File size: 45,423 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
from __future__ import annotations

import re
import warnings

import numpy as np
import pytest

from pandas._libs import (
    NaT,
    OutOfBoundsDatetime,
    Timestamp,
)
from pandas._libs.tslibs.dtypes import freq_to_period_freqstr
from pandas.compat.numpy import np_version_gt2

import pandas as pd
from pandas import (
    DatetimeIndex,
    Period,
    PeriodIndex,
    TimedeltaIndex,
)
import pandas._testing as tm
from pandas.core.arrays import (
    DatetimeArray,
    NumpyExtensionArray,
    PeriodArray,
    TimedeltaArray,
)


# TODO: more freq variants
@pytest.fixture(params=["D", "B", "W", "ME", "QE", "YE"])
def freqstr(request):
    """Fixture returning parametrized frequency in string format."""
    return request.param


@pytest.fixture
def period_index(freqstr):
    """
    A fixture to provide PeriodIndex objects with different frequencies.

    Most PeriodArray behavior is already tested in PeriodIndex tests,
    so here we just test that the PeriodArray behavior matches
    the PeriodIndex behavior.
    """
    # TODO: non-monotone indexes; NaTs, different start dates
    with warnings.catch_warnings():
        # suppress deprecation of Period[B]
        warnings.filterwarnings(
            "ignore", message="Period with BDay freq", category=FutureWarning
        )
        freqstr = freq_to_period_freqstr(1, freqstr)
        pi = pd.period_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
    return pi


@pytest.fixture
def datetime_index(freqstr):
    """
    A fixture to provide DatetimeIndex objects with different frequencies.

    Most DatetimeArray behavior is already tested in DatetimeIndex tests,
    so here we just test that the DatetimeArray behavior matches
    the DatetimeIndex behavior.
    """
    # TODO: non-monotone indexes; NaTs, different start dates, timezones
    dti = pd.date_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
    return dti


@pytest.fixture
def timedelta_index():
    """
    A fixture to provide TimedeltaIndex objects with different frequencies.
     Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
    so here we just test that the TimedeltaArray behavior matches
    the TimedeltaIndex behavior.
    """
    # TODO: flesh this out
    return TimedeltaIndex(["1 Day", "3 Hours", "NaT"])


class SharedTests:
    index_cls: type[DatetimeIndex | PeriodIndex | TimedeltaIndex]

    @pytest.fixture
    def arr1d(self):
        """Fixture returning DatetimeArray with daily frequency."""
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
        if self.array_cls is PeriodArray:
            arr = self.array_cls(data, freq="D")
        else:
            arr = self.index_cls(data, freq="D")._data
        return arr

    def test_compare_len1_raises(self, arr1d):
        # make sure we raise when comparing with different lengths, specific
        #  to the case where one has length-1, which numpy would broadcast
        arr = arr1d
        idx = self.index_cls(arr)

        with pytest.raises(ValueError, match="Lengths must match"):
            arr == arr[:1]

        # test the index classes while we're at it, GH#23078
        with pytest.raises(ValueError, match="Lengths must match"):
            idx <= idx[[0]]

    @pytest.mark.parametrize(
        "result",
        [
            pd.date_range("2020", periods=3),
            pd.date_range("2020", periods=3, tz="UTC"),
            pd.timedelta_range("0 days", periods=3),
            pd.period_range("2020Q1", periods=3, freq="Q"),
        ],
    )
    def test_compare_with_Categorical(self, result):
        expected = pd.Categorical(result)
        assert all(result == expected)
        assert not any(result != expected)

    @pytest.mark.parametrize("reverse", [True, False])
    @pytest.mark.parametrize("as_index", [True, False])
    def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered):
        other = pd.Categorical(arr1d, ordered=ordered)
        if as_index:
            other = pd.CategoricalIndex(other)

        left, right = arr1d, other
        if reverse:
            left, right = right, left

        ones = np.ones(arr1d.shape, dtype=bool)
        zeros = ~ones

        result = left == right
        tm.assert_numpy_array_equal(result, ones)

        result = left != right
        tm.assert_numpy_array_equal(result, zeros)

        if not reverse and not as_index:
            # Otherwise Categorical raises TypeError bc it is not ordered
            # TODO: we should probably get the same behavior regardless?
            result = left < right
            tm.assert_numpy_array_equal(result, zeros)

            result = left <= right
            tm.assert_numpy_array_equal(result, ones)

            result = left > right
            tm.assert_numpy_array_equal(result, zeros)

            result = left >= right
            tm.assert_numpy_array_equal(result, ones)

    def test_take(self):
        data = np.arange(100, dtype="i8") * 24 * 3600 * 10**9
        np.random.default_rng(2).shuffle(data)

        if self.array_cls is PeriodArray:
            arr = PeriodArray(data, dtype="period[D]")
        else:
            arr = self.index_cls(data)._data
        idx = self.index_cls._simple_new(arr)

        takers = [1, 4, 94]
        result = arr.take(takers)
        expected = idx.take(takers)

        tm.assert_index_equal(self.index_cls(result), expected)

        takers = np.array([1, 4, 94])
        result = arr.take(takers)
        expected = idx.take(takers)

        tm.assert_index_equal(self.index_cls(result), expected)

    @pytest.mark.parametrize("fill_value", [2, 2.0, Timestamp(2021, 1, 1, 12).time])
    def test_take_fill_raises(self, fill_value, arr1d):
        msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
        with pytest.raises(TypeError, match=msg):
            arr1d.take([0, 1], allow_fill=True, fill_value=fill_value)

    def test_take_fill(self, arr1d):
        arr = arr1d

        result = arr.take([-1, 1], allow_fill=True, fill_value=None)
        assert result[0] is NaT

        result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
        assert result[0] is NaT

        result = arr.take([-1, 1], allow_fill=True, fill_value=NaT)
        assert result[0] is NaT

    @pytest.mark.filterwarnings(
        "ignore:Period with BDay freq is deprecated:FutureWarning"
    )
    def test_take_fill_str(self, arr1d):
        # Cast str fill_value matching other fill_value-taking methods
        result = arr1d.take([-1, 1], allow_fill=True, fill_value=str(arr1d[-1]))
        expected = arr1d[[-1, 1]]
        tm.assert_equal(result, expected)

        msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
        with pytest.raises(TypeError, match=msg):
            arr1d.take([-1, 1], allow_fill=True, fill_value="foo")

    def test_concat_same_type(self, arr1d):
        arr = arr1d
        idx = self.index_cls(arr)
        idx = idx.insert(0, NaT)
        arr = arr1d

        result = arr._concat_same_type([arr[:-1], arr[1:], arr])
        arr2 = arr.astype(object)
        expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]))

        tm.assert_index_equal(self.index_cls(result), expected)

    def test_unbox_scalar(self, arr1d):
        result = arr1d._unbox_scalar(arr1d[0])
        expected = arr1d._ndarray.dtype.type
        assert isinstance(result, expected)

        result = arr1d._unbox_scalar(NaT)
        assert isinstance(result, expected)

        msg = f"'value' should be a {self.scalar_type.__name__}."
        with pytest.raises(ValueError, match=msg):
            arr1d._unbox_scalar("foo")

    def test_check_compatible_with(self, arr1d):
        arr1d._check_compatible_with(arr1d[0])
        arr1d._check_compatible_with(arr1d[:1])
        arr1d._check_compatible_with(NaT)

    def test_scalar_from_string(self, arr1d):
        result = arr1d._scalar_from_string(str(arr1d[0]))
        assert result == arr1d[0]

    def test_reduce_invalid(self, arr1d):
        msg = "does not support reduction 'not a method'"
        with pytest.raises(TypeError, match=msg):
            arr1d._reduce("not a method")

    @pytest.mark.parametrize("method", ["pad", "backfill"])
    def test_fillna_method_doesnt_change_orig(self, method):
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
        if self.array_cls is PeriodArray:
            arr = self.array_cls(data, dtype="period[D]")
        else:
            arr = self.array_cls._from_sequence(data)
        arr[4] = NaT

        fill_value = arr[3] if method == "pad" else arr[5]

        result = arr._pad_or_backfill(method=method)
        assert result[4] == fill_value

        # check that the original was not changed
        assert arr[4] is NaT

    def test_searchsorted(self):
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
        if self.array_cls is PeriodArray:
            arr = self.array_cls(data, dtype="period[D]")
        else:
            arr = self.array_cls._from_sequence(data)

        # scalar
        result = arr.searchsorted(arr[1])
        assert result == 1

        result = arr.searchsorted(arr[2], side="right")
        assert result == 3

        # own-type
        result = arr.searchsorted(arr[1:3])
        expected = np.array([1, 2], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)

        result = arr.searchsorted(arr[1:3], side="right")
        expected = np.array([2, 3], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)

        # GH#29884 match numpy convention on whether NaT goes
        #  at the end or the beginning
        result = arr.searchsorted(NaT)
        assert result == 10

    @pytest.mark.parametrize("box", [None, "index", "series"])
    def test_searchsorted_castable_strings(self, arr1d, box, string_storage):
        arr = arr1d
        if box is None:
            pass
        elif box == "index":
            # Test the equivalent Index.searchsorted method while we're here
            arr = self.index_cls(arr)
        else:
            # Test the equivalent Series.searchsorted method while we're here
            arr = pd.Series(arr)

        # scalar
        result = arr.searchsorted(str(arr[1]))
        assert result == 1

        result = arr.searchsorted(str(arr[2]), side="right")
        assert result == 3

        result = arr.searchsorted([str(x) for x in arr[1:3]])
        expected = np.array([1, 2], dtype=np.intp)
        tm.assert_numpy_array_equal(result, expected)

        with pytest.raises(
            TypeError,
            match=re.escape(
                f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
                "or array of those. Got 'str' instead."
            ),
        ):
            arr.searchsorted("foo")

        with pd.option_context("string_storage", string_storage):
            with pytest.raises(
                TypeError,
                match=re.escape(
                    f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
                    "or array of those. Got string array instead."
                ),
            ):
                arr.searchsorted([str(arr[1]), "baz"])

    def test_getitem_near_implementation_bounds(self):
        # We only check tz-naive for DTA bc the bounds are slightly different
        #  for other tzs
        i8vals = np.asarray([NaT._value + n for n in range(1, 5)], dtype="i8")
        if self.array_cls is PeriodArray:
            arr = self.array_cls(i8vals, dtype="period[ns]")
        else:
            arr = self.index_cls(i8vals, freq="ns")._data
        arr[0]  # should not raise OutOfBoundsDatetime

        index = pd.Index(arr)
        index[0]  # should not raise OutOfBoundsDatetime

        ser = pd.Series(arr)
        ser[0]  # should not raise OutOfBoundsDatetime

    def test_getitem_2d(self, arr1d):
        # 2d slicing on a 1D array
        expected = type(arr1d)._simple_new(
            arr1d._ndarray[:, np.newaxis], dtype=arr1d.dtype
        )
        result = arr1d[:, np.newaxis]
        tm.assert_equal(result, expected)

        # Lookup on a 2D array
        arr2d = expected
        expected = type(arr2d)._simple_new(arr2d._ndarray[:3, 0], dtype=arr2d.dtype)
        result = arr2d[:3, 0]
        tm.assert_equal(result, expected)

        # Scalar lookup
        result = arr2d[-1, 0]
        expected = arr1d[-1]
        assert result == expected

    def test_iter_2d(self, arr1d):
        data2d = arr1d._ndarray[:3, np.newaxis]
        arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
        result = list(arr2d)
        assert len(result) == 3
        for x in result:
            assert isinstance(x, type(arr1d))
            assert x.ndim == 1
            assert x.dtype == arr1d.dtype

    def test_repr_2d(self, arr1d):
        data2d = arr1d._ndarray[:3, np.newaxis]
        arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)

        result = repr(arr2d)

        if isinstance(arr2d, TimedeltaArray):
            expected = (
                f"<{type(arr2d).__name__}>\n"
                "[\n"
                f"['{arr1d[0]._repr_base()}'],\n"
                f"['{arr1d[1]._repr_base()}'],\n"
                f"['{arr1d[2]._repr_base()}']\n"
                "]\n"
                f"Shape: (3, 1), dtype: {arr1d.dtype}"
            )
        else:
            expected = (
                f"<{type(arr2d).__name__}>\n"
                "[\n"
                f"['{arr1d[0]}'],\n"
                f"['{arr1d[1]}'],\n"
                f"['{arr1d[2]}']\n"
                "]\n"
                f"Shape: (3, 1), dtype: {arr1d.dtype}"
            )

        assert result == expected

    def test_setitem(self):
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
        if self.array_cls is PeriodArray:
            arr = self.array_cls(data, dtype="period[D]")
        else:
            arr = self.index_cls(data, freq="D")._data

        arr[0] = arr[1]
        expected = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
        expected[0] = expected[1]

        tm.assert_numpy_array_equal(arr.asi8, expected)

        arr[:2] = arr[-2:]
        expected[:2] = expected[-2:]
        tm.assert_numpy_array_equal(arr.asi8, expected)

    @pytest.mark.parametrize(
        "box",
        [
            pd.Index,
            pd.Series,
            np.array,
            list,
            NumpyExtensionArray,
        ],
    )
    def test_setitem_object_dtype(self, box, arr1d):
        expected = arr1d.copy()[::-1]
        if expected.dtype.kind in ["m", "M"]:
            expected = expected._with_freq(None)

        vals = expected
        if box is list:
            vals = list(vals)
        elif box is np.array:
            # if we do np.array(x).astype(object) then dt64 and td64 cast to ints
            vals = np.array(vals.astype(object))
        elif box is NumpyExtensionArray:
            vals = box(np.asarray(vals, dtype=object))
        else:
            vals = box(vals).astype(object)

        arr1d[:] = vals

        tm.assert_equal(arr1d, expected)

    def test_setitem_strs(self, arr1d):
        # Check that we parse strs in both scalar and listlike

        # Setting list-like of strs
        expected = arr1d.copy()
        expected[[0, 1]] = arr1d[-2:]

        result = arr1d.copy()
        result[:2] = [str(x) for x in arr1d[-2:]]
        tm.assert_equal(result, expected)

        # Same thing but now for just a scalar str
        expected = arr1d.copy()
        expected[0] = arr1d[-1]

        result = arr1d.copy()
        result[0] = str(arr1d[-1])
        tm.assert_equal(result, expected)

    @pytest.mark.parametrize("as_index", [True, False])
    def test_setitem_categorical(self, arr1d, as_index):
        expected = arr1d.copy()[::-1]
        if not isinstance(expected, PeriodArray):
            expected = expected._with_freq(None)

        cat = pd.Categorical(arr1d)
        if as_index:
            cat = pd.CategoricalIndex(cat)

        arr1d[:] = cat[::-1]

        tm.assert_equal(arr1d, expected)

    def test_setitem_raises(self, arr1d):
        arr = arr1d[:10]
        val = arr[0]

        with pytest.raises(IndexError, match="index 12 is out of bounds"):
            arr[12] = val

        with pytest.raises(TypeError, match="value should be a.* 'object'"):
            arr[0] = object()

        msg = "cannot set using a list-like indexer with a different length"
        with pytest.raises(ValueError, match=msg):
            # GH#36339
            arr[[]] = [arr[1]]

        msg = "cannot set using a slice indexer with a different length than"
        with pytest.raises(ValueError, match=msg):
            # GH#36339
            arr[1:1] = arr[:3]

    @pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series])
    def test_setitem_numeric_raises(self, arr1d, box):
        # We dont case e.g. int64 to our own dtype for setitem

        msg = (
            f"value should be a '{arr1d._scalar_type.__name__}', "
            "'NaT', or array of those. Got"
        )
        with pytest.raises(TypeError, match=msg):
            arr1d[:2] = box([0, 1])

        with pytest.raises(TypeError, match=msg):
            arr1d[:2] = box([0.0, 1.0])

    def test_inplace_arithmetic(self):
        # GH#24115 check that iadd and isub are actually in-place
        data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
        if self.array_cls is PeriodArray:
            arr = self.array_cls(data, dtype="period[D]")
        else:
            arr = self.index_cls(data, freq="D")._data

        expected = arr + pd.Timedelta(days=1)
        arr += pd.Timedelta(days=1)
        tm.assert_equal(arr, expected)

        expected = arr - pd.Timedelta(days=1)
        arr -= pd.Timedelta(days=1)
        tm.assert_equal(arr, expected)

    def test_shift_fill_int_deprecated(self, arr1d):
        # GH#31971, enforced in 2.0
        with pytest.raises(TypeError, match="value should be a"):
            arr1d.shift(1, fill_value=1)

    def test_median(self, arr1d):
        arr = arr1d
        if len(arr) % 2 == 0:
            # make it easier to define `expected`
            arr = arr[:-1]

        expected = arr[len(arr) // 2]

        result = arr.median()
        assert type(result) is type(expected)
        assert result == expected

        arr[len(arr) // 2] = NaT
        if not isinstance(expected, Period):
            expected = arr[len(arr) // 2 - 1 : len(arr) // 2 + 2].mean()

        assert arr.median(skipna=False) is NaT

        result = arr.median()
        assert type(result) is type(expected)
        assert result == expected

        assert arr[:0].median() is NaT
        assert arr[:0].median(skipna=False) is NaT

        # 2d Case
        arr2 = arr.reshape(-1, 1)

        result = arr2.median(axis=None)
        assert type(result) is type(expected)
        assert result == expected

        assert arr2.median(axis=None, skipna=False) is NaT

        result = arr2.median(axis=0)
        expected2 = type(arr)._from_sequence([expected], dtype=arr.dtype)
        tm.assert_equal(result, expected2)

        result = arr2.median(axis=0, skipna=False)
        expected2 = type(arr)._from_sequence([NaT], dtype=arr.dtype)
        tm.assert_equal(result, expected2)

        result = arr2.median(axis=1)
        tm.assert_equal(result, arr)

        result = arr2.median(axis=1, skipna=False)
        tm.assert_equal(result, arr)

    def test_from_integer_array(self):
        arr = np.array([1, 2, 3], dtype=np.int64)
        data = pd.array(arr, dtype="Int64")
        if self.array_cls is PeriodArray:
            expected = self.array_cls(arr, dtype=self.example_dtype)
            result = self.array_cls(data, dtype=self.example_dtype)
        else:
            expected = self.array_cls._from_sequence(arr, dtype=self.example_dtype)
            result = self.array_cls._from_sequence(data, dtype=self.example_dtype)

        tm.assert_extension_array_equal(result, expected)


class TestDatetimeArray(SharedTests):
    index_cls = DatetimeIndex
    array_cls = DatetimeArray
    scalar_type = Timestamp
    example_dtype = "M8[ns]"

    @pytest.fixture
    def arr1d(self, tz_naive_fixture, freqstr):
        """
        Fixture returning DatetimeArray with parametrized frequency and
        timezones
        """
        tz = tz_naive_fixture
        dti = pd.date_range("2016-01-01 01:01:00", periods=5, freq=freqstr, tz=tz)
        dta = dti._data
        return dta

    def test_round(self, arr1d):
        # GH#24064
        dti = self.index_cls(arr1d)

        result = dti.round(freq="2min")
        expected = dti - pd.Timedelta(minutes=1)
        expected = expected._with_freq(None)
        tm.assert_index_equal(result, expected)

        dta = dti._data
        result = dta.round(freq="2min")
        expected = expected._data._with_freq(None)
        tm.assert_datetime_array_equal(result, expected)

    def test_array_interface(self, datetime_index):
        arr = datetime_index._data
        copy_false = None if np_version_gt2 else False

        # default asarray gives the same underlying data (for tz naive)
        result = np.asarray(arr)
        expected = arr._ndarray
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)
        result = np.array(arr, copy=copy_false)
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)

        # specifying M8[ns] gives the same result as default
        result = np.asarray(arr, dtype="datetime64[ns]")
        expected = arr._ndarray
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)
        result = np.array(arr, dtype="datetime64[ns]", copy=copy_false)
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)
        result = np.array(arr, dtype="datetime64[ns]")
        if not np_version_gt2:
            # TODO: GH 57739
            assert result is not expected
        tm.assert_numpy_array_equal(result, expected)

        # to object dtype
        result = np.asarray(arr, dtype=object)
        expected = np.array(list(arr), dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        # to other dtype always copies
        result = np.asarray(arr, dtype="int64")
        assert result is not arr.asi8
        assert not np.may_share_memory(arr, result)
        expected = arr.asi8.copy()
        tm.assert_numpy_array_equal(result, expected)

        # other dtypes handled by numpy
        for dtype in ["float64", str]:
            result = np.asarray(arr, dtype=dtype)
            expected = np.asarray(arr).astype(dtype)
            tm.assert_numpy_array_equal(result, expected)

    def test_array_object_dtype(self, arr1d):
        # GH#23524
        arr = arr1d
        dti = self.index_cls(arr1d)

        expected = np.array(list(dti))

        result = np.array(arr, dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        # also test the DatetimeIndex method while we're at it
        result = np.array(dti, dtype=object)
        tm.assert_numpy_array_equal(result, expected)

    def test_array_tz(self, arr1d):
        # GH#23524
        arr = arr1d
        dti = self.index_cls(arr1d)
        copy_false = None if np_version_gt2 else False

        expected = dti.asi8.view("M8[ns]")
        result = np.array(arr, dtype="M8[ns]")
        tm.assert_numpy_array_equal(result, expected)

        result = np.array(arr, dtype="datetime64[ns]")
        tm.assert_numpy_array_equal(result, expected)

        # check that we are not making copies when setting copy=copy_false
        result = np.array(arr, dtype="M8[ns]", copy=copy_false)
        assert result.base is expected.base
        assert result.base is not None
        result = np.array(arr, dtype="datetime64[ns]", copy=copy_false)
        assert result.base is expected.base
        assert result.base is not None

    def test_array_i8_dtype(self, arr1d):
        arr = arr1d
        dti = self.index_cls(arr1d)
        copy_false = None if np_version_gt2 else False

        expected = dti.asi8
        result = np.array(arr, dtype="i8")
        tm.assert_numpy_array_equal(result, expected)

        result = np.array(arr, dtype=np.int64)
        tm.assert_numpy_array_equal(result, expected)

        # check that we are still making copies when setting copy=copy_false
        result = np.array(arr, dtype="i8", copy=copy_false)
        assert result.base is not expected.base
        assert result.base is None

    def test_from_array_keeps_base(self):
        # Ensure that DatetimeArray._ndarray.base isn't lost.
        arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
        dta = DatetimeArray._from_sequence(arr)

        assert dta._ndarray is arr
        dta = DatetimeArray._from_sequence(arr[:0])
        assert dta._ndarray.base is arr

    def test_from_dti(self, arr1d):
        arr = arr1d
        dti = self.index_cls(arr1d)
        assert list(dti) == list(arr)

        # Check that Index.__new__ knows what to do with DatetimeArray
        dti2 = pd.Index(arr)
        assert isinstance(dti2, DatetimeIndex)
        assert list(dti2) == list(arr)

    def test_astype_object(self, arr1d):
        arr = arr1d
        dti = self.index_cls(arr1d)

        asobj = arr.astype("O")
        assert isinstance(asobj, np.ndarray)
        assert asobj.dtype == "O"
        assert list(asobj) == list(dti)

    @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
    def test_to_period(self, datetime_index, freqstr):
        dti = datetime_index
        arr = dti._data

        freqstr = freq_to_period_freqstr(1, freqstr)
        expected = dti.to_period(freq=freqstr)
        result = arr.to_period(freq=freqstr)
        assert isinstance(result, PeriodArray)

        tm.assert_equal(result, expected._data)

    def test_to_period_2d(self, arr1d):
        arr2d = arr1d.reshape(1, -1)

        warn = None if arr1d.tz is None else UserWarning
        with tm.assert_produces_warning(warn):
            result = arr2d.to_period("D")
            expected = arr1d.to_period("D").reshape(1, -1)
        tm.assert_period_array_equal(result, expected)

    @pytest.mark.parametrize("propname", DatetimeArray._bool_ops)
    def test_bool_properties(self, arr1d, propname):
        # in this case _bool_ops is just `is_leap_year`
        dti = self.index_cls(arr1d)
        arr = arr1d
        assert dti.freq == arr.freq

        result = getattr(arr, propname)
        expected = np.array(getattr(dti, propname), dtype=result.dtype)

        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize("propname", DatetimeArray._field_ops)
    def test_int_properties(self, arr1d, propname):
        dti = self.index_cls(arr1d)
        arr = arr1d

        result = getattr(arr, propname)
        expected = np.array(getattr(dti, propname), dtype=result.dtype)

        tm.assert_numpy_array_equal(result, expected)

    def test_take_fill_valid(self, arr1d, fixed_now_ts):
        arr = arr1d
        dti = self.index_cls(arr1d)

        now = fixed_now_ts.tz_localize(dti.tz)
        result = arr.take([-1, 1], allow_fill=True, fill_value=now)
        assert result[0] == now

        msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
        with pytest.raises(TypeError, match=msg):
            # fill_value Timedelta invalid
            arr.take([-1, 1], allow_fill=True, fill_value=now - now)

        with pytest.raises(TypeError, match=msg):
            # fill_value Period invalid
            arr.take([-1, 1], allow_fill=True, fill_value=Period("2014Q1"))

        tz = None if dti.tz is not None else "US/Eastern"
        now = fixed_now_ts.tz_localize(tz)
        msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
        with pytest.raises(TypeError, match=msg):
            # Timestamp with mismatched tz-awareness
            arr.take([-1, 1], allow_fill=True, fill_value=now)

        value = NaT._value
        msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
        with pytest.raises(TypeError, match=msg):
            # require NaT, not iNaT, as it could be confused with an integer
            arr.take([-1, 1], allow_fill=True, fill_value=value)

        value = np.timedelta64("NaT", "ns")
        with pytest.raises(TypeError, match=msg):
            # require appropriate-dtype if we have a NA value
            arr.take([-1, 1], allow_fill=True, fill_value=value)

        if arr.tz is not None:
            # GH#37356
            # Assuming here that arr1d fixture does not include Australia/Melbourne
            value = fixed_now_ts.tz_localize("Australia/Melbourne")
            result = arr.take([-1, 1], allow_fill=True, fill_value=value)

            expected = arr.take(
                [-1, 1],
                allow_fill=True,
                fill_value=value.tz_convert(arr.dtype.tz),
            )
            tm.assert_equal(result, expected)

    def test_concat_same_type_invalid(self, arr1d):
        # different timezones
        arr = arr1d

        if arr.tz is None:
            other = arr.tz_localize("UTC")
        else:
            other = arr.tz_localize(None)

        with pytest.raises(ValueError, match="to_concat must have the same"):
            arr._concat_same_type([arr, other])

    def test_concat_same_type_different_freq(self, unit):
        # we *can* concatenate DTI with different freqs.
        a = pd.date_range("2000", periods=2, freq="D", tz="US/Central", unit=unit)._data
        b = pd.date_range("2000", periods=2, freq="h", tz="US/Central", unit=unit)._data
        result = DatetimeArray._concat_same_type([a, b])
        expected = (
            pd.to_datetime(
                [
                    "2000-01-01 00:00:00",
                    "2000-01-02 00:00:00",
                    "2000-01-01 00:00:00",
                    "2000-01-01 01:00:00",
                ]
            )
            .tz_localize("US/Central")
            .as_unit(unit)
            ._data
        )

        tm.assert_datetime_array_equal(result, expected)

    def test_strftime(self, arr1d):
        arr = arr1d

        result = arr.strftime("%Y %b")
        expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object)
        tm.assert_numpy_array_equal(result, expected)

    def test_strftime_nat(self):
        # GH 29578
        arr = DatetimeIndex(["2019-01-01", NaT])._data

        result = arr.strftime("%Y-%m-%d")
        expected = np.array(["2019-01-01", np.nan], dtype=object)
        tm.assert_numpy_array_equal(result, expected)


class TestTimedeltaArray(SharedTests):
    index_cls = TimedeltaIndex
    array_cls = TimedeltaArray
    scalar_type = pd.Timedelta
    example_dtype = "m8[ns]"

    def test_from_tdi(self):
        tdi = TimedeltaIndex(["1 Day", "3 Hours"])
        arr = tdi._data
        assert list(arr) == list(tdi)

        # Check that Index.__new__ knows what to do with TimedeltaArray
        tdi2 = pd.Index(arr)
        assert isinstance(tdi2, TimedeltaIndex)
        assert list(tdi2) == list(arr)

    def test_astype_object(self):
        tdi = TimedeltaIndex(["1 Day", "3 Hours"])
        arr = tdi._data
        asobj = arr.astype("O")
        assert isinstance(asobj, np.ndarray)
        assert asobj.dtype == "O"
        assert list(asobj) == list(tdi)

    def test_to_pytimedelta(self, timedelta_index):
        tdi = timedelta_index
        arr = tdi._data

        expected = tdi.to_pytimedelta()
        result = arr.to_pytimedelta()

        tm.assert_numpy_array_equal(result, expected)

    def test_total_seconds(self, timedelta_index):
        tdi = timedelta_index
        arr = tdi._data

        expected = tdi.total_seconds()
        result = arr.total_seconds()

        tm.assert_numpy_array_equal(result, expected.values)

    @pytest.mark.parametrize("propname", TimedeltaArray._field_ops)
    def test_int_properties(self, timedelta_index, propname):
        tdi = timedelta_index
        arr = tdi._data

        result = getattr(arr, propname)
        expected = np.array(getattr(tdi, propname), dtype=result.dtype)

        tm.assert_numpy_array_equal(result, expected)

    def test_array_interface(self, timedelta_index):
        arr = timedelta_index._data
        copy_false = None if np_version_gt2 else False

        # default asarray gives the same underlying data
        result = np.asarray(arr)
        expected = arr._ndarray
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)
        result = np.array(arr, copy=copy_false)
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)

        # specifying m8[ns] gives the same result as default
        result = np.asarray(arr, dtype="timedelta64[ns]")
        expected = arr._ndarray
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)
        result = np.array(arr, dtype="timedelta64[ns]", copy=copy_false)
        assert result is expected
        tm.assert_numpy_array_equal(result, expected)
        result = np.array(arr, dtype="timedelta64[ns]")
        if not np_version_gt2:
            # TODO: GH 57739
            assert result is not expected
        tm.assert_numpy_array_equal(result, expected)

        # to object dtype
        result = np.asarray(arr, dtype=object)
        expected = np.array(list(arr), dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        # to other dtype always copies
        result = np.asarray(arr, dtype="int64")
        assert result is not arr.asi8
        assert not np.may_share_memory(arr, result)
        expected = arr.asi8.copy()
        tm.assert_numpy_array_equal(result, expected)

        # other dtypes handled by numpy
        for dtype in ["float64", str]:
            result = np.asarray(arr, dtype=dtype)
            expected = np.asarray(arr).astype(dtype)
            tm.assert_numpy_array_equal(result, expected)

    def test_take_fill_valid(self, timedelta_index, fixed_now_ts):
        tdi = timedelta_index
        arr = tdi._data

        td1 = pd.Timedelta(days=1)
        result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
        assert result[0] == td1

        value = fixed_now_ts
        msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got"
        with pytest.raises(TypeError, match=msg):
            # fill_value Timestamp invalid
            arr.take([0, 1], allow_fill=True, fill_value=value)

        value = fixed_now_ts.to_period("D")
        with pytest.raises(TypeError, match=msg):
            # fill_value Period invalid
            arr.take([0, 1], allow_fill=True, fill_value=value)

        value = np.datetime64("NaT", "ns")
        with pytest.raises(TypeError, match=msg):
            # require appropriate-dtype if we have a NA value
            arr.take([-1, 1], allow_fill=True, fill_value=value)


@pytest.mark.filterwarnings(r"ignore:Period with BDay freq is deprecated:FutureWarning")
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
class TestPeriodArray(SharedTests):
    index_cls = PeriodIndex
    array_cls = PeriodArray
    scalar_type = Period
    example_dtype = PeriodIndex([], freq="W").dtype

    @pytest.fixture
    def arr1d(self, period_index):
        """
        Fixture returning DatetimeArray from parametrized PeriodIndex objects
        """
        return period_index._data

    def test_from_pi(self, arr1d):
        pi = self.index_cls(arr1d)
        arr = arr1d
        assert list(arr) == list(pi)

        # Check that Index.__new__ knows what to do with PeriodArray
        pi2 = pd.Index(arr)
        assert isinstance(pi2, PeriodIndex)
        assert list(pi2) == list(arr)

    def test_astype_object(self, arr1d):
        pi = self.index_cls(arr1d)
        arr = arr1d
        asobj = arr.astype("O")
        assert isinstance(asobj, np.ndarray)
        assert asobj.dtype == "O"
        assert list(asobj) == list(pi)

    def test_take_fill_valid(self, arr1d):
        arr = arr1d

        value = NaT._value
        msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
        with pytest.raises(TypeError, match=msg):
            # require NaT, not iNaT, as it could be confused with an integer
            arr.take([-1, 1], allow_fill=True, fill_value=value)

        value = np.timedelta64("NaT", "ns")
        with pytest.raises(TypeError, match=msg):
            # require appropriate-dtype if we have a NA value
            arr.take([-1, 1], allow_fill=True, fill_value=value)

    @pytest.mark.parametrize("how", ["S", "E"])
    def test_to_timestamp(self, how, arr1d):
        pi = self.index_cls(arr1d)
        arr = arr1d

        expected = DatetimeIndex(pi.to_timestamp(how=how))._data
        result = arr.to_timestamp(how=how)
        assert isinstance(result, DatetimeArray)

        tm.assert_equal(result, expected)

    def test_to_timestamp_roundtrip_bday(self):
        # Case where infer_freq inside would choose "D" instead of "B"
        dta = pd.date_range("2021-10-18", periods=3, freq="B")._data
        parr = dta.to_period()
        result = parr.to_timestamp()
        assert result.freq == "B"
        tm.assert_extension_array_equal(result, dta)

        dta2 = dta[::2]
        parr2 = dta2.to_period()
        result2 = parr2.to_timestamp()
        assert result2.freq == "2B"
        tm.assert_extension_array_equal(result2, dta2)

        parr3 = dta.to_period("2B")
        result3 = parr3.to_timestamp()
        assert result3.freq == "B"
        tm.assert_extension_array_equal(result3, dta)

    def test_to_timestamp_out_of_bounds(self):
        # GH#19643 previously overflowed silently
        pi = pd.period_range("1500", freq="Y", periods=3)
        msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00"
        with pytest.raises(OutOfBoundsDatetime, match=msg):
            pi.to_timestamp()

        with pytest.raises(OutOfBoundsDatetime, match=msg):
            pi._data.to_timestamp()

    @pytest.mark.parametrize("propname", PeriodArray._bool_ops)
    def test_bool_properties(self, arr1d, propname):
        # in this case _bool_ops is just `is_leap_year`
        pi = self.index_cls(arr1d)
        arr = arr1d

        result = getattr(arr, propname)
        expected = np.array(getattr(pi, propname))

        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize("propname", PeriodArray._field_ops)
    def test_int_properties(self, arr1d, propname):
        pi = self.index_cls(arr1d)
        arr = arr1d

        result = getattr(arr, propname)
        expected = np.array(getattr(pi, propname))

        tm.assert_numpy_array_equal(result, expected)

    def test_array_interface(self, arr1d):
        arr = arr1d

        # default asarray gives objects
        result = np.asarray(arr)
        expected = np.array(list(arr), dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        # to object dtype (same as default)
        result = np.asarray(arr, dtype=object)
        tm.assert_numpy_array_equal(result, expected)

        result = np.asarray(arr, dtype="int64")
        tm.assert_numpy_array_equal(result, arr.asi8)

        # to other dtypes
        msg = r"float\(\) argument must be a string or a( real)? number, not 'Period'"
        with pytest.raises(TypeError, match=msg):
            np.asarray(arr, dtype="float64")

        result = np.asarray(arr, dtype="S20")
        expected = np.asarray(arr).astype("S20")
        tm.assert_numpy_array_equal(result, expected)

    def test_strftime(self, arr1d):
        arr = arr1d

        result = arr.strftime("%Y")
        expected = np.array([per.strftime("%Y") for per in arr], dtype=object)
        tm.assert_numpy_array_equal(result, expected)

    def test_strftime_nat(self):
        # GH 29578
        arr = PeriodArray(PeriodIndex(["2019-01-01", NaT], dtype="period[D]"))

        result = arr.strftime("%Y-%m-%d")
        expected = np.array(["2019-01-01", np.nan], dtype=object)
        tm.assert_numpy_array_equal(result, expected)


@pytest.mark.parametrize(
    "arr,casting_nats",
    [
        (
            TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
            (NaT, np.timedelta64("NaT", "ns")),
        ),
        (
            pd.date_range("2000-01-01", periods=3, freq="D")._data,
            (NaT, np.datetime64("NaT", "ns")),
        ),
        (pd.period_range("2000-01-01", periods=3, freq="D")._data, (NaT,)),
    ],
    ids=lambda x: type(x).__name__,
)
def test_casting_nat_setitem_array(arr, casting_nats):
    expected = type(arr)._from_sequence([NaT, arr[1], arr[2]], dtype=arr.dtype)

    for nat in casting_nats:
        arr = arr.copy()
        arr[0] = nat
        tm.assert_equal(arr, expected)


@pytest.mark.parametrize(
    "arr,non_casting_nats",
    [
        (
            TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
            (np.datetime64("NaT", "ns"), NaT._value),
        ),
        (
            pd.date_range("2000-01-01", periods=3, freq="D")._data,
            (np.timedelta64("NaT", "ns"), NaT._value),
        ),
        (
            pd.period_range("2000-01-01", periods=3, freq="D")._data,
            (np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), NaT._value),
        ),
    ],
    ids=lambda x: type(x).__name__,
)
def test_invalid_nat_setitem_array(arr, non_casting_nats):
    msg = (
        "value should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. "
        "Got '(timedelta64|datetime64|int)' instead."
    )

    for nat in non_casting_nats:
        with pytest.raises(TypeError, match=msg):
            arr[0] = nat


@pytest.mark.parametrize(
    "arr",
    [
        pd.date_range("2000", periods=4).array,
        pd.timedelta_range("2000", periods=4).array,
    ],
)
def test_to_numpy_extra(arr):
    arr[0] = NaT
    original = arr.copy()

    result = arr.to_numpy()
    assert np.isnan(result[0])

    result = arr.to_numpy(dtype="int64")
    assert result[0] == -9223372036854775808

    result = arr.to_numpy(dtype="int64", na_value=0)
    assert result[0] == 0

    result = arr.to_numpy(na_value=arr[1].to_numpy())
    assert result[0] == result[1]

    result = arr.to_numpy(na_value=arr[1].to_numpy(copy=False))
    assert result[0] == result[1]

    tm.assert_equal(arr, original)


@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize(
    "values",
    [
        pd.to_datetime(["2020-01-01", "2020-02-01"]),
        pd.to_timedelta([1, 2], unit="D"),
        PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
    ],
)
@pytest.mark.parametrize(
    "klass",
    [
        list,
        np.array,
        pd.array,
        pd.Series,
        pd.Index,
        pd.Categorical,
        pd.CategoricalIndex,
    ],
)
def test_searchsorted_datetimelike_with_listlike(values, klass, as_index):
    # https://github.com/pandas-dev/pandas/issues/32762
    if not as_index:
        values = values._data

    result = values.searchsorted(klass(values))
    expected = np.array([0, 1], dtype=result.dtype)

    tm.assert_numpy_array_equal(result, expected)


@pytest.mark.parametrize(
    "values",
    [
        pd.to_datetime(["2020-01-01", "2020-02-01"]),
        pd.to_timedelta([1, 2], unit="D"),
        PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
    ],
)
@pytest.mark.parametrize(
    "arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2]
)
def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg):
    # https://github.com/pandas-dev/pandas/issues/32762
    msg = "[Unexpected type|Cannot compare]"
    with pytest.raises(TypeError, match=msg):
        values.searchsorted(arg)


@pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series])
def test_period_index_construction_from_strings(klass):
    # https://github.com/pandas-dev/pandas/issues/26109
    strings = ["2020Q1", "2020Q2"] * 2
    data = klass(strings)
    result = PeriodIndex(data, freq="Q")
    expected = PeriodIndex([Period(s) for s in strings])
    tm.assert_index_equal(result, expected)


@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
def test_from_pandas_array(dtype):
    # GH#24615
    data = np.array([1, 2, 3], dtype=dtype)
    arr = NumpyExtensionArray(data)

    cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype]

    depr_msg = f"{cls.__name__}.__init__ is deprecated"
    with tm.assert_produces_warning(FutureWarning, match=depr_msg):
        result = cls(arr)
        expected = cls(data)
    tm.assert_extension_array_equal(result, expected)

    result = cls._from_sequence(arr, dtype=dtype)
    expected = cls._from_sequence(data, dtype=dtype)
    tm.assert_extension_array_equal(result, expected)

    func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype]
    result = func(arr).array
    expected = func(data).array
    tm.assert_equal(result, expected)

    # Let's check the Indexes while we're here
    idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype]
    result = idx_cls(arr)
    expected = idx_cls(data)
    tm.assert_index_equal(result, expected)