File size: 18,261 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Literal,
NamedTuple,
)
import warnings
from matplotlib.artist import setp
import numpy as np
from pandas._libs import lib
from pandas.util._decorators import cache_readonly
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import is_dict_like
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.dtypes.missing import remove_na_arraylike
import pandas as pd
import pandas.core.common as com
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import (
LinePlot,
MPLPlot,
)
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by
from pandas.plotting._matplotlib.style import get_standard_colors
from pandas.plotting._matplotlib.tools import (
create_subplots,
flatten_axes,
maybe_adjust_figure,
)
if TYPE_CHECKING:
from collections.abc import Collection
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from pandas._typing import MatplotlibColor
def _set_ticklabels(ax: Axes, labels: list[str], is_vertical: bool, **kwargs) -> None:
"""Set the tick labels of a given axis.
Due to https://github.com/matplotlib/matplotlib/pull/17266, we need to handle the
case of repeated ticks (due to `FixedLocator`) and thus we duplicate the number of
labels.
"""
ticks = ax.get_xticks() if is_vertical else ax.get_yticks()
if len(ticks) != len(labels):
i, remainder = divmod(len(ticks), len(labels))
assert remainder == 0, remainder
labels *= i
if is_vertical:
ax.set_xticklabels(labels, **kwargs)
else:
ax.set_yticklabels(labels, **kwargs)
class BoxPlot(LinePlot):
@property
def _kind(self) -> Literal["box"]:
return "box"
_layout_type = "horizontal"
_valid_return_types = (None, "axes", "dict", "both")
class BP(NamedTuple):
# namedtuple to hold results
ax: Axes
lines: dict[str, list[Line2D]]
def __init__(self, data, return_type: str = "axes", **kwargs) -> None:
if return_type not in self._valid_return_types:
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}")
self.return_type = return_type
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
if self.subplots:
# Disable label ax sharing. Otherwise, all subplots shows last
# column label
if self.orientation == "vertical":
self.sharex = False
else:
self.sharey = False
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
@classmethod
def _plot( # type: ignore[override]
cls, ax: Axes, y: np.ndarray, column_num=None, return_type: str = "axes", **kwds
):
ys: np.ndarray | list[np.ndarray]
if y.ndim == 2:
ys = [remove_na_arraylike(v) for v in y]
# Boxplot fails with empty arrays, so need to add a NaN
# if any cols are empty
# GH 8181
ys = [v if v.size > 0 else np.array([np.nan]) for v in ys]
else:
ys = remove_na_arraylike(y)
bp = ax.boxplot(ys, **kwds)
if return_type == "dict":
return bp, bp
elif return_type == "both":
return cls.BP(ax=ax, lines=bp), bp
else:
return ax, bp
def _validate_color_args(self, color, colormap):
if color is lib.no_default:
return None
if colormap is not None:
warnings.warn(
"'color' and 'colormap' cannot be used "
"simultaneously. Using 'color'",
stacklevel=find_stack_level(),
)
if isinstance(color, dict):
valid_keys = ["boxes", "whiskers", "medians", "caps"]
for key in color:
if key not in valid_keys:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
return color
@cache_readonly
def _color_attrs(self):
# get standard colors for default
# use 2 colors by default, for box/whisker and median
# flier colors isn't needed here
# because it can be specified by ``sym`` kw
return get_standard_colors(num_colors=3, colormap=self.colormap, color=None)
@cache_readonly
def _boxes_c(self):
return self._color_attrs[0]
@cache_readonly
def _whiskers_c(self):
return self._color_attrs[0]
@cache_readonly
def _medians_c(self):
return self._color_attrs[2]
@cache_readonly
def _caps_c(self):
return self._color_attrs[0]
def _get_colors(
self,
num_colors=None,
color_kwds: dict[str, MatplotlibColor]
| MatplotlibColor
| Collection[MatplotlibColor]
| None = "color",
) -> None:
pass
def maybe_color_bp(self, bp) -> None:
if isinstance(self.color, dict):
boxes = self.color.get("boxes", self._boxes_c)
whiskers = self.color.get("whiskers", self._whiskers_c)
medians = self.color.get("medians", self._medians_c)
caps = self.color.get("caps", self._caps_c)
else:
# Other types are forwarded to matplotlib
# If None, use default colors
boxes = self.color or self._boxes_c
whiskers = self.color or self._whiskers_c
medians = self.color or self._medians_c
caps = self.color or self._caps_c
color_tup = (boxes, whiskers, medians, caps)
maybe_color_bp(bp, color_tup=color_tup, **self.kwds)
def _make_plot(self, fig: Figure) -> None:
if self.subplots:
self._return_obj = pd.Series(dtype=object)
# Re-create iterated data if `by` is assigned by users
data = (
create_iter_data_given_by(self.data, self._kind)
if self.by is not None
else self.data
)
# error: Argument "data" to "_iter_data" of "MPLPlot" has
# incompatible type "object"; expected "DataFrame |
# dict[Hashable, Series | DataFrame]"
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
ax = self._get_ax(i)
kwds = self.kwds.copy()
# When by is applied, show title for subplots to know which group it is
# just like df.boxplot, and need to apply T on y to provide right input
if self.by is not None:
y = y.T
ax.set_title(pprint_thing(label))
# When `by` is assigned, the ticklabels will become unique grouped
# values, instead of label which is used as subtitle in this case.
# error: "Index" has no attribute "levels"; maybe "nlevels"?
levels = self.data.columns.levels # type: ignore[attr-defined]
ticklabels = [pprint_thing(col) for col in levels[0]]
else:
ticklabels = [pprint_thing(label)]
ret, bp = self._plot(
ax, y, column_num=i, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj[label] = ret
_set_ticklabels(
ax=ax, labels=ticklabels, is_vertical=self.orientation == "vertical"
)
else:
y = self.data.values.T
ax = self._get_ax(0)
kwds = self.kwds.copy()
ret, bp = self._plot(
ax, y, column_num=0, return_type=self.return_type, **kwds
)
self.maybe_color_bp(bp)
self._return_obj = ret
labels = [pprint_thing(left) for left in self.data.columns]
if not self.use_index:
labels = [pprint_thing(key) for key in range(len(labels))]
_set_ticklabels(
ax=ax, labels=labels, is_vertical=self.orientation == "vertical"
)
def _make_legend(self) -> None:
pass
def _post_plot_logic(self, ax: Axes, data) -> None:
# GH 45465: make sure that the boxplot doesn't ignore xlabel/ylabel
if self.xlabel:
ax.set_xlabel(pprint_thing(self.xlabel))
if self.ylabel:
ax.set_ylabel(pprint_thing(self.ylabel))
@property
def orientation(self) -> Literal["horizontal", "vertical"]:
if self.kwds.get("vert", True):
return "vertical"
else:
return "horizontal"
@property
def result(self):
if self.return_type is None:
return super().result
else:
return self._return_obj
def maybe_color_bp(bp, color_tup, **kwds) -> None:
# GH#30346, when users specifying those arguments explicitly, our defaults
# for these four kwargs should be overridden; if not, use Pandas settings
if not kwds.get("boxprops"):
setp(bp["boxes"], color=color_tup[0], alpha=1)
if not kwds.get("whiskerprops"):
setp(bp["whiskers"], color=color_tup[1], alpha=1)
if not kwds.get("medianprops"):
setp(bp["medians"], color=color_tup[2], alpha=1)
if not kwds.get("capprops"):
setp(bp["caps"], color=color_tup[3], alpha=1)
def _grouped_plot_by_column(
plotf,
data,
columns=None,
by=None,
numeric_only: bool = True,
grid: bool = False,
figsize: tuple[float, float] | None = None,
ax=None,
layout=None,
return_type=None,
**kwargs,
):
grouped = data.groupby(by, observed=False)
if columns is None:
if not isinstance(by, (list, tuple)):
by = [by]
columns = data._get_numeric_data().columns.difference(by)
naxes = len(columns)
fig, axes = create_subplots(
naxes=naxes,
sharex=kwargs.pop("sharex", True),
sharey=kwargs.pop("sharey", True),
figsize=figsize,
ax=ax,
layout=layout,
)
_axes = flatten_axes(axes)
# GH 45465: move the "by" label based on "vert"
xlabel, ylabel = kwargs.pop("xlabel", None), kwargs.pop("ylabel", None)
if kwargs.get("vert", True):
xlabel = xlabel or by
else:
ylabel = ylabel or by
ax_values = []
for i, col in enumerate(columns):
ax = _axes[i]
gp_col = grouped[col]
keys, values = zip(*gp_col)
re_plotf = plotf(keys, values, ax, xlabel=xlabel, ylabel=ylabel, **kwargs)
ax.set_title(col)
ax_values.append(re_plotf)
ax.grid(grid)
result = pd.Series(ax_values, index=columns, copy=False)
# Return axes in multiplot case, maybe revisit later # 985
if return_type is None:
result = axes
byline = by[0] if len(by) == 1 else by
fig.suptitle(f"Boxplot grouped by {byline}")
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
return result
def boxplot(
data,
column=None,
by=None,
ax=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
figsize: tuple[float, float] | None = None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
# validate return_type:
if return_type not in BoxPlot._valid_return_types:
raise ValueError("return_type must be {'axes', 'dict', 'both'}")
if isinstance(data, ABCSeries):
data = data.to_frame("x")
column = "x"
def _get_colors():
# num_colors=3 is required as method maybe_color_bp takes the colors
# in positions 0 and 2.
# if colors not provided, use same defaults as DataFrame.plot.box
result = get_standard_colors(num_colors=3)
result = np.take(result, [0, 0, 2])
result = np.append(result, "k")
colors = kwds.pop("color", None)
if colors:
if is_dict_like(colors):
# replace colors in result array with user-specified colors
# taken from the colors dict parameter
# "boxes" value placed in position 0, "whiskers" in 1, etc.
valid_keys = ["boxes", "whiskers", "medians", "caps"]
key_to_index = dict(zip(valid_keys, range(4)))
for key, value in colors.items():
if key in valid_keys:
result[key_to_index[key]] = value
else:
raise ValueError(
f"color dict contains invalid key '{key}'. "
f"The key must be either {valid_keys}"
)
else:
result.fill(colors)
return result
def plot_group(keys, values, ax: Axes, **kwds):
# GH 45465: xlabel/ylabel need to be popped out before plotting happens
xlabel, ylabel = kwds.pop("xlabel", None), kwds.pop("ylabel", None)
if xlabel:
ax.set_xlabel(pprint_thing(xlabel))
if ylabel:
ax.set_ylabel(pprint_thing(ylabel))
keys = [pprint_thing(x) for x in keys]
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values]
bp = ax.boxplot(values, **kwds)
if fontsize is not None:
ax.tick_params(axis="both", labelsize=fontsize)
# GH 45465: x/y are flipped when "vert" changes
_set_ticklabels(
ax=ax, labels=keys, is_vertical=kwds.get("vert", True), rotation=rot
)
maybe_color_bp(bp, color_tup=colors, **kwds)
# Return axes in multiplot case, maybe revisit later # 985
if return_type == "dict":
return bp
elif return_type == "both":
return BoxPlot.BP(ax=ax, lines=bp)
else:
return ax
colors = _get_colors()
if column is None:
columns = None
elif isinstance(column, (list, tuple)):
columns = column
else:
columns = [column]
if by is not None:
# Prefer array return type for 2-D plots to match the subplot layout
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580
result = _grouped_plot_by_column(
plot_group,
data,
columns=columns,
by=by,
grid=grid,
figsize=figsize,
ax=ax,
layout=layout,
return_type=return_type,
**kwds,
)
else:
if return_type is None:
return_type = "axes"
if layout is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
if ax is None:
rc = {"figure.figsize": figsize} if figsize is not None else {}
with plt.rc_context(rc):
ax = plt.gca()
data = data._get_numeric_data()
naxes = len(data.columns)
if naxes == 0:
raise ValueError(
"boxplot method requires numerical columns, nothing to plot."
)
if columns is None:
columns = data.columns
else:
data = data[columns]
result = plot_group(columns, data.values.T, ax, **kwds)
ax.grid(grid)
return result
def boxplot_frame(
self,
column=None,
by=None,
ax=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
figsize: tuple[float, float] | None = None,
layout=None,
return_type=None,
**kwds,
):
import matplotlib.pyplot as plt
ax = boxplot(
self,
column=column,
by=by,
ax=ax,
fontsize=fontsize,
grid=grid,
rot=rot,
figsize=figsize,
layout=layout,
return_type=return_type,
**kwds,
)
plt.draw_if_interactive()
return ax
def boxplot_frame_groupby(
grouped,
subplots: bool = True,
column=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
ax=None,
figsize: tuple[float, float] | None = None,
layout=None,
sharex: bool = False,
sharey: bool = True,
**kwds,
):
if subplots is True:
naxes = len(grouped)
fig, axes = create_subplots(
naxes=naxes,
squeeze=False,
ax=ax,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
axes = flatten_axes(axes)
ret = pd.Series(dtype=object)
for (key, group), ax in zip(grouped, axes):
d = group.boxplot(
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds
)
ax.set_title(pprint_thing(key))
ret.loc[key] = d
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
else:
keys, frames = zip(*grouped)
if grouped.axis == 0:
df = pd.concat(frames, keys=keys, axis=1)
elif len(frames) > 1:
df = frames[0].join(frames[1::])
else:
df = frames[0]
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument
# is assigned, and in this case, since `df` here becomes MI after groupby,
# so we need to couple the keys (grouped values) and column (original df
# column) together to search for subset to plot
if column is not None:
column = com.convert_to_list_like(column)
multi_key = pd.MultiIndex.from_product([keys, column])
column = list(multi_key.values)
ret = df.boxplot(
column=column,
fontsize=fontsize,
rot=rot,
grid=grid,
ax=ax,
figsize=figsize,
layout=layout,
**kwds,
)
return ret
|