {0, 1, 2}, optional
        Level of algorithm's verbosity:

            * 0 (default) : work silently.
            * 1 : display a termination report.
            * 2 : display progress during iterations.
    bc_tol : float, optional
        Desired absolute tolerance for the boundary condition residuals: `bc`
        value should satisfy ``abs(bc) < bc_tol`` component-wise.
        Equals to `tol` by default. Up to 10 iterations are allowed to achieve this
        tolerance.

    Returns
    -------
    Bunch object with the following fields defined:
    sol : PPoly
        Found solution for y as `scipy.interpolate.PPoly` instance, a C1
        continuous cubic spline.
    p : ndarray or None, shape (k,)
        Found parameters. None, if the parameters were not present in the
        problem.
    x : ndarray, shape (m,)
        Nodes of the final mesh.
    y : ndarray, shape (n, m)
        Solution values at the mesh nodes.
    yp : ndarray, shape (n, m)
        Solution derivatives at the mesh nodes.
    rms_residuals : ndarray, shape (m - 1,)
        RMS values of the relative residuals over each mesh interval (see the
        description of `tol` parameter).
    niter : int
        Number of completed iterations.
    status : int
        Reason for algorithm termination:

            * 0: The algorithm converged to the desired accuracy.
            * 1: The maximum number of mesh nodes is exceeded.
            * 2: A singular Jacobian encountered when solving the collocation
              system.

    message : string
        Verbal description of the termination reason.
    success : bool
        True if the algorithm converged to the desired accuracy (``status=0``).

    Notes
    -----
    This function implements a 4th order collocation algorithm with the
    control of residuals similar to [1]_. A collocation system is solved
    by a damped Newton method with an affine-invariant criterion function as
    described in [3]_.

    Note that in [1]_  integral residuals are defined without normalization
    by interval lengths. So, their definition is different by a multiplier of
    h**0.5 (h is an interval length) from the definition used here.

    .. versionadded:: 0.18.0

    References
    ----------
    .. [1] J. Kierzenka, L. F. Shampine, "A BVP Solver Based on Residual
           Control and the Maltab PSE", ACM Trans. Math. Softw., Vol. 27,
           Number 3, pp. 299-316, 2001.
    .. [2] L.F. Shampine, P. H. Muir and H. Xu, "A User-Friendly Fortran BVP
           Solver".
    .. [3] U. Ascher, R. Mattheij and R. Russell "Numerical Solution of
           Boundary Value Problems for Ordinary Differential Equations".
    .. [4] `Cauchy-Riemann equations
            <https://en.wikipedia.org/wiki/Cauchy-Riemann_equations>`_ on
            Wikipedia.

    Examples
    --------
    In the first example, we solve Bratu's problem::

        y'' + k * exp(y) = 0
        y(0) = y(1) = 0

    for k = 1.

    We rewrite the equation as a first-order system and implement its
    right-hand side evaluation::

        y1' = y2
        y2' = -exp(y1)

    >>> import numpy as np
    >>> def fun(x, y):
    ...     return np.vstack((y[1], -np.exp(y[0])))

    Implement evaluation of the boundary condition residuals:

    >>> def bc(ya, yb):
    ...     return np.array([ya[0], yb[0]])

    Define the initial mesh with 5 nodes:

    >>> x = np.linspace(0, 1, 5)

    This problem is known to have two solutions. To obtain both of them, we
    use two different initial guesses for y. We denote them by subscripts
    a and b.

    >>> y_a = np.zeros((2, x.size))
    >>> y_b = np.zeros((2, x.size))
    >>> y_b[0] = 3

    Now we are ready to run the solver.

    >>> from scipy.integrate import solve_bvp
    >>> res_a = solve_bvp(fun, bc, x, y_a)
    >>> res_b = solve_bvp(fun, bc, x, y_b)

    Let's plot the two found solutions. We take an advantage of having the
    solution in a spline form to produce a smooth plot.

    >>> x_plot = np.linspace(0, 1, 100)
    >>> y_plot_a = res_a.sol(x_plot)[0]
    >>> y_plot_b = res_b.sol(x_plot)[0]
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x_plot, y_plot_a, label='y_a')
    >>> plt.plot(x_plot, y_plot_b, label='y_b')
    >>> plt.legend()
    >>> plt.xlabel("x")
    >>> plt.ylabel("y")
    >>> plt.show()

    We see that the two solutions have similar shape, but differ in scale
    significantly.

    In the second example, we solve a simple Sturm-Liouville problem::

        y'' + k**2 * y = 0
        y(0) = y(1) = 0

    It is known that a non-trivial solution y = A * sin(k * x) is possible for
    k = pi * n, where n is an integer. To establish the normalization constant
    A = 1 we add a boundary condition::

        y'(0) = k

    Again, we rewrite our equation as a first-order system and implement its
    right-hand side evaluation::

        y1' = y2
        y2' = -k**2 * y1

    >>> def fun(x, y, p):
    ...     k = p[0]
    ...     return np.vstack((y[1], -k**2 * y[0]))

    Note that parameters p are passed as a vector (with one element in our
    case).

    Implement the boundary conditions:

    >>> def bc(ya, yb, p):
    ...     k = p[0]
    ...     return np.array([ya[0], yb[0], ya[1] - k])

    Set up the initial mesh and guess for y. We aim to find the solution for
    k = 2 * pi, to achieve that we set values of y to approximately follow
    sin(2 * pi * x):

    >>> x = np.linspace(0, 1, 5)
    >>> y = np.zeros((2, x.size))
    >>> y[0, 1] = 1
    >>> y[0, 3] = -1

    Run the solver with 6 as an initial guess for k.

    >>> sol = solve_bvp(fun, bc, x, y, p=[6])

    We see that the found k is approximately correct:

    >>> sol.p[0]
    6.28329460046

    And, finally, plot the solution to see the anticipated sinusoid:

    >>> x_plot = np.linspace(0, 1, 100)
    >>> y_plot = sol.sol(x_plot)[0]
    >>> plt.plot(x_plot, y_plot)
    >>> plt.xlabel("x")
    >>> plt.ylabel("y")
    >>> plt.show()
    """
    x = np.asarray(x, dtype=float)
    if x.ndim != 1:
        raise ValueError("`x` must be 1 dimensional.")
    h = np.diff(x)
    if np.any(h <= 0):
        raise ValueError("`x` must be strictly increasing.")
    a = x[0]

    y = np.asarray(y)
    if np.issubdtype(y.dtype, np.complexfloating):
        dtype = complex
    else:
        dtype = float
    y = y.astype(dtype, copy=False)

    if y.ndim != 2:
        raise ValueError("`y` must be 2 dimensional.")
    if y.shape[1] != x.shape[0]:
        raise ValueError(f"`y` is expected to have {x.shape[0]} columns, but actually "
                         f"has {y.shape[1]}.")

    if p is None:
        p = np.array([])
    else:
        p = np.asarray(p, dtype=dtype)
    if p.ndim != 1:
        raise ValueError("`p` must be 1 dimensional.")

    if tol < 100 * EPS:
        warn(f"`tol` is too low, setting to {100 * EPS:.2e}", stacklevel=2)
        tol = 100 * EPS

    if verbose not in [0, 1, 2]:
        raise ValueError("`verbose` must be in [0, 1, 2].")

    n = y.shape[0]
    k = p.shape[0]

    if S is not None:
        S = np.asarray(S, dtype=dtype)
        if S.shape != (n, n):
            raise ValueError(f"`S` is expected to have shape {(n, n)}, "
                             f"but actually has {S.shape}")

        # Compute I - S^+ S to impose necessary boundary conditions.
        B = np.identity(n) - np.dot(pinv(S), S)

        y[:, 0] = np.dot(B, y[:, 0])

        # Compute (I - S)^+ to correct derivatives at x=a.
        D = pinv(np.identity(n) - S)
    else:
        B = None
        D = None

    if bc_tol is None:
        bc_tol = tol

    # Maximum number of iterations
    max_iteration = 10

    fun_wrapped, bc_wrapped, fun_jac_wrapped, bc_jac_wrapped = wrap_functions(
        fun, bc, fun_jac, bc_jac, k, a, S, D, dtype)

    f = fun_wrapped(x, y, p)
    if f.shape != y.shape:
        raise ValueError(f"`fun` return is expected to have shape {y.shape}, "
                         f"but actually has {f.shape}.")

    bc_res = bc_wrapped(y[:, 0], y[:, -1], p)
    if bc_res.shape != (n + k,):
        raise ValueError(f"`bc` return is expected to have shape {(n + k,)}, "
                         f"but actually has {bc_res.shape}.")

    status = 0
    iteration = 0
    if verbose == 2:
        print_iteration_header()

    while True:
        m = x.shape[0]

        col_fun, jac_sys = prepare_sys(n, m, k, fun_wrapped, bc_wrapped,
                                       fun_jac_wrapped, bc_jac_wrapped, x, h)
        y, p, singular = solve_newton(n, m, h, col_fun, bc_wrapped, jac_sys,
                                      y, p, B, tol, bc_tol)
        iteration += 1

        col_res, y_middle, f, f_middle = collocation_fun(fun_wrapped, y,
                                                         p, x, h)
        bc_res = bc_wrapped(y[:, 0], y[:, -1], p)
        max_bc_res = np.max(abs(bc_res))

        # This relation is not trivial, but can be verified.
        r_middle = 1.5 * col_res / h
        sol = create_spline(y, f, x, h)
        rms_res = estimate_rms_residuals(fun_wrapped, sol, x, h, p,
                                         r_middle, f_middle)
        max_rms_res = np.max(rms_res)

        if singular:
            status = 2
            break

        insert_1, = np.nonzero((rms_res > tol) & (rms_res < 100 * tol))
        insert_2, = np.nonzero(rms_res >= 100 * tol)
        nodes_added = insert_1.shape[0] + 2 * insert_2.shape[0]

        if m + nodes_added > max_nodes:
            status = 1
            if verbose == 2:
                nodes_added = f"({nodes_added})"
                print_iteration_progress(iteration, max_rms_res, max_bc_res,
                                         m, nodes_added)
            break

        if verbose == 2:
            print_iteration_progress(iteration, max_rms_res, max_bc_res, m,
                                     nodes_added)

        if nodes_added > 0:
            x = modify_mesh(x, insert_1, insert_2)
            h = np.diff(x)
            y = sol(x)
        elif max_bc_res <= bc_tol:
            status = 0
            break
        elif iteration >= max_iteration:
            status = 3
            break

    if verbose > 0:
        if status == 0:
            print(f"Solved in {iteration} iterations, number of nodes {x.shape[0]}. \n"
                  f"Maximum relative residual: {max_rms_res:.2e} \n"
                  f"Maximum boundary residual: {max_bc_res:.2e}")
        elif status == 1:
            print(f"Number of nodes is exceeded after iteration {iteration}. \n"
                  f"Maximum relative residual: {max_rms_res:.2e} \n"
                  f"Maximum boundary residual: {max_bc_res:.2e}")
        elif status == 2:
            print("Singular Jacobian encountered when solving the collocation "
                  f"system on iteration {iteration}. \n"
                  f"Maximum relative residual: {max_rms_res:.2e} \n"
                  f"Maximum boundary residual: {max_bc_res:.2e}")
        elif status == 3:
            print("The solver was unable to satisfy boundary conditions "
                  f"tolerance on iteration {iteration}. \n"
                  f"Maximum relative residual: {max_rms_res:.2e} \n"
                  f"Maximum boundary residual: {max_bc_res:.2e}")

    if p.size == 0:
        p = None

    return BVPResult(sol=sol, p=p, x=x, y=y, yp=f, rms_residuals=rms_res,
                     niter=iteration, status=status,
                     message=TERMINATION_MESSAGES[status], success=status == 0)