File size: 7,362 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import warnings
import math
import numpy as np
import pytest
from scipy.fft._fftlog import fht, ifht, fhtoffset
from scipy.special import poch
from scipy.conftest import array_api_compatible
from scipy._lib._array_api import xp_assert_close, xp_assert_less, array_namespace
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends"),]
skip_xp_backends = pytest.mark.skip_xp_backends
def test_fht_agrees_with_fftlog(xp):
# check that fht numerically agrees with the output from Fortran FFTLog,
# the results were generated with the provided `fftlogtest` program,
# after fixing how the k array is generated (divide range by n-1, not n)
# test function, analytical Hankel transform is of the same form
def f(r, mu):
return r**(mu+1)*np.exp(-r**2/2)
r = np.logspace(-4, 4, 16)
dln = np.log(r[1]/r[0])
mu = 0.3
offset = 0.0
bias = 0.0
a = xp.asarray(f(r, mu))
# test 1: compute as given
ours = fht(a, dln, mu, offset=offset, bias=bias)
theirs = [-0.1159922613593045E-02, +0.1625822618458832E-02,
-0.1949518286432330E-02, +0.3789220182554077E-02,
+0.5093959119952945E-03, +0.2785387803618774E-01,
+0.9944952700848897E-01, +0.4599202164586588E+00,
+0.3157462160881342E+00, -0.8201236844404755E-03,
-0.7834031308271878E-03, +0.3931444945110708E-03,
-0.2697710625194777E-03, +0.3568398050238820E-03,
-0.5554454827797206E-03, +0.8286331026468585E-03]
theirs = xp.asarray(theirs, dtype=xp.float64)
xp_assert_close(ours, theirs)
# test 2: change to optimal offset
offset = fhtoffset(dln, mu, bias=bias)
ours = fht(a, dln, mu, offset=offset, bias=bias)
theirs = [+0.4353768523152057E-04, -0.9197045663594285E-05,
+0.3150140927838524E-03, +0.9149121960963704E-03,
+0.5808089753959363E-02, +0.2548065256377240E-01,
+0.1339477692089897E+00, +0.4821530509479356E+00,
+0.2659899781579785E+00, -0.1116475278448113E-01,
+0.1791441617592385E-02, -0.4181810476548056E-03,
+0.1314963536765343E-03, -0.5422057743066297E-04,
+0.3208681804170443E-04, -0.2696849476008234E-04]
theirs = xp.asarray(theirs, dtype=xp.float64)
xp_assert_close(ours, theirs)
# test 3: positive bias
bias = 0.8
offset = fhtoffset(dln, mu, bias=bias)
ours = fht(a, dln, mu, offset=offset, bias=bias)
theirs = [-7.3436673558316850E+00, +0.1710271207817100E+00,
+0.1065374386206564E+00, -0.5121739602708132E-01,
+0.2636649319269470E-01, +0.1697209218849693E-01,
+0.1250215614723183E+00, +0.4739583261486729E+00,
+0.2841149874912028E+00, -0.8312764741645729E-02,
+0.1024233505508988E-02, -0.1644902767389120E-03,
+0.3305775476926270E-04, -0.7786993194882709E-05,
+0.1962258449520547E-05, -0.8977895734909250E-06]
theirs = xp.asarray(theirs, dtype=xp.float64)
xp_assert_close(ours, theirs)
# test 4: negative bias
bias = -0.8
offset = fhtoffset(dln, mu, bias=bias)
ours = fht(a, dln, mu, offset=offset, bias=bias)
theirs = [+0.8985777068568745E-05, +0.4074898209936099E-04,
+0.2123969254700955E-03, +0.1009558244834628E-02,
+0.5131386375222176E-02, +0.2461678673516286E-01,
+0.1235812845384476E+00, +0.4719570096404403E+00,
+0.2893487490631317E+00, -0.1686570611318716E-01,
+0.2231398155172505E-01, -0.1480742256379873E-01,
+0.1692387813500801E+00, +0.3097490354365797E+00,
+2.7593607182401860E+00, 10.5251075070045800E+00]
theirs = xp.asarray(theirs, dtype=xp.float64)
xp_assert_close(ours, theirs)
@pytest.mark.parametrize('optimal', [True, False])
@pytest.mark.parametrize('offset', [0.0, 1.0, -1.0])
@pytest.mark.parametrize('bias', [0, 0.1, -0.1])
@pytest.mark.parametrize('n', [64, 63])
def test_fht_identity(n, bias, offset, optimal, xp):
rng = np.random.RandomState(3491349965)
a = xp.asarray(rng.standard_normal(n))
dln = rng.uniform(-1, 1)
mu = rng.uniform(-2, 2)
if optimal:
offset = fhtoffset(dln, mu, initial=offset, bias=bias)
A = fht(a, dln, mu, offset=offset, bias=bias)
a_ = ifht(A, dln, mu, offset=offset, bias=bias)
xp_assert_close(a_, a, rtol=1.5e-7)
@pytest.mark.thread_unsafe
def test_fht_special_cases(xp):
rng = np.random.RandomState(3491349965)
a = xp.asarray(rng.standard_normal(64))
dln = rng.uniform(-1, 1)
# let x = (mu+1+q)/2, y = (mu+1-q)/2, M = {0, -1, -2, ...}
# case 1: x in M, y in M => well-defined transform
mu, bias = -4.0, 1.0
with warnings.catch_warnings(record=True) as record:
fht(a, dln, mu, bias=bias)
assert not record, 'fht warned about a well-defined transform'
# case 2: x not in M, y in M => well-defined transform
mu, bias = -2.5, 0.5
with warnings.catch_warnings(record=True) as record:
fht(a, dln, mu, bias=bias)
assert not record, 'fht warned about a well-defined transform'
# with fht_lock:
# case 3: x in M, y not in M => singular transform
mu, bias = -3.5, 0.5
with pytest.warns(Warning) as record:
fht(a, dln, mu, bias=bias)
assert record, 'fht did not warn about a singular transform'
# with fht_lock:
# case 4: x not in M, y in M => singular inverse transform
mu, bias = -2.5, 0.5
with pytest.warns(Warning) as record:
ifht(a, dln, mu, bias=bias)
assert record, 'ifht did not warn about a singular transform'
@pytest.mark.parametrize('n', [64, 63])
def test_fht_exact(n, xp):
rng = np.random.RandomState(3491349965)
# for a(r) a power law r^\gamma, the fast Hankel transform produces the
# exact continuous Hankel transform if biased with q = \gamma
mu = rng.uniform(0, 3)
# convergence of HT: -1-mu < gamma < 1/2
gamma = rng.uniform(-1-mu, 1/2)
r = np.logspace(-2, 2, n)
a = xp.asarray(r**gamma)
dln = np.log(r[1]/r[0])
offset = fhtoffset(dln, mu, initial=0.0, bias=gamma)
A = fht(a, dln, mu, offset=offset, bias=gamma)
k = np.exp(offset)/r[::-1]
# analytical result
At = xp.asarray((2/k)**gamma * poch((mu+1-gamma)/2, gamma))
xp_assert_close(A, At)
@skip_xp_backends(np_only=True,
reason='array-likes only supported for NumPy backend')
@pytest.mark.parametrize("op", [fht, ifht])
def test_array_like(xp, op):
x = [[[1.0, 1.0], [1.0, 1.0]],
[[1.0, 1.0], [1.0, 1.0]],
[[1.0, 1.0], [1.0, 1.0]]]
xp_assert_close(op(x, 1.0, 2.0), op(xp.asarray(x), 1.0, 2.0))
@pytest.mark.parametrize('n', [128, 129])
def test_gh_21661(xp, n):
one = xp.asarray(1.0)
xp_test = array_namespace(one)
mu = 0.0
r = np.logspace(-7, 1, n)
dln = math.log(r[1] / r[0])
offset = fhtoffset(dln, initial=-6 * np.log(10), mu=mu)
r = xp.asarray(r, dtype=one.dtype)
k = math.exp(offset) / xp_test.flip(r, axis=-1)
def f(x, mu):
return x**(mu + 1)*xp.exp(-x**2/2)
a_r = f(r, mu)
fht_val = fht(a_r, dln, mu=mu, offset=offset)
a_k = f(k, mu)
rel_err = xp.max(xp.abs((fht_val - a_k) / a_k))
xp_assert_less(rel_err, xp.asarray(7.28e+16)[()])
|