File size: 6,699 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import re

import numpy as np
import pytest

from pandas._libs import index as libindex

import pandas as pd


@pytest.fixture(
    params=[
        (libindex.Int64Engine, np.int64),
        (libindex.Int32Engine, np.int32),
        (libindex.Int16Engine, np.int16),
        (libindex.Int8Engine, np.int8),
        (libindex.UInt64Engine, np.uint64),
        (libindex.UInt32Engine, np.uint32),
        (libindex.UInt16Engine, np.uint16),
        (libindex.UInt8Engine, np.uint8),
        (libindex.Float64Engine, np.float64),
        (libindex.Float32Engine, np.float32),
    ],
    ids=lambda x: x[0].__name__,
)
def numeric_indexing_engine_type_and_dtype(request):
    return request.param


class TestDatetimeEngine:
    @pytest.mark.parametrize(
        "scalar",
        [
            pd.Timedelta(pd.Timestamp("2016-01-01").asm8.view("m8[ns]")),
            pd.Timestamp("2016-01-01")._value,
            pd.Timestamp("2016-01-01").to_pydatetime(),
            pd.Timestamp("2016-01-01").to_datetime64(),
        ],
    )
    def test_not_contains_requires_timestamp(self, scalar):
        dti1 = pd.date_range("2016-01-01", periods=3)
        dti2 = dti1.insert(1, pd.NaT)  # non-monotonic
        dti3 = dti1.insert(3, dti1[0])  # non-unique
        dti4 = pd.date_range("2016-01-01", freq="ns", periods=2_000_000)
        dti5 = dti4.insert(0, dti4[0])  # over size threshold, not unique

        msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
        for dti in [dti1, dti2, dti3, dti4, dti5]:
            with pytest.raises(TypeError, match=msg):
                scalar in dti._engine

            with pytest.raises(KeyError, match=msg):
                dti._engine.get_loc(scalar)


class TestTimedeltaEngine:
    @pytest.mark.parametrize(
        "scalar",
        [
            pd.Timestamp(pd.Timedelta(days=42).asm8.view("datetime64[ns]")),
            pd.Timedelta(days=42)._value,
            pd.Timedelta(days=42).to_pytimedelta(),
            pd.Timedelta(days=42).to_timedelta64(),
        ],
    )
    def test_not_contains_requires_timedelta(self, scalar):
        tdi1 = pd.timedelta_range("42 days", freq="9h", periods=1234)
        tdi2 = tdi1.insert(1, pd.NaT)  # non-monotonic
        tdi3 = tdi1.insert(3, tdi1[0])  # non-unique
        tdi4 = pd.timedelta_range("42 days", freq="ns", periods=2_000_000)
        tdi5 = tdi4.insert(0, tdi4[0])  # over size threshold, not unique

        msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))])
        for tdi in [tdi1, tdi2, tdi3, tdi4, tdi5]:
            with pytest.raises(TypeError, match=msg):
                scalar in tdi._engine

            with pytest.raises(KeyError, match=msg):
                tdi._engine.get_loc(scalar)


class TestNumericEngine:
    def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype):
        engine_type, dtype = numeric_indexing_engine_type_and_dtype
        num = 1000
        arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype)

        # monotonic increasing
        engine = engine_type(arr)
        assert engine.is_monotonic_increasing is True
        assert engine.is_monotonic_decreasing is False

        # monotonic decreasing
        engine = engine_type(arr[::-1])
        assert engine.is_monotonic_increasing is False
        assert engine.is_monotonic_decreasing is True

        # neither monotonic increasing or decreasing
        arr = np.array([1] * num + [2] * num + [1] * num, dtype=dtype)
        engine = engine_type(arr[::-1])
        assert engine.is_monotonic_increasing is False
        assert engine.is_monotonic_decreasing is False

    def test_is_unique(self, numeric_indexing_engine_type_and_dtype):
        engine_type, dtype = numeric_indexing_engine_type_and_dtype

        # unique
        arr = np.array([1, 3, 2], dtype=dtype)
        engine = engine_type(arr)
        assert engine.is_unique is True

        # not unique
        arr = np.array([1, 2, 1], dtype=dtype)
        engine = engine_type(arr)
        assert engine.is_unique is False

    def test_get_loc(self, numeric_indexing_engine_type_and_dtype):
        engine_type, dtype = numeric_indexing_engine_type_and_dtype

        # unique
        arr = np.array([1, 2, 3], dtype=dtype)
        engine = engine_type(arr)
        assert engine.get_loc(2) == 1

        # monotonic
        num = 1000
        arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype)
        engine = engine_type(arr)
        assert engine.get_loc(2) == slice(1000, 2000)

        # not monotonic
        arr = np.array([1, 2, 3] * num, dtype=dtype)
        engine = engine_type(arr)
        expected = np.array([False, True, False] * num, dtype=bool)
        result = engine.get_loc(2)
        assert (result == expected).all()


class TestObjectEngine:
    engine_type = libindex.ObjectEngine
    dtype = np.object_
    values = list("abc")

    def test_is_monotonic(self):
        num = 1000
        arr = np.array(["a"] * num + ["a"] * num + ["c"] * num, dtype=self.dtype)

        # monotonic increasing
        engine = self.engine_type(arr)
        assert engine.is_monotonic_increasing is True
        assert engine.is_monotonic_decreasing is False

        # monotonic decreasing
        engine = self.engine_type(arr[::-1])
        assert engine.is_monotonic_increasing is False
        assert engine.is_monotonic_decreasing is True

        # neither monotonic increasing or decreasing
        arr = np.array(["a"] * num + ["b"] * num + ["a"] * num, dtype=self.dtype)
        engine = self.engine_type(arr[::-1])
        assert engine.is_monotonic_increasing is False
        assert engine.is_monotonic_decreasing is False

    def test_is_unique(self):
        # unique
        arr = np.array(self.values, dtype=self.dtype)
        engine = self.engine_type(arr)
        assert engine.is_unique is True

        # not unique
        arr = np.array(["a", "b", "a"], dtype=self.dtype)
        engine = self.engine_type(arr)
        assert engine.is_unique is False

    def test_get_loc(self):
        # unique
        arr = np.array(self.values, dtype=self.dtype)
        engine = self.engine_type(arr)
        assert engine.get_loc("b") == 1

        # monotonic
        num = 1000
        arr = np.array(["a"] * num + ["b"] * num + ["c"] * num, dtype=self.dtype)
        engine = self.engine_type(arr)
        assert engine.get_loc("b") == slice(1000, 2000)

        # not monotonic
        arr = np.array(self.values * num, dtype=self.dtype)
        engine = self.engine_type(arr)
        expected = np.array([False, True, False] * num, dtype=bool)
        result = engine.get_loc("b")
        assert (result == expected).all()