File size: 7,469 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from datetime import timedelta

import numpy as np
import pytest

import pandas.util._test_decorators as td

import pandas as pd
from pandas import (
    DataFrame,
    Series,
)
import pandas._testing as tm
from pandas.core.indexes.timedeltas import timedelta_range


def test_asfreq_bug():
    df = DataFrame(data=[1, 3], index=[timedelta(), timedelta(minutes=3)])
    result = df.resample("1min").asfreq()
    expected = DataFrame(
        data=[1, np.nan, np.nan, 3],
        index=timedelta_range("0 day", periods=4, freq="1min"),
    )
    tm.assert_frame_equal(result, expected)


def test_resample_with_nat():
    # GH 13223
    index = pd.to_timedelta(["0s", pd.NaT, "2s"])
    result = DataFrame({"value": [2, 3, 5]}, index).resample("1s").mean()
    expected = DataFrame(
        {"value": [2.5, np.nan, 5.0]},
        index=timedelta_range("0 day", periods=3, freq="1s"),
    )
    tm.assert_frame_equal(result, expected)


def test_resample_as_freq_with_subperiod():
    # GH 13022
    index = timedelta_range("00:00:00", "00:10:00", freq="5min")
    df = DataFrame(data={"value": [1, 5, 10]}, index=index)
    result = df.resample("2min").asfreq()
    expected_data = {"value": [1, np.nan, np.nan, np.nan, np.nan, 10]}
    expected = DataFrame(
        data=expected_data, index=timedelta_range("00:00:00", "00:10:00", freq="2min")
    )
    tm.assert_frame_equal(result, expected)


def test_resample_with_timedeltas():
    expected = DataFrame({"A": np.arange(1480)})
    expected = expected.groupby(expected.index // 30).sum()
    expected.index = timedelta_range("0 days", freq="30min", periods=50)

    df = DataFrame(
        {"A": np.arange(1480)}, index=pd.to_timedelta(np.arange(1480), unit="min")
    )
    result = df.resample("30min").sum()

    tm.assert_frame_equal(result, expected)

    s = df["A"]
    result = s.resample("30min").sum()
    tm.assert_series_equal(result, expected["A"])


def test_resample_single_period_timedelta():
    s = Series(list(range(5)), index=timedelta_range("1 day", freq="s", periods=5))
    result = s.resample("2s").sum()
    expected = Series([1, 5, 4], index=timedelta_range("1 day", freq="2s", periods=3))
    tm.assert_series_equal(result, expected)


def test_resample_timedelta_idempotency():
    # GH 12072
    index = timedelta_range("0", periods=9, freq="10ms")
    series = Series(range(9), index=index)
    result = series.resample("10ms").mean()
    expected = series.astype(float)
    tm.assert_series_equal(result, expected)


def test_resample_offset_with_timedeltaindex():
    # GH 10530 & 31809
    rng = timedelta_range(start="0s", periods=25, freq="s")
    ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)

    with_base = ts.resample("2s", offset="5s").mean()
    without_base = ts.resample("2s").mean()

    exp_without_base = timedelta_range(start="0s", end="25s", freq="2s")
    exp_with_base = timedelta_range(start="5s", end="29s", freq="2s")

    tm.assert_index_equal(without_base.index, exp_without_base)
    tm.assert_index_equal(with_base.index, exp_with_base)


def test_resample_categorical_data_with_timedeltaindex():
    # GH #12169
    df = DataFrame({"Group_obj": "A"}, index=pd.to_timedelta(list(range(20)), unit="s"))
    df["Group"] = df["Group_obj"].astype("category")
    result = df.resample("10s").agg(lambda x: (x.value_counts().index[0]))
    exp_tdi = pd.TimedeltaIndex(np.array([0, 10], dtype="m8[s]"), freq="10s").as_unit(
        "ns"
    )
    expected = DataFrame(
        {"Group_obj": ["A", "A"], "Group": ["A", "A"]},
        index=exp_tdi,
    )
    expected = expected.reindex(["Group_obj", "Group"], axis=1)
    expected["Group"] = expected["Group_obj"].astype("category")
    tm.assert_frame_equal(result, expected)


def test_resample_timedelta_values():
    # GH 13119
    # check that timedelta dtype is preserved when NaT values are
    # introduced by the resampling

    times = timedelta_range("1 day", "6 day", freq="4D")
    df = DataFrame({"time": times}, index=times)

    times2 = timedelta_range("1 day", "6 day", freq="2D")
    exp = Series(times2, index=times2, name="time")
    exp.iloc[1] = pd.NaT

    res = df.resample("2D").first()["time"]
    tm.assert_series_equal(res, exp)
    res = df["time"].resample("2D").first()
    tm.assert_series_equal(res, exp)


@pytest.mark.parametrize(
    "start, end, freq, resample_freq",
    [
        ("8h", "21h59min50s", "10s", "3h"),  # GH 30353 example
        ("3h", "22h", "1h", "5h"),
        ("527D", "5006D", "3D", "10D"),
        ("1D", "10D", "1D", "2D"),  # GH 13022 example
        # tests that worked before GH 33498:
        ("8h", "21h59min50s", "10s", "2h"),
        ("0h", "21h59min50s", "10s", "3h"),
        ("10D", "85D", "D", "2D"),
    ],
)
def test_resample_timedelta_edge_case(start, end, freq, resample_freq):
    # GH 33498
    # check that the timedelta bins does not contains an extra bin
    idx = timedelta_range(start=start, end=end, freq=freq)
    s = Series(np.arange(len(idx)), index=idx)
    result = s.resample(resample_freq).min()
    expected_index = timedelta_range(freq=resample_freq, start=start, end=end)
    tm.assert_index_equal(result.index, expected_index)
    assert result.index.freq == expected_index.freq
    assert not np.isnan(result.iloc[-1])


@pytest.mark.parametrize("duplicates", [True, False])
def test_resample_with_timedelta_yields_no_empty_groups(duplicates):
    # GH 10603
    df = DataFrame(
        np.random.default_rng(2).normal(size=(10000, 4)),
        index=timedelta_range(start="0s", periods=10000, freq="3906250ns"),
    )
    if duplicates:
        # case with non-unique columns
        df.columns = ["A", "B", "A", "C"]

    result = df.loc["1s":, :].resample("3s").apply(lambda x: len(x))

    expected = DataFrame(
        [[768] * 4] * 12 + [[528] * 4],
        index=timedelta_range(start="1s", periods=13, freq="3s"),
    )
    expected.columns = df.columns
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
def test_resample_quantile_timedelta(unit):
    # GH: 29485
    dtype = np.dtype(f"m8[{unit}]")
    df = DataFrame(
        {"value": pd.to_timedelta(np.arange(4), unit="s").astype(dtype)},
        index=pd.date_range("20200101", periods=4, tz="UTC"),
    )
    result = df.resample("2D").quantile(0.99)
    expected = DataFrame(
        {
            "value": [
                pd.Timedelta("0 days 00:00:00.990000"),
                pd.Timedelta("0 days 00:00:02.990000"),
            ]
        },
        index=pd.date_range("20200101", periods=2, tz="UTC", freq="2D"),
    ).astype(dtype)
    tm.assert_frame_equal(result, expected)


def test_resample_closed_right():
    # GH#45414
    idx = pd.Index([pd.Timedelta(seconds=120 + i * 30) for i in range(10)])
    ser = Series(range(10), index=idx)
    result = ser.resample("min", closed="right", label="right").sum()
    expected = Series(
        [0, 3, 7, 11, 15, 9],
        index=pd.TimedeltaIndex(
            [pd.Timedelta(seconds=120 + i * 60) for i in range(6)], freq="min"
        ),
    )
    tm.assert_series_equal(result, expected)


@td.skip_if_no("pyarrow")
def test_arrow_duration_resample():
    # GH 56371
    idx = pd.Index(timedelta_range("1 day", periods=5), dtype="duration[ns][pyarrow]")
    expected = Series(np.arange(5, dtype=np.float64), index=idx)
    result = expected.resample("1D").mean()
    tm.assert_series_equal(result, expected)