File size: 52,109 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 |
#
# Author: Damian Eads
# Date: April 17, 2008
#
# Copyright (C) 2008 Damian Eads
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from numpy.testing import (assert_allclose, assert_equal, assert_array_equal, assert_,
assert_warns)
import pytest
from pytest import raises as assert_raises
import scipy.cluster.hierarchy
from scipy.cluster.hierarchy import (
ClusterWarning, linkage, from_mlab_linkage, to_mlab_linkage,
num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster,
is_isomorphic, single, leaders,
correspond, is_monotonic, maxdists, maxinconsts, maxRstat,
is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram,
set_link_color_palette, cut_tree, optimal_leaf_ordering,
_order_cluster_tree, _hierarchy, _LINKAGE_METHODS)
from scipy.spatial.distance import pdist
from scipy.cluster._hierarchy import Heap
from scipy.conftest import array_api_compatible
from scipy._lib._array_api import xp_assert_close, xp_assert_equal
from threading import Lock
from . import hierarchy_test_data
# Matplotlib is not a scipy dependency but is optionally used in dendrogram, so
# check if it's available
try:
import matplotlib
# and set the backend to be Agg (no gui)
matplotlib.use('Agg')
# before importing pyplot
import matplotlib.pyplot as plt
have_matplotlib = True
except Exception:
have_matplotlib = False
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends")]
skip_xp_backends = pytest.mark.skip_xp_backends
class TestLinkage:
@skip_xp_backends(cpu_only=True)
def test_linkage_non_finite_elements_in_distance_matrix(self, xp):
# Tests linkage(Y) where Y contains a non-finite element (e.g. NaN or Inf).
# Exception expected.
y = xp.asarray([xp.nan] + [0.0]*5)
assert_raises(ValueError, linkage, y)
@skip_xp_backends(cpu_only=True)
def test_linkage_empty_distance_matrix(self, xp):
# Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected.
y = xp.zeros((0,))
assert_raises(ValueError, linkage, y)
@skip_xp_backends(cpu_only=True)
def test_linkage_tdist(self, xp):
for method in ['single', 'complete', 'average', 'weighted']:
self.check_linkage_tdist(method, xp)
def check_linkage_tdist(self, method, xp):
# Tests linkage(Y, method) on the tdist data set.
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), method)
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method)
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
@skip_xp_backends(cpu_only=True)
def test_linkage_X(self, xp):
for method in ['centroid', 'median', 'ward']:
self.check_linkage_q(method, xp)
def check_linkage_q(self, method, xp):
# Tests linkage(Y, method) on the Q data set.
Z = linkage(xp.asarray(hierarchy_test_data.X), method)
expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method)
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
y = scipy.spatial.distance.pdist(hierarchy_test_data.X,
metric="euclidean")
Z = linkage(xp.asarray(y), method)
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
@skip_xp_backends(cpu_only=True)
def test_compare_with_trivial(self, xp):
rng = np.random.RandomState(0)
n = 20
X = rng.rand(n, 2)
d = pdist(X)
for method, code in _LINKAGE_METHODS.items():
Z_trivial = _hierarchy.linkage(d, n, code)
Z = linkage(xp.asarray(d), method)
xp_assert_close(Z, xp.asarray(Z_trivial), rtol=1e-14, atol=1e-15)
@skip_xp_backends(cpu_only=True)
def test_optimal_leaf_ordering(self, xp):
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), optimal_ordering=True)
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_single_olo')
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
@skip_xp_backends(cpu_only=True)
class TestLinkageTies:
_expectations = {
'single': np.array([[0, 1, 1.41421356, 2],
[2, 3, 1.41421356, 3]]),
'complete': np.array([[0, 1, 1.41421356, 2],
[2, 3, 2.82842712, 3]]),
'average': np.array([[0, 1, 1.41421356, 2],
[2, 3, 2.12132034, 3]]),
'weighted': np.array([[0, 1, 1.41421356, 2],
[2, 3, 2.12132034, 3]]),
'centroid': np.array([[0, 1, 1.41421356, 2],
[2, 3, 2.12132034, 3]]),
'median': np.array([[0, 1, 1.41421356, 2],
[2, 3, 2.12132034, 3]]),
'ward': np.array([[0, 1, 1.41421356, 2],
[2, 3, 2.44948974, 3]]),
}
def test_linkage_ties(self, xp):
for method in ['single', 'complete', 'average', 'weighted',
'centroid', 'median', 'ward']:
self.check_linkage_ties(method, xp)
def check_linkage_ties(self, method, xp):
X = xp.asarray([[-1, -1], [0, 0], [1, 1]])
Z = linkage(X, method=method)
expectedZ = self._expectations[method]
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
@skip_xp_backends(cpu_only=True)
class TestInconsistent:
def test_inconsistent_tdist(self, xp):
for depth in hierarchy_test_data.inconsistent_ytdist:
self.check_inconsistent_tdist(depth, xp)
def check_inconsistent_tdist(self, depth, xp):
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
xp_assert_close(inconsistent(Z, depth),
xp.asarray(hierarchy_test_data.inconsistent_ytdist[depth]))
@skip_xp_backends(cpu_only=True)
class TestCopheneticDistance:
def test_linkage_cophenet_tdist_Z(self, xp):
# Tests cophenet(Z) on tdist data set.
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
295, 138, 219, 295, 295])
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
M = cophenet(Z)
xp_assert_close(M, xp.asarray(expectedM, dtype=xp.float64), atol=1e-10)
def test_linkage_cophenet_tdist_Z_Y(self, xp):
# Tests cophenet(Z, Y) on tdist data set.
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single)
(c, M) = cophenet(Z, xp.asarray(hierarchy_test_data.ytdist))
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295,
295, 138, 219, 295, 295], dtype=xp.float64)
expectedc = xp.asarray(0.639931296433393415057366837573, dtype=xp.float64)[()]
xp_assert_close(c, expectedc, atol=1e-10)
xp_assert_close(M, expectedM, atol=1e-10)
def test_gh_22183(self, xp):
# check for lack of segfault
# (out of bounds memory access)
# and correct interception of
# invalid linkage matrix
arr=[[0.0, 1.0, 1.0, 2.0],
[2.0, 12.0, 1.0, 3.0],
[3.0, 4.0, 1.0, 2.0],
[5.0, 14.0, 1.0, 3.0],
[6.0, 7.0, 1.0, 2.0],
[8.0, 16.0, 1.0, 3.0],
[9.0, 10.0, 1.0, 2.0],
[11.0, 18.0, 1.0, 3.0],
[13.0, 15.0, 2.0, 6.0],
[17.0, 20.0, 2.0, 32.0],
[19.0, 21.0, 2.0, 12.0]]
with pytest.raises(ValueError, match="excessive observations"):
cophenet(xp.asarray(arr))
class TestMLabLinkageConversion:
def test_mlab_linkage_conversion_empty(self, xp):
# Tests from/to_mlab_linkage on empty linkage array.
X = xp.asarray([], dtype=xp.float64)
xp_assert_equal(from_mlab_linkage(X), X)
xp_assert_equal(to_mlab_linkage(X), X)
@skip_xp_backends(cpu_only=True)
def test_mlab_linkage_conversion_single_row(self, xp):
# Tests from/to_mlab_linkage on linkage array with single row.
Z = xp.asarray([[0., 1., 3., 2.]])
Zm = xp.asarray([[1, 2, 3]])
xp_assert_close(from_mlab_linkage(Zm), xp.asarray(Z, dtype=xp.float64),
rtol=1e-15)
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64),
rtol=1e-15)
@skip_xp_backends(cpu_only=True)
def test_mlab_linkage_conversion_multiple_rows(self, xp):
# Tests from/to_mlab_linkage on linkage array with multiple rows.
Zm = xp.asarray([[3, 6, 138], [4, 5, 219],
[1, 8, 255], [2, 9, 268], [7, 10, 295]])
Z = xp.asarray([[2., 5., 138., 2.],
[3., 4., 219., 2.],
[0., 7., 255., 3.],
[1., 8., 268., 4.],
[6., 9., 295., 6.]],
dtype=xp.float64)
xp_assert_close(from_mlab_linkage(Zm), Z, rtol=1e-15)
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64),
rtol=1e-15)
@skip_xp_backends(cpu_only=True)
class TestFcluster:
def test_fclusterdata(self, xp):
for t in hierarchy_test_data.fcluster_inconsistent:
self.check_fclusterdata(t, 'inconsistent', xp)
for t in hierarchy_test_data.fcluster_distance:
self.check_fclusterdata(t, 'distance', xp)
for t in hierarchy_test_data.fcluster_maxclust:
self.check_fclusterdata(t, 'maxclust', xp)
def check_fclusterdata(self, t, criterion, xp):
# Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t])
X = xp.asarray(hierarchy_test_data.Q_X)
T = fclusterdata(X, criterion=criterion, t=t)
assert_(is_isomorphic(T, expectedT))
def test_fcluster(self, xp):
for t in hierarchy_test_data.fcluster_inconsistent:
self.check_fcluster(t, 'inconsistent', xp)
for t in hierarchy_test_data.fcluster_distance:
self.check_fcluster(t, 'distance', xp)
for t in hierarchy_test_data.fcluster_maxclust:
self.check_fcluster(t, 'maxclust', xp)
def check_fcluster(self, t, criterion, xp):
# Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set.
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t])
Z = single(xp.asarray(hierarchy_test_data.Q_X))
T = fcluster(Z, criterion=criterion, t=t)
assert_(is_isomorphic(T, expectedT))
def test_fcluster_monocrit(self, xp):
for t in hierarchy_test_data.fcluster_distance:
self.check_fcluster_monocrit(t, xp)
for t in hierarchy_test_data.fcluster_maxclust:
self.check_fcluster_maxclust_monocrit(t, xp)
def check_fcluster_monocrit(self, t, xp):
expectedT = xp.asarray(hierarchy_test_data.fcluster_distance[t])
Z = single(xp.asarray(hierarchy_test_data.Q_X))
T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z))
assert_(is_isomorphic(T, expectedT))
def check_fcluster_maxclust_monocrit(self, t, xp):
expectedT = xp.asarray(hierarchy_test_data.fcluster_maxclust[t])
Z = single(xp.asarray(hierarchy_test_data.Q_X))
T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z))
assert_(is_isomorphic(T, expectedT))
def test_fcluster_maxclust_gh_12651(self, xp):
y = xp.asarray([[1], [4], [5]])
Z = single(y)
assert_array_equal(fcluster(Z, t=1, criterion="maxclust"),
xp.asarray([1, 1, 1]))
assert_array_equal(fcluster(Z, t=2, criterion="maxclust"),
xp.asarray([2, 1, 1]))
assert_array_equal(fcluster(Z, t=3, criterion="maxclust"),
xp.asarray([1, 2, 3]))
assert_array_equal(fcluster(Z, t=5, criterion="maxclust"),
xp.asarray([1, 2, 3]))
@skip_xp_backends(cpu_only=True)
class TestLeaders:
def test_leaders_single(self, xp):
# Tests leaders using a flat clustering generated by single linkage.
X = hierarchy_test_data.Q_X
Y = pdist(X)
Y = xp.asarray(Y)
Z = linkage(Y)
T = fcluster(Z, criterion='maxclust', t=3)
Lright = (xp.asarray([53, 55, 56]), xp.asarray([2, 3, 1]))
T = xp.asarray(T, dtype=xp.int32)
L = leaders(Z, T)
assert_allclose(np.concatenate(L), np.concatenate(Lright), rtol=1e-15)
@skip_xp_backends(np_only=True,
reason='`is_isomorphic` only supports NumPy backend')
class TestIsIsomorphic:
@skip_xp_backends(np_only=True,
reason='array-likes only supported for NumPy backend')
def test_array_like(self, xp):
assert is_isomorphic([1, 1, 1], [2, 2, 2])
assert is_isomorphic([], [])
def test_is_isomorphic_1(self, xp):
# Tests is_isomorphic on test case #1 (one flat cluster, different labellings)
a = xp.asarray([1, 1, 1])
b = xp.asarray([2, 2, 2])
assert is_isomorphic(a, b)
assert is_isomorphic(b, a)
def test_is_isomorphic_2(self, xp):
# Tests is_isomorphic on test case #2 (two flat clusters, different labelings)
a = xp.asarray([1, 7, 1])
b = xp.asarray([2, 3, 2])
assert is_isomorphic(a, b)
assert is_isomorphic(b, a)
def test_is_isomorphic_3(self, xp):
# Tests is_isomorphic on test case #3 (no flat clusters)
a = xp.asarray([])
b = xp.asarray([])
assert is_isomorphic(a, b)
def test_is_isomorphic_4A(self, xp):
# Tests is_isomorphic on test case #4A
# (3 flat clusters, different labelings, isomorphic)
a = xp.asarray([1, 2, 3])
b = xp.asarray([1, 3, 2])
assert is_isomorphic(a, b)
assert is_isomorphic(b, a)
def test_is_isomorphic_4B(self, xp):
# Tests is_isomorphic on test case #4B
# (3 flat clusters, different labelings, nonisomorphic)
a = xp.asarray([1, 2, 3, 3])
b = xp.asarray([1, 3, 2, 3])
assert is_isomorphic(a, b) is False
assert is_isomorphic(b, a) is False
def test_is_isomorphic_4C(self, xp):
# Tests is_isomorphic on test case #4C
# (3 flat clusters, different labelings, isomorphic)
a = xp.asarray([7, 2, 3])
b = xp.asarray([6, 3, 2])
assert is_isomorphic(a, b)
assert is_isomorphic(b, a)
def test_is_isomorphic_5(self, xp):
# Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random
# clusters, random permutation of the labeling).
for nc in [2, 3, 5]:
self.help_is_isomorphic_randperm(1000, nc, xp=xp)
def test_is_isomorphic_6(self, xp):
# Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random
# clusters, random permutation of the labeling, slightly
# nonisomorphic.)
for nc in [2, 3, 5]:
self.help_is_isomorphic_randperm(1000, nc, True, 5, xp=xp)
def test_is_isomorphic_7(self, xp):
# Regression test for gh-6271
a = xp.asarray([1, 2, 3])
b = xp.asarray([1, 1, 1])
assert not is_isomorphic(a, b)
def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0,
*, xp):
for k in range(3):
a = (np.random.rand(nobs) * nclusters).astype(int)
b = np.zeros(a.size, dtype=int)
P = np.random.permutation(nclusters)
for i in range(0, a.shape[0]):
b[i] = P[a[i]]
if noniso:
Q = np.random.permutation(nobs)
b[Q[0:nerrors]] += 1
b[Q[0:nerrors]] %= nclusters
a = xp.asarray(a)
b = xp.asarray(b)
assert is_isomorphic(a, b) == (not noniso)
assert is_isomorphic(b, a) == (not noniso)
@skip_xp_backends(cpu_only=True)
class TestIsValidLinkage:
def test_is_valid_linkage_various_size(self, xp):
for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
(1, 4, True), (2, 4, True)]:
self.check_is_valid_linkage_various_size(nrow, ncol, valid, xp)
def check_is_valid_linkage_various_size(self, nrow, ncol, valid, xp):
# Tests is_valid_linkage(Z) with linkage matrices of various sizes
Z = xp.asarray([[0, 1, 3.0, 2, 5],
[3, 2, 4.0, 3, 3]], dtype=xp.float64)
Z = Z[:nrow, :ncol]
assert_(is_valid_linkage(Z) == valid)
if not valid:
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
def test_is_valid_linkage_int_type(self, xp):
# Tests is_valid_linkage(Z) with integer type.
Z = xp.asarray([[0, 1, 3.0, 2],
[3, 2, 4.0, 3]], dtype=xp.int64)
assert_(is_valid_linkage(Z) is False)
assert_raises(TypeError, is_valid_linkage, Z, throw=True)
def test_is_valid_linkage_empty(self, xp):
# Tests is_valid_linkage(Z) with empty linkage.
Z = xp.zeros((0, 4), dtype=xp.float64)
assert_(is_valid_linkage(Z) is False)
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
def test_is_valid_linkage_4_and_up(self, xp):
# Tests is_valid_linkage(Z) on linkage on observation sets between
# sizes 4 and 15 (step size 3).
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
assert_(is_valid_linkage(Z) is True)
@skip_xp_backends('jax.numpy',
reason='jax arrays do not support item assignment')
def test_is_valid_linkage_4_and_up_neg_index_left(self, xp):
# Tests is_valid_linkage(Z) on linkage on observation sets between
# sizes 4 and 15 (step size 3) with negative indices (left).
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
Z[i//2,0] = -2
assert_(is_valid_linkage(Z) is False)
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
@skip_xp_backends('jax.numpy',
reason='jax arrays do not support item assignment')
def test_is_valid_linkage_4_and_up_neg_index_right(self, xp):
# Tests is_valid_linkage(Z) on linkage on observation sets between
# sizes 4 and 15 (step size 3) with negative indices (right).
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
Z[i//2,1] = -2
assert_(is_valid_linkage(Z) is False)
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
@skip_xp_backends('jax.numpy',
reason='jax arrays do not support item assignment')
def test_is_valid_linkage_4_and_up_neg_dist(self, xp):
# Tests is_valid_linkage(Z) on linkage on observation sets between
# sizes 4 and 15 (step size 3) with negative distances.
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
Z[i//2,2] = -0.5
assert_(is_valid_linkage(Z) is False)
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
@skip_xp_backends('jax.numpy',
reason='jax arrays do not support item assignment')
def test_is_valid_linkage_4_and_up_neg_counts(self, xp):
# Tests is_valid_linkage(Z) on linkage on observation sets between
# sizes 4 and 15 (step size 3) with negative counts.
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
Z[i//2,3] = -2
assert_(is_valid_linkage(Z) is False)
assert_raises(ValueError, is_valid_linkage, Z, throw=True)
@skip_xp_backends(cpu_only=True)
class TestIsValidInconsistent:
def test_is_valid_im_int_type(self, xp):
# Tests is_valid_im(R) with integer type.
R = xp.asarray([[0, 1, 3.0, 2],
[3, 2, 4.0, 3]], dtype=xp.int64)
assert_(is_valid_im(R) is False)
assert_raises(TypeError, is_valid_im, R, throw=True)
def test_is_valid_im_various_size(self, xp):
for nrow, ncol, valid in [(2, 5, False), (2, 3, False),
(1, 4, True), (2, 4, True)]:
self.check_is_valid_im_various_size(nrow, ncol, valid, xp)
def check_is_valid_im_various_size(self, nrow, ncol, valid, xp):
# Tests is_valid_im(R) with linkage matrices of various sizes
R = xp.asarray([[0, 1, 3.0, 2, 5],
[3, 2, 4.0, 3, 3]], dtype=xp.float64)
R = R[:nrow, :ncol]
assert_(is_valid_im(R) == valid)
if not valid:
assert_raises(ValueError, is_valid_im, R, throw=True)
def test_is_valid_im_empty(self, xp):
# Tests is_valid_im(R) with empty inconsistency matrix.
R = xp.zeros((0, 4), dtype=xp.float64)
assert_(is_valid_im(R) is False)
assert_raises(ValueError, is_valid_im, R, throw=True)
def test_is_valid_im_4_and_up(self, xp):
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
# (step size 3).
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
R = inconsistent(Z)
assert_(is_valid_im(R) is True)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment')
def test_is_valid_im_4_and_up_neg_index_left(self, xp):
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
# (step size 3) with negative link height means.
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
R = inconsistent(Z)
R[i//2,0] = -2.0
assert_(is_valid_im(R) is False)
assert_raises(ValueError, is_valid_im, R, throw=True)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment')
def test_is_valid_im_4_and_up_neg_index_right(self, xp):
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
# (step size 3) with negative link height standard deviations.
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
R = inconsistent(Z)
R[i//2,1] = -2.0
assert_(is_valid_im(R) is False)
assert_raises(ValueError, is_valid_im, R, throw=True)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment')
def test_is_valid_im_4_and_up_neg_dist(self, xp):
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15
# (step size 3) with negative link counts.
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
R = inconsistent(Z)
R[i//2,2] = -0.5
assert_(is_valid_im(R) is False)
assert_raises(ValueError, is_valid_im, R, throw=True)
class TestNumObsLinkage:
@skip_xp_backends(cpu_only=True)
def test_num_obs_linkage_empty(self, xp):
# Tests num_obs_linkage(Z) with empty linkage.
Z = xp.zeros((0, 4), dtype=xp.float64)
assert_raises(ValueError, num_obs_linkage, Z)
def test_num_obs_linkage_1x4(self, xp):
# Tests num_obs_linkage(Z) on linkage over 2 observations.
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64)
assert_equal(num_obs_linkage(Z), 2)
def test_num_obs_linkage_2x4(self, xp):
# Tests num_obs_linkage(Z) on linkage over 3 observations.
Z = xp.asarray([[0, 1, 3.0, 2],
[3, 2, 4.0, 3]], dtype=xp.float64)
assert_equal(num_obs_linkage(Z), 3)
@skip_xp_backends(cpu_only=True)
def test_num_obs_linkage_4_and_up(self, xp):
# Tests num_obs_linkage(Z) on linkage on observation sets between sizes
# 4 and 15 (step size 3).
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
assert_equal(num_obs_linkage(Z), i)
@skip_xp_backends(cpu_only=True)
class TestLeavesList:
def test_leaves_list_1x4(self, xp):
# Tests leaves_list(Z) on a 1x4 linkage.
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64)
to_tree(Z)
assert_allclose(leaves_list(Z), [0, 1], rtol=1e-15)
def test_leaves_list_2x4(self, xp):
# Tests leaves_list(Z) on a 2x4 linkage.
Z = xp.asarray([[0, 1, 3.0, 2],
[3, 2, 4.0, 3]], dtype=xp.float64)
to_tree(Z)
assert_allclose(leaves_list(Z), [0, 1, 2], rtol=1e-15)
def test_leaves_list_Q(self, xp):
for method in ['single', 'complete', 'average', 'weighted', 'centroid',
'median', 'ward']:
self.check_leaves_list_Q(method, xp)
def check_leaves_list_Q(self, method, xp):
# Tests leaves_list(Z) on the Q data set
X = xp.asarray(hierarchy_test_data.Q_X)
Z = linkage(X, method)
node = to_tree(Z)
assert_allclose(node.pre_order(), leaves_list(Z), rtol=1e-15)
def test_Q_subtree_pre_order(self, xp):
# Tests that pre_order() works when called on sub-trees.
X = xp.asarray(hierarchy_test_data.Q_X)
Z = linkage(X, 'single')
node = to_tree(Z)
assert_allclose(node.pre_order(), (node.get_left().pre_order()
+ node.get_right().pre_order()),
rtol=1e-15)
@skip_xp_backends(cpu_only=True)
class TestCorrespond:
def test_correspond_empty(self, xp):
# Tests correspond(Z, y) with empty linkage and condensed distance matrix.
y = xp.zeros((0,), dtype=xp.float64)
Z = xp.zeros((0,4), dtype=xp.float64)
assert_raises(ValueError, correspond, Z, y)
def test_correspond_2_and_up(self, xp):
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
# different sizes.
for i in range(2, 4):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
assert_(correspond(Z, y))
for i in range(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
y = xp.asarray(y)
Z = linkage(y)
assert_(correspond(Z, y))
def test_correspond_4_and_up(self, xp):
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
# different sizes. Correspondence should be false.
for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) +
list(zip(list(range(3, 5)), list(range(2, 4))))):
y = np.random.rand(i*(i-1)//2)
y2 = np.random.rand(j*(j-1)//2)
y = xp.asarray(y)
y2 = xp.asarray(y2)
Z = linkage(y)
Z2 = linkage(y2)
assert not correspond(Z, y2)
assert not correspond(Z2, y)
def test_correspond_4_and_up_2(self, xp):
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
# different sizes. Correspondence should be false.
for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) +
list(zip(list(range(2, 7)), list(range(16, 21))))):
y = np.random.rand(i*(i-1)//2)
y2 = np.random.rand(j*(j-1)//2)
y = xp.asarray(y)
y2 = xp.asarray(y2)
Z = linkage(y)
Z2 = linkage(y2)
assert not correspond(Z, y2)
assert not correspond(Z2, y)
def test_num_obs_linkage_multi_matrix(self, xp):
# Tests num_obs_linkage with observation matrices of multiple sizes.
for n in range(2, 10):
X = np.random.rand(n, 4)
Y = pdist(X)
Y = xp.asarray(Y)
Z = linkage(Y)
assert_equal(num_obs_linkage(Z), n)
@skip_xp_backends(cpu_only=True)
class TestIsMonotonic:
def test_is_monotonic_empty(self, xp):
# Tests is_monotonic(Z) on an empty linkage.
Z = xp.zeros((0, 4), dtype=xp.float64)
assert_raises(ValueError, is_monotonic, Z)
def test_is_monotonic_1x4(self, xp):
# Tests is_monotonic(Z) on 1x4 linkage. Expecting True.
Z = xp.asarray([[0, 1, 0.3, 2]], dtype=xp.float64)
assert is_monotonic(Z)
def test_is_monotonic_2x4_T(self, xp):
# Tests is_monotonic(Z) on 2x4 linkage. Expecting True.
Z = xp.asarray([[0, 1, 0.3, 2],
[2, 3, 0.4, 3]], dtype=xp.float64)
assert is_monotonic(Z)
def test_is_monotonic_2x4_F(self, xp):
# Tests is_monotonic(Z) on 2x4 linkage. Expecting False.
Z = xp.asarray([[0, 1, 0.4, 2],
[2, 3, 0.3, 3]], dtype=xp.float64)
assert not is_monotonic(Z)
def test_is_monotonic_3x4_T(self, xp):
# Tests is_monotonic(Z) on 3x4 linkage. Expecting True.
Z = xp.asarray([[0, 1, 0.3, 2],
[2, 3, 0.4, 2],
[4, 5, 0.6, 4]], dtype=xp.float64)
assert is_monotonic(Z)
def test_is_monotonic_3x4_F1(self, xp):
# Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False.
Z = xp.asarray([[0, 1, 0.3, 2],
[2, 3, 0.2, 2],
[4, 5, 0.6, 4]], dtype=xp.float64)
assert not is_monotonic(Z)
def test_is_monotonic_3x4_F2(self, xp):
# Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False.
Z = xp.asarray([[0, 1, 0.8, 2],
[2, 3, 0.4, 2],
[4, 5, 0.6, 4]], dtype=xp.float64)
assert not is_monotonic(Z)
def test_is_monotonic_3x4_F3(self, xp):
# Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False
Z = xp.asarray([[0, 1, 0.3, 2],
[2, 3, 0.4, 2],
[4, 5, 0.2, 4]], dtype=xp.float64)
assert not is_monotonic(Z)
def test_is_monotonic_tdist_linkage1(self, xp):
# Tests is_monotonic(Z) on clustering generated by single linkage on
# tdist data set. Expecting True.
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
assert is_monotonic(Z)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment')
def test_is_monotonic_tdist_linkage2(self, xp):
# Tests is_monotonic(Z) on clustering generated by single linkage on
# tdist data set. Perturbing. Expecting False.
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
Z[2,2] = 0.0
assert not is_monotonic(Z)
def test_is_monotonic_Q_linkage(self, xp):
# Tests is_monotonic(Z) on clustering generated by single linkage on
# Q data set. Expecting True.
X = xp.asarray(hierarchy_test_data.Q_X)
Z = linkage(X, 'single')
assert is_monotonic(Z)
@skip_xp_backends(cpu_only=True)
class TestMaxDists:
def test_maxdists_empty_linkage(self, xp):
# Tests maxdists(Z) on empty linkage. Expecting exception.
Z = xp.zeros((0, 4), dtype=xp.float64)
assert_raises(ValueError, maxdists, Z)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment')
def test_maxdists_one_cluster_linkage(self, xp):
# Tests maxdists(Z) on linkage with one cluster.
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
MD = maxdists(Z)
expectedMD = calculate_maximum_distances(Z, xp)
xp_assert_close(MD, expectedMD, atol=1e-15)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment')
def test_maxdists_Q_linkage(self, xp):
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
self.check_maxdists_Q_linkage(method, xp)
def check_maxdists_Q_linkage(self, method, xp):
# Tests maxdists(Z) on the Q data set
X = xp.asarray(hierarchy_test_data.Q_X)
Z = linkage(X, method)
MD = maxdists(Z)
expectedMD = calculate_maximum_distances(Z, xp)
xp_assert_close(MD, expectedMD, atol=1e-15)
class TestMaxInconsts:
@skip_xp_backends(cpu_only=True)
def test_maxinconsts_empty_linkage(self, xp):
# Tests maxinconsts(Z, R) on empty linkage. Expecting exception.
Z = xp.zeros((0, 4), dtype=xp.float64)
R = xp.zeros((0, 4), dtype=xp.float64)
assert_raises(ValueError, maxinconsts, Z, R)
def test_maxinconsts_difrow_linkage(self, xp):
# Tests maxinconsts(Z, R) on linkage and inconsistency matrices with
# different numbers of clusters. Expecting exception.
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
R = np.random.rand(2, 4)
R = xp.asarray(R)
assert_raises(ValueError, maxinconsts, Z, R)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment',
cpu_only=True)
def test_maxinconsts_one_cluster_linkage(self, xp):
# Tests maxinconsts(Z, R) on linkage with one cluster.
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
MD = maxinconsts(Z, R)
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp)
xp_assert_close(MD, expectedMD, atol=1e-15)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment',
cpu_only=True)
def test_maxinconsts_Q_linkage(self, xp):
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
self.check_maxinconsts_Q_linkage(method, xp)
def check_maxinconsts_Q_linkage(self, method, xp):
# Tests maxinconsts(Z, R) on the Q data set
X = xp.asarray(hierarchy_test_data.Q_X)
Z = linkage(X, method)
R = inconsistent(Z)
MD = maxinconsts(Z, R)
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp)
xp_assert_close(MD, expectedMD, atol=1e-15)
class TestMaxRStat:
def test_maxRstat_invalid_index(self, xp):
for i in [3.3, -1, 4]:
self.check_maxRstat_invalid_index(i, xp)
def check_maxRstat_invalid_index(self, i, xp):
# Tests maxRstat(Z, R, i). Expecting exception.
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
if isinstance(i, int):
assert_raises(ValueError, maxRstat, Z, R, i)
else:
assert_raises(TypeError, maxRstat, Z, R, i)
@skip_xp_backends(cpu_only=True)
def test_maxRstat_empty_linkage(self, xp):
for i in range(4):
self.check_maxRstat_empty_linkage(i, xp)
def check_maxRstat_empty_linkage(self, i, xp):
# Tests maxRstat(Z, R, i) on empty linkage. Expecting exception.
Z = xp.zeros((0, 4), dtype=xp.float64)
R = xp.zeros((0, 4), dtype=xp.float64)
assert_raises(ValueError, maxRstat, Z, R, i)
def test_maxRstat_difrow_linkage(self, xp):
for i in range(4):
self.check_maxRstat_difrow_linkage(i, xp)
def check_maxRstat_difrow_linkage(self, i, xp):
# Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with
# different numbers of clusters. Expecting exception.
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
R = np.random.rand(2, 4)
R = xp.asarray(R)
assert_raises(ValueError, maxRstat, Z, R, i)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment',
cpu_only=True)
def test_maxRstat_one_cluster_linkage(self, xp):
for i in range(4):
self.check_maxRstat_one_cluster_linkage(i, xp)
def check_maxRstat_one_cluster_linkage(self, i, xp):
# Tests maxRstat(Z, R, i) on linkage with one cluster.
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64)
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64)
MD = maxRstat(Z, R, 1)
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp)
xp_assert_close(MD, expectedMD, atol=1e-15)
@skip_xp_backends('jax.numpy', reason='jax arrays do not support item assignment',
cpu_only=True)
def test_maxRstat_Q_linkage(self, xp):
for method in ['single', 'complete', 'ward', 'centroid', 'median']:
for i in range(4):
self.check_maxRstat_Q_linkage(method, i, xp)
def check_maxRstat_Q_linkage(self, method, i, xp):
# Tests maxRstat(Z, R, i) on the Q data set
X = xp.asarray(hierarchy_test_data.Q_X)
Z = linkage(X, method)
R = inconsistent(Z)
MD = maxRstat(Z, R, 1)
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp)
xp_assert_close(MD, expectedMD, atol=1e-15)
@skip_xp_backends(cpu_only=True)
class TestDendrogram:
def test_dendrogram_single_linkage_tdist(self, xp):
# Tests dendrogram calculation on single linkage of the tdist data set.
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
R = dendrogram(Z, no_plot=True)
leaves = R["leaves"]
assert_equal(leaves, [2, 5, 1, 0, 3, 4])
def test_valid_orientation(self, xp):
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
assert_raises(ValueError, dendrogram, Z, orientation="foo")
def test_labels_as_array_or_list(self, xp):
# test for gh-12418
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
labels = [1, 3, 2, 6, 4, 5]
result1 = dendrogram(Z, labels=xp.asarray(labels), no_plot=True)
result2 = dendrogram(Z, labels=labels, no_plot=True)
assert result1 == result2
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
def test_valid_label_size(self, xp):
link = xp.asarray([
[0, 1, 1.0, 4],
[2, 3, 1.0, 5],
[4, 5, 2.0, 6],
])
plt.figure()
with pytest.raises(ValueError) as exc_info:
dendrogram(link, labels=list(range(100)))
assert "Dimensions of Z and labels must be consistent."\
in str(exc_info.value)
with pytest.raises(
ValueError,
match="Dimensions of Z and labels must be consistent."):
dendrogram(link, labels=[])
plt.close()
@skip_xp_backends('torch',
reason='MPL 3.9.2 & torch DeprecationWarning from __array_wrap__'
' and NumPy 2.0'
)
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
def test_dendrogram_plot(self, xp):
for orientation in ['top', 'bottom', 'left', 'right']:
self.check_dendrogram_plot(orientation, xp)
def check_dendrogram_plot(self, orientation, xp):
# Tests dendrogram plotting.
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
expected = {'color_list': ['C1', 'C0', 'C0', 'C0', 'C0'],
'dcoord': [[0.0, 138.0, 138.0, 0.0],
[0.0, 219.0, 219.0, 0.0],
[0.0, 255.0, 255.0, 219.0],
[0.0, 268.0, 268.0, 255.0],
[138.0, 295.0, 295.0, 268.0]],
'icoord': [[5.0, 5.0, 15.0, 15.0],
[45.0, 45.0, 55.0, 55.0],
[35.0, 35.0, 50.0, 50.0],
[25.0, 25.0, 42.5, 42.5],
[10.0, 10.0, 33.75, 33.75]],
'ivl': ['2', '5', '1', '0', '3', '4'],
'leaves': [2, 5, 1, 0, 3, 4],
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0', 'C0'],
}
fig = plt.figure()
ax = fig.add_subplot(221)
# test that dendrogram accepts ax keyword
R1 = dendrogram(Z, ax=ax, orientation=orientation)
R1['dcoord'] = np.asarray(R1['dcoord'])
assert_equal(R1, expected)
# test that dendrogram accepts and handle the leaf_font_size and
# leaf_rotation keywords
dendrogram(Z, ax=ax, orientation=orientation,
leaf_font_size=20, leaf_rotation=90)
testlabel = (
ax.get_xticklabels()[0]
if orientation in ['top', 'bottom']
else ax.get_yticklabels()[0]
)
assert_equal(testlabel.get_rotation(), 90)
assert_equal(testlabel.get_size(), 20)
dendrogram(Z, ax=ax, orientation=orientation,
leaf_rotation=90)
testlabel = (
ax.get_xticklabels()[0]
if orientation in ['top', 'bottom']
else ax.get_yticklabels()[0]
)
assert_equal(testlabel.get_rotation(), 90)
dendrogram(Z, ax=ax, orientation=orientation,
leaf_font_size=20)
testlabel = (
ax.get_xticklabels()[0]
if orientation in ['top', 'bottom']
else ax.get_yticklabels()[0]
)
assert_equal(testlabel.get_size(), 20)
plt.close()
# test plotting to gca (will import pylab)
R2 = dendrogram(Z, orientation=orientation)
plt.close()
R2['dcoord'] = np.asarray(R2['dcoord'])
assert_equal(R2, expected)
@skip_xp_backends('torch',
reason='MPL 3.9.2 & torch DeprecationWarning from __array_wrap__'
' and NumPy 2.0'
)
@pytest.mark.skipif(not have_matplotlib, reason="no matplotlib")
def test_dendrogram_truncate_mode(self, xp):
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
R = dendrogram(Z, 2, 'lastp', show_contracted=True)
plt.close()
R['dcoord'] = np.asarray(R['dcoord'])
assert_equal(R, {'color_list': ['C0'],
'dcoord': [[0.0, 295.0, 295.0, 0.0]],
'icoord': [[5.0, 5.0, 15.0, 15.0]],
'ivl': ['(2)', '(4)'],
'leaves': [6, 9],
'leaves_color_list': ['C0', 'C0'],
})
R = dendrogram(Z, 2, 'mtica', show_contracted=True)
plt.close()
R['dcoord'] = np.asarray(R['dcoord'])
assert_equal(R, {'color_list': ['C1', 'C0', 'C0', 'C0'],
'dcoord': [[0.0, 138.0, 138.0, 0.0],
[0.0, 255.0, 255.0, 0.0],
[0.0, 268.0, 268.0, 255.0],
[138.0, 295.0, 295.0, 268.0]],
'icoord': [[5.0, 5.0, 15.0, 15.0],
[35.0, 35.0, 45.0, 45.0],
[25.0, 25.0, 40.0, 40.0],
[10.0, 10.0, 32.5, 32.5]],
'ivl': ['2', '5', '1', '0', '(2)'],
'leaves': [2, 5, 1, 0, 7],
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0'],
})
@pytest.fixture
def dendrogram_lock(self):
return Lock()
def test_dendrogram_colors(self, xp, dendrogram_lock):
# Tests dendrogram plots with alternate colors
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single')
with dendrogram_lock:
# Global color palette might be changed concurrently
set_link_color_palette(['c', 'm', 'y', 'k'])
R = dendrogram(Z, no_plot=True,
above_threshold_color='g', color_threshold=250)
set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k'])
color_list = R['color_list']
assert_equal(color_list, ['c', 'm', 'g', 'g', 'g'])
# reset color palette (global list)
set_link_color_palette(None)
def test_dendrogram_leaf_colors_zero_dist(self, xp):
# tests that the colors of leafs are correct for tree
# with two identical points
x = xp.asarray([[1, 0, 0],
[0, 0, 1],
[0, 2, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0]])
z = linkage(x, "single")
d = dendrogram(z, no_plot=True)
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
colors = d["leaves_color_list"]
assert_equal(colors, exp_colors)
def test_dendrogram_leaf_colors(self, xp):
# tests that the colors are correct for a tree
# with two near points ((0, 0, 1.1) and (0, 0, 1))
x = xp.asarray([[1, 0, 0],
[0, 0, 1.1],
[0, 2, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0]])
z = linkage(x, "single")
d = dendrogram(z, no_plot=True)
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2']
colors = d["leaves_color_list"]
assert_equal(colors, exp_colors)
def calculate_maximum_distances(Z, xp):
# Used for testing correctness of maxdists.
n = Z.shape[0] + 1
B = xp.zeros((n-1,), dtype=Z.dtype)
q = xp.zeros((3,))
for i in range(0, n - 1):
q[:] = 0.0
left = Z[i, 0]
right = Z[i, 1]
if left >= n:
q[0] = B[xp.asarray(left, dtype=xp.int64) - n]
if right >= n:
q[1] = B[xp.asarray(right, dtype=xp.int64) - n]
q[2] = Z[i, 2]
B[i] = xp.max(q)
return B
def calculate_maximum_inconsistencies(Z, R, k=3, xp=np):
# Used for testing correctness of maxinconsts.
n = Z.shape[0] + 1
dtype = xp.result_type(Z, R)
B = xp.zeros((n-1,), dtype=dtype)
q = xp.zeros((3,))
for i in range(0, n - 1):
q[:] = 0.0
left = Z[i, 0]
right = Z[i, 1]
if left >= n:
q[0] = B[xp.asarray(left, dtype=xp.int64) - n]
if right >= n:
q[1] = B[xp.asarray(right, dtype=xp.int64) - n]
q[2] = R[i, k]
B[i] = xp.max(q)
return B
@pytest.mark.thread_unsafe
@skip_xp_backends(cpu_only=True)
def test_unsupported_uncondensed_distance_matrix_linkage_warning(xp):
assert_warns(ClusterWarning, linkage, xp.asarray([[0, 1], [1, 0]]))
def test_euclidean_linkage_value_error(xp):
for method in scipy.cluster.hierarchy._EUCLIDEAN_METHODS:
assert_raises(ValueError, linkage, xp.asarray([[1, 1], [1, 1]]),
method=method, metric='cityblock')
@skip_xp_backends(cpu_only=True)
def test_2x2_linkage(xp):
Z1 = linkage(xp.asarray([1]), method='single', metric='euclidean')
Z2 = linkage(xp.asarray([[0, 1], [0, 0]]), method='single', metric='euclidean')
xp_assert_close(Z1, Z2, rtol=1e-15)
@skip_xp_backends(cpu_only=True)
def test_node_compare(xp):
np.random.seed(23)
nobs = 50
X = np.random.randn(nobs, 4)
X = xp.asarray(X)
Z = scipy.cluster.hierarchy.ward(X)
tree = to_tree(Z)
assert_(tree > tree.get_left())
assert_(tree.get_right() > tree.get_left())
assert_(tree.get_right() == tree.get_right())
assert_(tree.get_right() != tree.get_left())
@skip_xp_backends(np_only=True, reason='`cut_tree` uses non-standard indexing')
def test_cut_tree(xp):
np.random.seed(23)
nobs = 50
X = np.random.randn(nobs, 4)
X = xp.asarray(X)
Z = scipy.cluster.hierarchy.ward(X)
cutree = cut_tree(Z)
# cutree.dtype varies between int32 and int64 over platforms
xp_assert_close(cutree[:, 0], xp.arange(nobs), rtol=1e-15, check_dtype=False)
xp_assert_close(cutree[:, -1], xp.zeros(nobs), rtol=1e-15, check_dtype=False)
assert_equal(np.asarray(cutree).max(0), np.arange(nobs - 1, -1, -1))
xp_assert_close(cutree[:, [-5]], cut_tree(Z, n_clusters=5), rtol=1e-15)
xp_assert_close(cutree[:, [-5, -10]], cut_tree(Z, n_clusters=[5, 10]), rtol=1e-15)
xp_assert_close(cutree[:, [-10, -5]], cut_tree(Z, n_clusters=[10, 5]), rtol=1e-15)
nodes = _order_cluster_tree(Z)
heights = xp.asarray([node.dist for node in nodes])
xp_assert_close(cutree[:, np.searchsorted(heights, [5])],
cut_tree(Z, height=5), rtol=1e-15)
xp_assert_close(cutree[:, np.searchsorted(heights, [5, 10])],
cut_tree(Z, height=[5, 10]), rtol=1e-15)
xp_assert_close(cutree[:, np.searchsorted(heights, [10, 5])],
cut_tree(Z, height=[10, 5]), rtol=1e-15)
@skip_xp_backends(cpu_only=True)
def test_optimal_leaf_ordering(xp):
# test with the distance vector y
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.ytdist)),
xp.asarray(hierarchy_test_data.ytdist))
expectedZ = hierarchy_test_data.linkage_ytdist_single_olo
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10)
# test with the observation matrix X
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.X), 'ward'),
xp.asarray(hierarchy_test_data.X))
expectedZ = hierarchy_test_data.linkage_X_ward_olo
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06)
@skip_xp_backends(np_only=True, reason='`Heap` only supports NumPy backend')
def test_Heap(xp):
values = xp.asarray([2, -1, 0, -1.5, 3])
heap = Heap(values)
pair = heap.get_min()
assert_equal(pair['key'], 3)
assert_equal(pair['value'], -1.5)
heap.remove_min()
pair = heap.get_min()
assert_equal(pair['key'], 1)
assert_equal(pair['value'], -1)
heap.change_value(1, 2.5)
pair = heap.get_min()
assert_equal(pair['key'], 2)
assert_equal(pair['value'], 0)
heap.remove_min()
heap.remove_min()
heap.change_value(1, 10)
pair = heap.get_min()
assert_equal(pair['key'], 4)
assert_equal(pair['value'], 3)
heap.remove_min()
pair = heap.get_min()
assert_equal(pair['key'], 1)
assert_equal(pair['value'], 10)
@skip_xp_backends(cpu_only=True)
def test_centroid_neg_distance(xp):
# gh-21011
values = xp.asarray([0, 0, -1])
with pytest.raises(ValueError):
# This is just checking that this doesn't crash
linkage(values, method='centroid')
|