File size: 40,042 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 |
""" test fancy indexing & misc """
import array
from datetime import datetime
import re
import weakref
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
from pandas.errors import IndexingError
from pandas.core.dtypes.common import (
is_float_dtype,
is_integer_dtype,
is_object_dtype,
)
import pandas as pd
from pandas import (
DataFrame,
Index,
NaT,
Series,
date_range,
offsets,
timedelta_range,
)
import pandas._testing as tm
from pandas.tests.indexing.common import _mklbl
from pandas.tests.indexing.test_floats import gen_obj
# ------------------------------------------------------------------------
# Indexing test cases
class TestFancy:
"""pure get/set item & fancy indexing"""
def test_setitem_ndarray_1d(self):
# GH5508
# len of indexer vs length of the 1d ndarray
df = DataFrame(index=Index(np.arange(1, 11), dtype=np.int64))
df["foo"] = np.zeros(10, dtype=np.float64)
df["bar"] = np.zeros(10, dtype=complex)
# invalid
msg = "Must have equal len keys and value when setting with an iterable"
with pytest.raises(ValueError, match=msg):
df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])
# valid
df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0])
result = df.loc[df.index[2:6], "bar"]
expected = Series(
[2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar"
)
tm.assert_series_equal(result, expected)
def test_setitem_ndarray_1d_2(self):
# GH5508
# dtype getting changed?
df = DataFrame(index=Index(np.arange(1, 11)))
df["foo"] = np.zeros(10, dtype=np.float64)
df["bar"] = np.zeros(10, dtype=complex)
msg = "Must have equal len keys and value when setting with an iterable"
with pytest.raises(ValueError, match=msg):
df[2:5] = np.arange(1, 4) * 1j
@pytest.mark.filterwarnings(
"ignore:Series.__getitem__ treating keys as positions is deprecated:"
"FutureWarning"
)
def test_getitem_ndarray_3d(
self, index, frame_or_series, indexer_sli, using_array_manager
):
# GH 25567
obj = gen_obj(frame_or_series, index)
idxr = indexer_sli(obj)
nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))
msgs = []
if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]:
msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]")
if using_array_manager:
msgs.append("Passed array should be 1-dimensional")
if frame_or_series is Series or indexer_sli is tm.iloc:
msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)")
if using_array_manager:
msgs.append("indexer should be 1-dimensional")
if indexer_sli is tm.loc or (
frame_or_series is Series and indexer_sli is tm.setitem
):
msgs.append("Cannot index with multidimensional key")
if frame_or_series is DataFrame and indexer_sli is tm.setitem:
msgs.append("Index data must be 1-dimensional")
if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc:
msgs.append("Index data must be 1-dimensional")
if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)):
msgs.append("Data must be 1-dimensional")
if len(index) == 0 or isinstance(index, pd.MultiIndex):
msgs.append("positional indexers are out-of-bounds")
if type(index) is Index and not isinstance(index._values, np.ndarray):
# e.g. Int64
msgs.append("values must be a 1D array")
# string[pyarrow]
msgs.append("only handle 1-dimensional arrays")
msg = "|".join(msgs)
potential_errors = (IndexError, ValueError, NotImplementedError)
with pytest.raises(potential_errors, match=msg):
idxr[nd3]
@pytest.mark.filterwarnings(
"ignore:Series.__setitem__ treating keys as positions is deprecated:"
"FutureWarning"
)
def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli):
# GH 25567
obj = gen_obj(frame_or_series, index)
idxr = indexer_sli(obj)
nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2))
if indexer_sli is tm.iloc:
err = ValueError
msg = f"Cannot set values with ndim > {obj.ndim}"
else:
err = ValueError
msg = "|".join(
[
r"Buffer has wrong number of dimensions \(expected 1, got 3\)",
"Cannot set values with ndim > 1",
"Index data must be 1-dimensional",
"Data must be 1-dimensional",
"Array conditional must be same shape as self",
]
)
with pytest.raises(err, match=msg):
idxr[nd3] = 0
def test_getitem_ndarray_0d(self):
# GH#24924
key = np.array(0)
# dataframe __getitem__
df = DataFrame([[1, 2], [3, 4]])
result = df[key]
expected = Series([1, 3], name=0)
tm.assert_series_equal(result, expected)
# series __getitem__
ser = Series([1, 2])
result = ser[key]
assert result == 1
def test_inf_upcast(self):
# GH 16957
# We should be able to use np.inf as a key
# np.inf should cause an index to convert to float
# Test with np.inf in rows
df = DataFrame(columns=[0])
df.loc[1] = 1
df.loc[2] = 2
df.loc[np.inf] = 3
# make sure we can look up the value
assert df.loc[np.inf, 0] == 3
result = df.index
expected = Index([1, 2, np.inf], dtype=np.float64)
tm.assert_index_equal(result, expected)
def test_setitem_dtype_upcast(self):
# GH3216
df = DataFrame([{"a": 1}, {"a": 3, "b": 2}])
df["c"] = np.nan
assert df["c"].dtype == np.float64
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
df.loc[0, "c"] = "foo"
expected = DataFrame(
{"a": [1, 3], "b": [np.nan, 2], "c": Series(["foo", np.nan], dtype=object)}
)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("val", [3.14, "wxyz"])
def test_setitem_dtype_upcast2(self, val):
# GH10280
df = DataFrame(
np.arange(6, dtype="int64").reshape(2, 3),
index=list("ab"),
columns=["foo", "bar", "baz"],
)
left = df.copy()
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
left.loc["a", "bar"] = val
right = DataFrame(
[[0, val, 2], [3, 4, 5]],
index=list("ab"),
columns=["foo", "bar", "baz"],
)
tm.assert_frame_equal(left, right)
assert is_integer_dtype(left["foo"])
assert is_integer_dtype(left["baz"])
def test_setitem_dtype_upcast3(self):
left = DataFrame(
np.arange(6, dtype="int64").reshape(2, 3) / 10.0,
index=list("ab"),
columns=["foo", "bar", "baz"],
)
with tm.assert_produces_warning(
FutureWarning, match="item of incompatible dtype"
):
left.loc["a", "bar"] = "wxyz"
right = DataFrame(
[[0, "wxyz", 0.2], [0.3, 0.4, 0.5]],
index=list("ab"),
columns=["foo", "bar", "baz"],
)
tm.assert_frame_equal(left, right)
assert is_float_dtype(left["foo"])
assert is_float_dtype(left["baz"])
def test_dups_fancy_indexing(self):
# GH 3455
df = DataFrame(np.eye(3), columns=["a", "a", "b"])
result = df[["b", "a"]].columns
expected = Index(["b", "a", "a"])
tm.assert_index_equal(result, expected)
def test_dups_fancy_indexing_across_dtypes(self):
# across dtypes
df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa"))
result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]])
result.columns = list("aaaaaaa") # GH#3468
# GH#3509 smoke tests for indexing with duplicate columns
df.iloc[:, 4]
result.iloc[:, 4]
tm.assert_frame_equal(df, result)
def test_dups_fancy_indexing_not_in_order(self):
# GH 3561, dups not in selected order
df = DataFrame(
{"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")},
index=["A", "A", "B", "C"],
)
rows = ["C", "B"]
expected = DataFrame(
{"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows
)
result = df.loc[rows]
tm.assert_frame_equal(result, expected)
result = df.loc[Index(rows)]
tm.assert_frame_equal(result, expected)
rows = ["C", "B", "E"]
with pytest.raises(KeyError, match="not in index"):
df.loc[rows]
# see GH5553, make sure we use the right indexer
rows = ["F", "G", "H", "C", "B", "E"]
with pytest.raises(KeyError, match="not in index"):
df.loc[rows]
def test_dups_fancy_indexing_only_missing_label(self, using_infer_string):
# List containing only missing label
dfnu = DataFrame(
np.random.default_rng(2).standard_normal((5, 3)), index=list("AABCD")
)
if using_infer_string:
with pytest.raises(
KeyError,
match=re.escape(
"\"None of [Index(['E'], dtype='string')] are in the [index]\""
),
):
dfnu.loc[["E"]]
else:
with pytest.raises(
KeyError,
match=re.escape(
"\"None of [Index(['E'], dtype='object')] are in the [index]\""
),
):
dfnu.loc[["E"]]
@pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")])
def test_dups_fancy_indexing_missing_label(self, vals):
# GH 4619; duplicate indexer with missing label
df = DataFrame({"A": vals})
with pytest.raises(KeyError, match="not in index"):
df.loc[[0, 8, 0]]
def test_dups_fancy_indexing_non_unique(self):
# non unique with non unique selector
df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"])
with pytest.raises(KeyError, match="not in index"):
df.loc[["A", "A", "E"]]
def test_dups_fancy_indexing2(self):
# GH 5835
# dups on index and missing values
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 5)),
columns=["A", "B", "B", "B", "A"],
)
with pytest.raises(KeyError, match="not in index"):
df.loc[:, ["A", "B", "C"]]
def test_dups_fancy_indexing3(self):
# GH 6504, multi-axis indexing
df = DataFrame(
np.random.default_rng(2).standard_normal((9, 2)),
index=[1, 1, 1, 2, 2, 2, 3, 3, 3],
columns=["a", "b"],
)
expected = df.iloc[0:6]
result = df.loc[[1, 2]]
tm.assert_frame_equal(result, expected)
expected = df
result = df.loc[:, ["a", "b"]]
tm.assert_frame_equal(result, expected)
expected = df.iloc[0:6, :]
result = df.loc[[1, 2], ["a", "b"]]
tm.assert_frame_equal(result, expected)
def test_duplicate_int_indexing(self, indexer_sl):
# GH 17347
ser = Series(range(3), index=[1, 1, 3])
expected = Series(range(2), index=[1, 1])
result = indexer_sl(ser)[[1]]
tm.assert_series_equal(result, expected)
def test_indexing_mixed_frame_bug(self):
# GH3492
df = DataFrame(
{"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}}
)
# this works, new column is created correctly
df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x)
# this does not work, ie column test is not changed
idx = df["test"] == "_"
temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x)
df.loc[idx, "test"] = temp
assert df.iloc[0, 2] == "-----"
def test_multitype_list_index_access(self):
# GH 10610
df = DataFrame(
np.random.default_rng(2).random((10, 5)), columns=["a"] + [20, 21, 22, 23]
)
with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")):
df[[22, 26, -8]]
assert df[21].shape[0] == df.shape[0]
def test_set_index_nan(self):
# GH 3586
df = DataFrame(
{
"PRuid": {
17: "nonQC",
18: "nonQC",
19: "nonQC",
20: "10",
21: "11",
22: "12",
23: "13",
24: "24",
25: "35",
26: "46",
27: "47",
28: "48",
29: "59",
30: "10",
},
"QC": {
17: 0.0,
18: 0.0,
19: 0.0,
20: np.nan,
21: np.nan,
22: np.nan,
23: np.nan,
24: 1.0,
25: np.nan,
26: np.nan,
27: np.nan,
28: np.nan,
29: np.nan,
30: np.nan,
},
"data": {
17: 7.9544899999999998,
18: 8.0142609999999994,
19: 7.8591520000000008,
20: 0.86140349999999999,
21: 0.87853110000000001,
22: 0.8427041999999999,
23: 0.78587700000000005,
24: 0.73062459999999996,
25: 0.81668560000000001,
26: 0.81927080000000008,
27: 0.80705009999999999,
28: 0.81440240000000008,
29: 0.80140849999999997,
30: 0.81307740000000006,
},
"year": {
17: 2006,
18: 2007,
19: 2008,
20: 1985,
21: 1985,
22: 1985,
23: 1985,
24: 1985,
25: 1985,
26: 1985,
27: 1985,
28: 1985,
29: 1985,
30: 1986,
},
}
).reset_index()
result = (
df.set_index(["year", "PRuid", "QC"])
.reset_index()
.reindex(columns=df.columns)
)
tm.assert_frame_equal(result, df)
@pytest.mark.xfail(
using_pyarrow_string_dtype(), reason="can't multiply arrow strings"
)
def test_multi_assign(self):
# GH 3626, an assignment of a sub-df to a df
# set float64 to avoid upcast when setting nan
df = DataFrame(
{
"FC": ["a", "b", "a", "b", "a", "b"],
"PF": [0, 0, 0, 0, 1, 1],
"col1": list(range(6)),
"col2": list(range(6, 12)),
}
).astype({"col2": "float64"})
df.iloc[1, 0] = np.nan
df2 = df.copy()
mask = ~df2.FC.isna()
cols = ["col1", "col2"]
dft = df2 * 2
dft.iloc[3, 3] = np.nan
expected = DataFrame(
{
"FC": ["a", np.nan, "a", "b", "a", "b"],
"PF": [0, 0, 0, 0, 1, 1],
"col1": Series([0, 1, 4, 6, 8, 10]),
"col2": [12, 7, 16, np.nan, 20, 22],
}
)
# frame on rhs
df2.loc[mask, cols] = dft.loc[mask, cols]
tm.assert_frame_equal(df2, expected)
# with an ndarray on rhs
# coerces to float64 because values has float64 dtype
# GH 14001
expected = DataFrame(
{
"FC": ["a", np.nan, "a", "b", "a", "b"],
"PF": [0, 0, 0, 0, 1, 1],
"col1": [0, 1, 4, 6, 8, 10],
"col2": [12, 7, 16, np.nan, 20, 22],
}
)
df2 = df.copy()
df2.loc[mask, cols] = dft.loc[mask, cols].values
tm.assert_frame_equal(df2, expected)
def test_multi_assign_broadcasting_rhs(self):
# broadcasting on the rhs is required
df = DataFrame(
{
"A": [1, 2, 0, 0, 0],
"B": [0, 0, 0, 10, 11],
"C": [0, 0, 0, 10, 11],
"D": [3, 4, 5, 6, 7],
}
)
expected = df.copy()
mask = expected["A"] == 0
for col in ["A", "B"]:
expected.loc[mask, col] = df["D"]
df.loc[df["A"] == 0, ["A", "B"]] = df["D"].copy()
tm.assert_frame_equal(df, expected)
def test_setitem_list(self):
# GH 6043
# iloc with a list
df = DataFrame(index=[0, 1], columns=[0])
df.iloc[1, 0] = [1, 2, 3]
df.iloc[1, 0] = [1, 2]
result = DataFrame(index=[0, 1], columns=[0])
result.iloc[1, 0] = [1, 2]
tm.assert_frame_equal(result, df)
def test_string_slice(self):
# GH 14424
# string indexing against datetimelike with object
# dtype should properly raises KeyError
df = DataFrame([1], Index([pd.Timestamp("2011-01-01")], dtype=object))
assert df.index._is_all_dates
with pytest.raises(KeyError, match="'2011'"):
df["2011"]
with pytest.raises(KeyError, match="'2011'"):
df.loc["2011", 0]
def test_string_slice_empty(self):
# GH 14424
df = DataFrame()
assert not df.index._is_all_dates
with pytest.raises(KeyError, match="'2011'"):
df["2011"]
with pytest.raises(KeyError, match="^0$"):
df.loc["2011", 0]
def test_astype_assignment(self, using_infer_string):
# GH4312 (iloc)
df_orig = DataFrame(
[["1", "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
df = df_orig.copy()
# with the enforcement of GH#45333 in 2.0, this setting is attempted inplace,
# so object dtype is retained
df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64)
expected = DataFrame(
[[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
if not using_infer_string:
expected["A"] = expected["A"].astype(object)
expected["B"] = expected["B"].astype(object)
tm.assert_frame_equal(df, expected)
# GH5702 (loc)
df = df_orig.copy()
df.loc[:, "A"] = df.loc[:, "A"].astype(np.int64)
expected = DataFrame(
[[1, "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
if not using_infer_string:
expected["A"] = expected["A"].astype(object)
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.loc[:, ["B", "C"]] = df.loc[:, ["B", "C"]].astype(np.int64)
expected = DataFrame(
[["1", 2, 3, ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG")
)
if not using_infer_string:
expected["B"] = expected["B"].astype(object)
expected["C"] = expected["C"].astype(object)
tm.assert_frame_equal(df, expected)
def test_astype_assignment_full_replacements(self):
# full replacements / no nans
df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
# With the enforcement of GH#45333 in 2.0, this assignment occurs inplace,
# so float64 is retained
df.iloc[:, 0] = df["A"].astype(np.int64)
expected = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
tm.assert_frame_equal(df, expected)
df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]})
df.loc[:, "A"] = df["A"].astype(np.int64)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("indexer", [tm.getitem, tm.loc])
def test_index_type_coercion(self, indexer):
# GH 11836
# if we have an index type and set it with something that looks
# to numpy like the same, but is actually, not
# (e.g. setting with a float or string '0')
# then we need to coerce to object
# integer indexes
for s in [Series(range(5)), Series(range(5), index=range(1, 6))]:
assert is_integer_dtype(s.index)
s2 = s.copy()
indexer(s2)[0.1] = 0
assert is_float_dtype(s2.index)
assert indexer(s2)[0.1] == 0
s2 = s.copy()
indexer(s2)[0.0] = 0
exp = s.index
if 0 not in s:
exp = Index(s.index.tolist() + [0])
tm.assert_index_equal(s2.index, exp)
s2 = s.copy()
indexer(s2)["0"] = 0
assert is_object_dtype(s2.index)
for s in [Series(range(5), index=np.arange(5.0))]:
assert is_float_dtype(s.index)
s2 = s.copy()
indexer(s2)[0.1] = 0
assert is_float_dtype(s2.index)
assert indexer(s2)[0.1] == 0
s2 = s.copy()
indexer(s2)[0.0] = 0
tm.assert_index_equal(s2.index, s.index)
s2 = s.copy()
indexer(s2)["0"] = 0
assert is_object_dtype(s2.index)
class TestMisc:
def test_float_index_to_mixed(self):
df = DataFrame(
{
0.0: np.random.default_rng(2).random(10),
1.0: np.random.default_rng(2).random(10),
}
)
df["a"] = 10
expected = DataFrame({0.0: df[0.0], 1.0: df[1.0], "a": [10] * 10})
tm.assert_frame_equal(expected, df)
def test_float_index_non_scalar_assignment(self):
df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
df.loc[df.index[:2]] = 1
expected = DataFrame({"a": [1, 1, 3], "b": [1, 1, 5]}, index=df.index)
tm.assert_frame_equal(expected, df)
def test_loc_setitem_fullindex_views(self):
df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0])
df2 = df.copy()
df.loc[df.index] = df.loc[df.index]
tm.assert_frame_equal(df, df2)
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't set int into string")
def test_rhs_alignment(self):
# GH8258, tests that both rows & columns are aligned to what is
# assigned to. covers both uniform data-type & multi-type cases
def run_tests(df, rhs, right_loc, right_iloc):
# label, index, slice
lbl_one, idx_one, slice_one = list("bcd"), [1, 2, 3], slice(1, 4)
lbl_two, idx_two, slice_two = ["joe", "jolie"], [1, 2], slice(1, 3)
left = df.copy()
left.loc[lbl_one, lbl_two] = rhs
tm.assert_frame_equal(left, right_loc)
left = df.copy()
left.iloc[idx_one, idx_two] = rhs
tm.assert_frame_equal(left, right_iloc)
left = df.copy()
left.iloc[slice_one, slice_two] = rhs
tm.assert_frame_equal(left, right_iloc)
xs = np.arange(20).reshape(5, 4)
cols = ["jim", "joe", "jolie", "joline"]
df = DataFrame(xs, columns=cols, index=list("abcde"), dtype="int64")
# right hand side; permute the indices and multiplpy by -2
rhs = -2 * df.iloc[3:0:-1, 2:0:-1]
# expected `right` result; just multiply by -2
right_iloc = df.copy()
right_iloc["joe"] = [1, 14, 10, 6, 17]
right_iloc["jolie"] = [2, 13, 9, 5, 18]
right_iloc.iloc[1:4, 1:3] *= -2
right_loc = df.copy()
right_loc.iloc[1:4, 1:3] *= -2
# run tests with uniform dtypes
run_tests(df, rhs, right_loc, right_iloc)
# make frames multi-type & re-run tests
for frame in [df, rhs, right_loc, right_iloc]:
frame["joe"] = frame["joe"].astype("float64")
frame["jolie"] = frame["jolie"].map(lambda x: f"@{x}")
right_iloc["joe"] = [1.0, "@-28", "@-20", "@-12", 17.0]
right_iloc["jolie"] = ["@2", -26.0, -18.0, -10.0, "@18"]
with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"):
run_tests(df, rhs, right_loc, right_iloc)
@pytest.mark.parametrize(
"idx", [_mklbl("A", 20), np.arange(20) + 100, np.linspace(100, 150, 20)]
)
def test_str_label_slicing_with_negative_step(self, idx):
SLC = pd.IndexSlice
idx = Index(idx)
ser = Series(np.arange(20), index=idx)
tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1])
tm.assert_indexing_slices_equivalent(
ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1]
)
tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] : idx[13] : -1], SLC[:0])
def test_slice_with_zero_step_raises(self, index, indexer_sl, frame_or_series):
obj = frame_or_series(np.arange(len(index)), index=index)
with pytest.raises(ValueError, match="slice step cannot be zero"):
indexer_sl(obj)[::0]
def test_loc_setitem_indexing_assignment_dict_already_exists(self):
index = Index([-5, 0, 5], name="z")
df = DataFrame({"x": [1, 2, 6], "y": [2, 2, 8]}, index=index)
expected = df.copy()
rhs = {"x": 9, "y": 99}
df.loc[5] = rhs
expected.loc[5] = [9, 99]
tm.assert_frame_equal(df, expected)
# GH#38335 same thing, mixed dtypes
df = DataFrame({"x": [1, 2, 6], "y": [2.0, 2.0, 8.0]}, index=index)
df.loc[5] = rhs
expected = DataFrame({"x": [1, 2, 9], "y": [2.0, 2.0, 99.0]}, index=index)
tm.assert_frame_equal(df, expected)
def test_iloc_getitem_indexing_dtypes_on_empty(self):
# Check that .iloc returns correct dtypes GH9983
df = DataFrame({"a": [1, 2, 3], "b": ["b", "b2", "b3"]})
df2 = df.iloc[[], :]
assert df2.loc[:, "a"].dtype == np.int64
tm.assert_series_equal(df2.loc[:, "a"], df2.iloc[:, 0])
@pytest.mark.parametrize("size", [5, 999999, 1000000])
def test_loc_range_in_series_indexing(self, size):
# range can cause an indexing error
# GH 11652
s = Series(index=range(size), dtype=np.float64)
s.loc[range(1)] = 42
tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0]))
s.loc[range(2)] = 43
tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1]))
def test_partial_boolean_frame_indexing(self):
# GH 17170
df = DataFrame(
np.arange(9.0).reshape(3, 3), index=list("abc"), columns=list("ABC")
)
index_df = DataFrame(1, index=list("ab"), columns=list("AB"))
result = df[index_df.notnull()]
expected = DataFrame(
np.array([[0.0, 1.0, np.nan], [3.0, 4.0, np.nan], [np.nan] * 3]),
index=list("abc"),
columns=list("ABC"),
)
tm.assert_frame_equal(result, expected)
def test_no_reference_cycle(self):
df = DataFrame({"a": [0, 1], "b": [2, 3]})
for name in ("loc", "iloc", "at", "iat"):
getattr(df, name)
wr = weakref.ref(df)
del df
assert wr() is None
def test_label_indexing_on_nan(self, nulls_fixture):
# GH 32431
df = Series([1, "{1,2}", 1, nulls_fixture])
vc = df.value_counts(dropna=False)
result1 = vc.loc[nulls_fixture]
result2 = vc[nulls_fixture]
expected = 1
assert result1 == expected
assert result2 == expected
class TestDataframeNoneCoercion:
EXPECTED_SINGLE_ROW_RESULTS = [
# For numeric series, we should coerce to NaN.
([1, 2, 3], [np.nan, 2, 3], FutureWarning),
([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0], None),
# For datetime series, we should coerce to NaT.
(
[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
[NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
None,
),
# For objects, we should preserve the None value.
(["foo", "bar", "baz"], [None, "bar", "baz"], None),
]
@pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
def test_coercion_with_loc(self, expected):
start_data, expected_result, warn = expected
start_dataframe = DataFrame({"foo": start_data})
start_dataframe.loc[0, ["foo"]] = None
expected_dataframe = DataFrame({"foo": expected_result})
tm.assert_frame_equal(start_dataframe, expected_dataframe)
@pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
def test_coercion_with_setitem_and_dataframe(self, expected):
start_data, expected_result, warn = expected
start_dataframe = DataFrame({"foo": start_data})
start_dataframe[start_dataframe["foo"] == start_dataframe["foo"][0]] = None
expected_dataframe = DataFrame({"foo": expected_result})
tm.assert_frame_equal(start_dataframe, expected_dataframe)
@pytest.mark.parametrize("expected", EXPECTED_SINGLE_ROW_RESULTS)
def test_none_coercion_loc_and_dataframe(self, expected):
start_data, expected_result, warn = expected
start_dataframe = DataFrame({"foo": start_data})
start_dataframe.loc[start_dataframe["foo"] == start_dataframe["foo"][0]] = None
expected_dataframe = DataFrame({"foo": expected_result})
tm.assert_frame_equal(start_dataframe, expected_dataframe)
def test_none_coercion_mixed_dtypes(self):
start_dataframe = DataFrame(
{
"a": [1, 2, 3],
"b": [1.0, 2.0, 3.0],
"c": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
"d": ["a", "b", "c"],
}
)
start_dataframe.iloc[0] = None
exp = DataFrame(
{
"a": [np.nan, 2, 3],
"b": [np.nan, 2.0, 3.0],
"c": [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)],
"d": [None, "b", "c"],
}
)
tm.assert_frame_equal(start_dataframe, exp)
class TestDatetimelikeCoercion:
def test_setitem_dt64_string_scalar(self, tz_naive_fixture, indexer_sli):
# dispatching _can_hold_element to underlying DatetimeArray
tz = tz_naive_fixture
dti = date_range("2016-01-01", periods=3, tz=tz)
ser = Series(dti.copy(deep=True))
values = ser._values
newval = "2018-01-01"
values._validate_setitem_value(newval)
indexer_sli(ser)[0] = newval
if tz is None:
# TODO(EA2D): we can make this no-copy in tz-naive case too
assert ser.dtype == dti.dtype
assert ser._values._ndarray is values._ndarray
else:
assert ser._values is values
@pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
@pytest.mark.parametrize(
"key", [[0, 1], slice(0, 2), np.array([True, True, False])]
)
def test_setitem_dt64_string_values(self, tz_naive_fixture, indexer_sli, key, box):
# dispatching _can_hold_element to underling DatetimeArray
tz = tz_naive_fixture
if isinstance(key, slice) and indexer_sli is tm.loc:
key = slice(0, 1)
dti = date_range("2016-01-01", periods=3, tz=tz)
ser = Series(dti.copy(deep=True))
values = ser._values
newvals = box(["2019-01-01", "2010-01-02"])
values._validate_setitem_value(newvals)
indexer_sli(ser)[key] = newvals
if tz is None:
# TODO(EA2D): we can make this no-copy in tz-naive case too
assert ser.dtype == dti.dtype
assert ser._values._ndarray is values._ndarray
else:
assert ser._values is values
@pytest.mark.parametrize("scalar", ["3 Days", offsets.Hour(4)])
def test_setitem_td64_scalar(self, indexer_sli, scalar):
# dispatching _can_hold_element to underling TimedeltaArray
tdi = timedelta_range("1 Day", periods=3)
ser = Series(tdi.copy(deep=True))
values = ser._values
values._validate_setitem_value(scalar)
indexer_sli(ser)[0] = scalar
assert ser._values._ndarray is values._ndarray
@pytest.mark.parametrize("box", [list, np.array, pd.array, pd.Categorical, Index])
@pytest.mark.parametrize(
"key", [[0, 1], slice(0, 2), np.array([True, True, False])]
)
def test_setitem_td64_string_values(self, indexer_sli, key, box):
# dispatching _can_hold_element to underling TimedeltaArray
if isinstance(key, slice) and indexer_sli is tm.loc:
key = slice(0, 1)
tdi = timedelta_range("1 Day", periods=3)
ser = Series(tdi.copy(deep=True))
values = ser._values
newvals = box(["10 Days", "44 hours"])
values._validate_setitem_value(newvals)
indexer_sli(ser)[key] = newvals
assert ser._values._ndarray is values._ndarray
def test_extension_array_cross_section():
# A cross-section of a homogeneous EA should be an EA
df = DataFrame(
{
"A": pd.array([1, 2], dtype="Int64"),
"B": pd.array([3, 4], dtype="Int64"),
},
index=["a", "b"],
)
expected = Series(pd.array([1, 3], dtype="Int64"), index=["A", "B"], name="a")
result = df.loc["a"]
tm.assert_series_equal(result, expected)
result = df.iloc[0]
tm.assert_series_equal(result, expected)
def test_extension_array_cross_section_converts():
# all numeric columns -> numeric series
df = DataFrame(
{
"A": pd.array([1, 2], dtype="Int64"),
"B": np.array([1, 2], dtype="int64"),
},
index=["a", "b"],
)
result = df.loc["a"]
expected = Series([1, 1], dtype="Int64", index=["A", "B"], name="a")
tm.assert_series_equal(result, expected)
result = df.iloc[0]
tm.assert_series_equal(result, expected)
# mixed columns -> object series
df = DataFrame(
{"A": pd.array([1, 2], dtype="Int64"), "B": np.array(["a", "b"])},
index=["a", "b"],
)
result = df.loc["a"]
expected = Series([1, "a"], dtype=object, index=["A", "B"], name="a")
tm.assert_series_equal(result, expected)
result = df.iloc[0]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, keys",
[(Series([10]), (0, 0)), (Series([1, 2, 3], index=list("abc")), (0, 1))],
)
def test_ser_tup_indexer_exceeds_dimensions(ser, keys, indexer_li):
# GH#13831
exp_err, exp_msg = IndexingError, "Too many indexers"
with pytest.raises(exp_err, match=exp_msg):
indexer_li(ser)[keys]
if indexer_li == tm.iloc:
# For iloc.__setitem__ we let numpy handle the error reporting.
exp_err, exp_msg = IndexError, "too many indices for array"
with pytest.raises(exp_err, match=exp_msg):
indexer_li(ser)[keys] = 0
def test_ser_list_indexer_exceeds_dimensions(indexer_li):
# GH#13831
# Make sure an exception is raised when a tuple exceeds the dimension of the series,
# but not list when a list is used.
ser = Series([10])
res = indexer_li(ser)[[0, 0]]
exp = Series([10, 10], index=Index([0, 0]))
tm.assert_series_equal(res, exp)
@pytest.mark.parametrize(
"value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
)
def test_scalar_setitem_with_nested_value(value):
# For numeric data, we try to unpack and thus raise for mismatching length
df = DataFrame({"A": [1, 2, 3]})
msg = "|".join(
[
"Must have equal len keys and value",
"setting an array element with a sequence",
]
)
with pytest.raises(ValueError, match=msg):
df.loc[0, "B"] = value
# TODO For object dtype this happens as well, but should we rather preserve
# the nested data and set as such?
df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
with pytest.raises(ValueError, match="Must have equal len keys and value"):
df.loc[0, "B"] = value
# if isinstance(value, np.ndarray):
# assert (df.loc[0, "B"] == value).all()
# else:
# assert df.loc[0, "B"] == value
@pytest.mark.parametrize(
"value", [(0, 1), [0, 1], np.array([0, 1]), array.array("b", [0, 1])]
)
def test_scalar_setitem_series_with_nested_value(value, indexer_sli):
# For numeric data, we try to unpack and thus raise for mismatching length
ser = Series([1, 2, 3])
with pytest.raises(ValueError, match="setting an array element with a sequence"):
indexer_sli(ser)[0] = value
# but for object dtype we preserve the nested data and set as such
ser = Series([1, "a", "b"], dtype=object)
indexer_sli(ser)[0] = value
if isinstance(value, np.ndarray):
assert (ser.loc[0] == value).all()
else:
assert ser.loc[0] == value
@pytest.mark.parametrize(
"value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
)
def test_scalar_setitem_with_nested_value_length1(value):
# https://github.com/pandas-dev/pandas/issues/46268
# For numeric data, assigning length-1 array to scalar position gets unpacked
df = DataFrame({"A": [1, 2, 3]})
df.loc[0, "B"] = value
expected = DataFrame({"A": [1, 2, 3], "B": [0.0, np.nan, np.nan]})
tm.assert_frame_equal(df, expected)
# but for object dtype we preserve the nested data
df = DataFrame({"A": [1, 2, 3], "B": np.array([1, "a", "b"], dtype=object)})
df.loc[0, "B"] = value
if isinstance(value, np.ndarray):
assert (df.loc[0, "B"] == value).all()
else:
assert df.loc[0, "B"] == value
@pytest.mark.parametrize(
"value", [(0.0,), [0.0], np.array([0.0]), array.array("d", [0.0])]
)
def test_scalar_setitem_series_with_nested_value_length1(value, indexer_sli):
# For numeric data, assigning length-1 array to scalar position gets unpacked
# TODO this only happens in case of ndarray, should we make this consistent
# for all list-likes? (as happens for DataFrame.(i)loc, see test above)
ser = Series([1.0, 2.0, 3.0])
if isinstance(value, np.ndarray):
indexer_sli(ser)[0] = value
expected = Series([0.0, 2.0, 3.0])
tm.assert_series_equal(ser, expected)
else:
with pytest.raises(
ValueError, match="setting an array element with a sequence"
):
indexer_sli(ser)[0] = value
# but for object dtype we preserve the nested data
ser = Series([1, "a", "b"], dtype=object)
indexer_sli(ser)[0] = value
if isinstance(value, np.ndarray):
assert (ser.loc[0] == value).all()
else:
assert ser.loc[0] == value
def test_object_dtype_series_set_series_element():
# GH 48933
s1 = Series(dtype="O", index=["a", "b"])
s1["a"] = Series()
s1.loc["b"] = Series()
tm.assert_series_equal(s1.loc["a"], Series())
tm.assert_series_equal(s1.loc["b"], Series())
s2 = Series(dtype="O", index=["a", "b"])
s2.iloc[1] = Series()
tm.assert_series_equal(s2.iloc[1], Series())
|