File size: 135,790 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
"""
Module contains tools for processing Stata files into DataFrames

The StataReader below was originally written by Joe Presbrey as part of PyDTA.
It has been extended and improved by Skipper Seabold from the Statsmodels
project who also developed the StataWriter and was finally added to pandas in
a once again improved version.

You can find more information on http://presbrey.mit.edu/PyDTA and
https://www.statsmodels.org/devel/
"""
from __future__ import annotations

from collections import abc
from datetime import (
    datetime,
    timedelta,
)
from io import BytesIO
import os
import struct
import sys
from typing import (
    IO,
    TYPE_CHECKING,
    AnyStr,
    Callable,
    Final,
    cast,
)
import warnings

import numpy as np

from pandas._libs import lib
from pandas._libs.lib import infer_dtype
from pandas._libs.writers import max_len_string_array
from pandas.errors import (
    CategoricalConversionWarning,
    InvalidColumnName,
    PossiblePrecisionLoss,
    ValueLabelTypeMismatch,
)
from pandas.util._decorators import (
    Appender,
    doc,
)
from pandas.util._exceptions import find_stack_level

from pandas.core.dtypes.base import ExtensionDtype
from pandas.core.dtypes.common import (
    ensure_object,
    is_numeric_dtype,
    is_string_dtype,
)
from pandas.core.dtypes.dtypes import CategoricalDtype

from pandas import (
    Categorical,
    DatetimeIndex,
    NaT,
    Timestamp,
    isna,
    to_datetime,
    to_timedelta,
)
from pandas.core.frame import DataFrame
from pandas.core.indexes.base import Index
from pandas.core.indexes.range import RangeIndex
from pandas.core.series import Series
from pandas.core.shared_docs import _shared_docs

from pandas.io.common import get_handle

if TYPE_CHECKING:
    from collections.abc import (
        Hashable,
        Sequence,
    )
    from types import TracebackType
    from typing import Literal

    from pandas._typing import (
        CompressionOptions,
        FilePath,
        ReadBuffer,
        Self,
        StorageOptions,
        WriteBuffer,
    )

_version_error = (
    "Version of given Stata file is {version}. pandas supports importing "
    "versions 105, 108, 111 (Stata 7SE), 113 (Stata 8/9), "
    "114 (Stata 10/11), 115 (Stata 12), 117 (Stata 13), 118 (Stata 14/15/16),"
    "and 119 (Stata 15/16, over 32,767 variables)."
)

_statafile_processing_params1 = """\
convert_dates : bool, default True
    Convert date variables to DataFrame time values.
convert_categoricals : bool, default True
    Read value labels and convert columns to Categorical/Factor variables."""

_statafile_processing_params2 = """\
index_col : str, optional
    Column to set as index.
convert_missing : bool, default False
    Flag indicating whether to convert missing values to their Stata
    representations.  If False, missing values are replaced with nan.
    If True, columns containing missing values are returned with
    object data types and missing values are represented by
    StataMissingValue objects.
preserve_dtypes : bool, default True
    Preserve Stata datatypes. If False, numeric data are upcast to pandas
    default types for foreign data (float64 or int64).
columns : list or None
    Columns to retain.  Columns will be returned in the given order.  None
    returns all columns.
order_categoricals : bool, default True
    Flag indicating whether converted categorical data are ordered."""

_chunksize_params = """\
chunksize : int, default None
    Return StataReader object for iterations, returns chunks with
    given number of lines."""

_iterator_params = """\
iterator : bool, default False
    Return StataReader object."""

_reader_notes = """\
Notes
-----
Categorical variables read through an iterator may not have the same
categories and dtype. This occurs when  a variable stored in a DTA
file is associated to an incomplete set of value labels that only
label a strict subset of the values."""

_read_stata_doc = f"""
Read Stata file into DataFrame.

Parameters
----------
filepath_or_buffer : str, path object or file-like object
    Any valid string path is acceptable. The string could be a URL. Valid
    URL schemes include http, ftp, s3, and file. For file URLs, a host is
    expected. A local file could be: ``file://localhost/path/to/table.dta``.

    If you want to pass in a path object, pandas accepts any ``os.PathLike``.

    By file-like object, we refer to objects with a ``read()`` method,
    such as a file handle (e.g. via builtin ``open`` function)
    or ``StringIO``.
{_statafile_processing_params1}
{_statafile_processing_params2}
{_chunksize_params}
{_iterator_params}
{_shared_docs["decompression_options"] % "filepath_or_buffer"}
{_shared_docs["storage_options"]}

Returns
-------
DataFrame or pandas.api.typing.StataReader

See Also
--------
io.stata.StataReader : Low-level reader for Stata data files.
DataFrame.to_stata: Export Stata data files.

{_reader_notes}

Examples
--------

Creating a dummy stata for this example

>>> df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon', 'parrot'],
...                     'speed': [350, 18, 361, 15]}})  # doctest: +SKIP
>>> df.to_stata('animals.dta')  # doctest: +SKIP

Read a Stata dta file:

>>> df = pd.read_stata('animals.dta')  # doctest: +SKIP

Read a Stata dta file in 10,000 line chunks:

>>> values = np.random.randint(0, 10, size=(20_000, 1), dtype="uint8")  # doctest: +SKIP
>>> df = pd.DataFrame(values, columns=["i"])  # doctest: +SKIP
>>> df.to_stata('filename.dta')  # doctest: +SKIP

>>> with pd.read_stata('filename.dta', chunksize=10000) as itr: # doctest: +SKIP
>>>     for chunk in itr:
...         # Operate on a single chunk, e.g., chunk.mean()
...         pass  # doctest: +SKIP
"""

_read_method_doc = f"""\
Reads observations from Stata file, converting them into a dataframe

Parameters
----------
nrows : int
    Number of lines to read from data file, if None read whole file.
{_statafile_processing_params1}
{_statafile_processing_params2}

Returns
-------
DataFrame
"""

_stata_reader_doc = f"""\
Class for reading Stata dta files.

Parameters
----------
path_or_buf : path (string), buffer or path object
    string, path object (pathlib.Path or py._path.local.LocalPath) or object
    implementing a binary read() functions.
{_statafile_processing_params1}
{_statafile_processing_params2}
{_chunksize_params}
{_shared_docs["decompression_options"]}
{_shared_docs["storage_options"]}

{_reader_notes}
"""


_date_formats = ["%tc", "%tC", "%td", "%d", "%tw", "%tm", "%tq", "%th", "%ty"]


stata_epoch: Final = datetime(1960, 1, 1)


def _stata_elapsed_date_to_datetime_vec(dates: Series, fmt: str) -> Series:
    """
    Convert from SIF to datetime. https://www.stata.com/help.cgi?datetime

    Parameters
    ----------
    dates : Series
        The Stata Internal Format date to convert to datetime according to fmt
    fmt : str
        The format to convert to. Can be, tc, td, tw, tm, tq, th, ty
        Returns

    Returns
    -------
    converted : Series
        The converted dates

    Examples
    --------
    >>> dates = pd.Series([52])
    >>> _stata_elapsed_date_to_datetime_vec(dates , "%tw")
    0   1961-01-01
    dtype: datetime64[ns]

    Notes
    -----
    datetime/c - tc
        milliseconds since 01jan1960 00:00:00.000, assuming 86,400 s/day
    datetime/C - tC - NOT IMPLEMENTED
        milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds
    date - td
        days since 01jan1960 (01jan1960 = 0)
    weekly date - tw
        weeks since 1960w1
        This assumes 52 weeks in a year, then adds 7 * remainder of the weeks.
        The datetime value is the start of the week in terms of days in the
        year, not ISO calendar weeks.
    monthly date - tm
        months since 1960m1
    quarterly date - tq
        quarters since 1960q1
    half-yearly date - th
        half-years since 1960h1 yearly
    date - ty
        years since 0000
    """
    MIN_YEAR, MAX_YEAR = Timestamp.min.year, Timestamp.max.year
    MAX_DAY_DELTA = (Timestamp.max - datetime(1960, 1, 1)).days
    MIN_DAY_DELTA = (Timestamp.min - datetime(1960, 1, 1)).days
    MIN_MS_DELTA = MIN_DAY_DELTA * 24 * 3600 * 1000
    MAX_MS_DELTA = MAX_DAY_DELTA * 24 * 3600 * 1000

    def convert_year_month_safe(year, month) -> Series:
        """
        Convert year and month to datetimes, using pandas vectorized versions
        when the date range falls within the range supported by pandas.
        Otherwise it falls back to a slower but more robust method
        using datetime.
        """
        if year.max() < MAX_YEAR and year.min() > MIN_YEAR:
            return to_datetime(100 * year + month, format="%Y%m")
        else:
            index = getattr(year, "index", None)
            return Series([datetime(y, m, 1) for y, m in zip(year, month)], index=index)

    def convert_year_days_safe(year, days) -> Series:
        """
        Converts year (e.g. 1999) and days since the start of the year to a
        datetime or datetime64 Series
        """
        if year.max() < (MAX_YEAR - 1) and year.min() > MIN_YEAR:
            return to_datetime(year, format="%Y") + to_timedelta(days, unit="d")
        else:
            index = getattr(year, "index", None)
            value = [
                datetime(y, 1, 1) + timedelta(days=int(d)) for y, d in zip(year, days)
            ]
            return Series(value, index=index)

    def convert_delta_safe(base, deltas, unit) -> Series:
        """
        Convert base dates and deltas to datetimes, using pandas vectorized
        versions if the deltas satisfy restrictions required to be expressed
        as dates in pandas.
        """
        index = getattr(deltas, "index", None)
        if unit == "d":
            if deltas.max() > MAX_DAY_DELTA or deltas.min() < MIN_DAY_DELTA:
                values = [base + timedelta(days=int(d)) for d in deltas]
                return Series(values, index=index)
        elif unit == "ms":
            if deltas.max() > MAX_MS_DELTA or deltas.min() < MIN_MS_DELTA:
                values = [
                    base + timedelta(microseconds=(int(d) * 1000)) for d in deltas
                ]
                return Series(values, index=index)
        else:
            raise ValueError("format not understood")
        base = to_datetime(base)
        deltas = to_timedelta(deltas, unit=unit)
        return base + deltas

    # TODO(non-nano): If/when pandas supports more than datetime64[ns], this
    #  should be improved to use correct range, e.g. datetime[Y] for yearly
    bad_locs = np.isnan(dates)
    has_bad_values = False
    if bad_locs.any():
        has_bad_values = True
        dates._values[bad_locs] = 1.0  # Replace with NaT
    dates = dates.astype(np.int64)

    if fmt.startswith(("%tc", "tc")):  # Delta ms relative to base
        base = stata_epoch
        ms = dates
        conv_dates = convert_delta_safe(base, ms, "ms")
    elif fmt.startswith(("%tC", "tC")):
        warnings.warn(
            "Encountered %tC format. Leaving in Stata Internal Format.",
            stacklevel=find_stack_level(),
        )
        conv_dates = Series(dates, dtype=object)
        if has_bad_values:
            conv_dates[bad_locs] = NaT
        return conv_dates
    # Delta days relative to base
    elif fmt.startswith(("%td", "td", "%d", "d")):
        base = stata_epoch
        days = dates
        conv_dates = convert_delta_safe(base, days, "d")
    # does not count leap days - 7 days is a week.
    # 52nd week may have more than 7 days
    elif fmt.startswith(("%tw", "tw")):
        year = stata_epoch.year + dates // 52
        days = (dates % 52) * 7
        conv_dates = convert_year_days_safe(year, days)
    elif fmt.startswith(("%tm", "tm")):  # Delta months relative to base
        year = stata_epoch.year + dates // 12
        month = (dates % 12) + 1
        conv_dates = convert_year_month_safe(year, month)
    elif fmt.startswith(("%tq", "tq")):  # Delta quarters relative to base
        year = stata_epoch.year + dates // 4
        quarter_month = (dates % 4) * 3 + 1
        conv_dates = convert_year_month_safe(year, quarter_month)
    elif fmt.startswith(("%th", "th")):  # Delta half-years relative to base
        year = stata_epoch.year + dates // 2
        month = (dates % 2) * 6 + 1
        conv_dates = convert_year_month_safe(year, month)
    elif fmt.startswith(("%ty", "ty")):  # Years -- not delta
        year = dates
        first_month = np.ones_like(dates)
        conv_dates = convert_year_month_safe(year, first_month)
    else:
        raise ValueError(f"Date fmt {fmt} not understood")

    if has_bad_values:  # Restore NaT for bad values
        conv_dates[bad_locs] = NaT

    return conv_dates


def _datetime_to_stata_elapsed_vec(dates: Series, fmt: str) -> Series:
    """
    Convert from datetime to SIF. https://www.stata.com/help.cgi?datetime

    Parameters
    ----------
    dates : Series
        Series or array containing datetime or datetime64[ns] to
        convert to the Stata Internal Format given by fmt
    fmt : str
        The format to convert to. Can be, tc, td, tw, tm, tq, th, ty
    """
    index = dates.index
    NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000
    US_PER_DAY = NS_PER_DAY / 1000

    def parse_dates_safe(
        dates: Series, delta: bool = False, year: bool = False, days: bool = False
    ):
        d = {}
        if lib.is_np_dtype(dates.dtype, "M"):
            if delta:
                time_delta = dates - Timestamp(stata_epoch).as_unit("ns")
                d["delta"] = time_delta._values.view(np.int64) // 1000  # microseconds
            if days or year:
                date_index = DatetimeIndex(dates)
                d["year"] = date_index._data.year
                d["month"] = date_index._data.month
            if days:
                days_in_ns = dates._values.view(np.int64) - to_datetime(
                    d["year"], format="%Y"
                )._values.view(np.int64)
                d["days"] = days_in_ns // NS_PER_DAY

        elif infer_dtype(dates, skipna=False) == "datetime":
            if delta:
                delta = dates._values - stata_epoch

                def f(x: timedelta) -> float:
                    return US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds

                v = np.vectorize(f)
                d["delta"] = v(delta)
            if year:
                year_month = dates.apply(lambda x: 100 * x.year + x.month)
                d["year"] = year_month._values // 100
                d["month"] = year_month._values - d["year"] * 100
            if days:

                def g(x: datetime) -> int:
                    return (x - datetime(x.year, 1, 1)).days

                v = np.vectorize(g)
                d["days"] = v(dates)
        else:
            raise ValueError(
                "Columns containing dates must contain either "
                "datetime64, datetime or null values."
            )

        return DataFrame(d, index=index)

    bad_loc = isna(dates)
    index = dates.index
    if bad_loc.any():
        if lib.is_np_dtype(dates.dtype, "M"):
            dates._values[bad_loc] = to_datetime(stata_epoch)
        else:
            dates._values[bad_loc] = stata_epoch

    if fmt in ["%tc", "tc"]:
        d = parse_dates_safe(dates, delta=True)
        conv_dates = d.delta / 1000
    elif fmt in ["%tC", "tC"]:
        warnings.warn(
            "Stata Internal Format tC not supported.",
            stacklevel=find_stack_level(),
        )
        conv_dates = dates
    elif fmt in ["%td", "td"]:
        d = parse_dates_safe(dates, delta=True)
        conv_dates = d.delta // US_PER_DAY
    elif fmt in ["%tw", "tw"]:
        d = parse_dates_safe(dates, year=True, days=True)
        conv_dates = 52 * (d.year - stata_epoch.year) + d.days // 7
    elif fmt in ["%tm", "tm"]:
        d = parse_dates_safe(dates, year=True)
        conv_dates = 12 * (d.year - stata_epoch.year) + d.month - 1
    elif fmt in ["%tq", "tq"]:
        d = parse_dates_safe(dates, year=True)
        conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3
    elif fmt in ["%th", "th"]:
        d = parse_dates_safe(dates, year=True)
        conv_dates = 2 * (d.year - stata_epoch.year) + (d.month > 6).astype(int)
    elif fmt in ["%ty", "ty"]:
        d = parse_dates_safe(dates, year=True)
        conv_dates = d.year
    else:
        raise ValueError(f"Format {fmt} is not a known Stata date format")

    conv_dates = Series(conv_dates, dtype=np.float64, copy=False)
    missing_value = struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0]
    conv_dates[bad_loc] = missing_value

    return Series(conv_dates, index=index, copy=False)


excessive_string_length_error: Final = """
Fixed width strings in Stata .dta files are limited to 244 (or fewer)
characters.  Column '{0}' does not satisfy this restriction. Use the
'version=117' parameter to write the newer (Stata 13 and later) format.
"""


precision_loss_doc: Final = """
Column converted from {0} to {1}, and some data are outside of the lossless
conversion range. This may result in a loss of precision in the saved data.
"""


value_label_mismatch_doc: Final = """
Stata value labels (pandas categories) must be strings. Column {0} contains
non-string labels which will be converted to strings.  Please check that the
Stata data file created has not lost information due to duplicate labels.
"""


invalid_name_doc: Final = """
Not all pandas column names were valid Stata variable names.
The following replacements have been made:

    {0}

If this is not what you expect, please make sure you have Stata-compliant
column names in your DataFrame (strings only, max 32 characters, only
alphanumerics and underscores, no Stata reserved words)
"""


categorical_conversion_warning: Final = """
One or more series with value labels are not fully labeled. Reading this
dataset with an iterator results in categorical variable with different
categories. This occurs since it is not possible to know all possible values
until the entire dataset has been read. To avoid this warning, you can either
read dataset without an iterator, or manually convert categorical data by
``convert_categoricals`` to False and then accessing the variable labels
through the value_labels method of the reader.
"""


def _cast_to_stata_types(data: DataFrame) -> DataFrame:
    """
    Checks the dtypes of the columns of a pandas DataFrame for
    compatibility with the data types and ranges supported by Stata, and
    converts if necessary.

    Parameters
    ----------
    data : DataFrame
        The DataFrame to check and convert

    Notes
    -----
    Numeric columns in Stata must be one of int8, int16, int32, float32 or
    float64, with some additional value restrictions.  int8 and int16 columns
    are checked for violations of the value restrictions and upcast if needed.
    int64 data is not usable in Stata, and so it is downcast to int32 whenever
    the value are in the int32 range, and sidecast to float64 when larger than
    this range.  If the int64 values are outside of the range of those
    perfectly representable as float64 values, a warning is raised.

    bool columns are cast to int8.  uint columns are converted to int of the
    same size if there is no loss in precision, otherwise are upcast to a
    larger type.  uint64 is currently not supported since it is concerted to
    object in a DataFrame.
    """
    ws = ""
    # original, if small, if large
    conversion_data: tuple[
        tuple[type, type, type],
        tuple[type, type, type],
        tuple[type, type, type],
        tuple[type, type, type],
        tuple[type, type, type],
    ] = (
        (np.bool_, np.int8, np.int8),
        (np.uint8, np.int8, np.int16),
        (np.uint16, np.int16, np.int32),
        (np.uint32, np.int32, np.int64),
        (np.uint64, np.int64, np.float64),
    )

    float32_max = struct.unpack("<f", b"\xff\xff\xff\x7e")[0]
    float64_max = struct.unpack("<d", b"\xff\xff\xff\xff\xff\xff\xdf\x7f")[0]

    for col in data:
        # Cast from unsupported types to supported types
        is_nullable_int = (
            isinstance(data[col].dtype, ExtensionDtype)
            and data[col].dtype.kind in "iub"
        )
        # We need to find orig_missing before altering data below
        orig_missing = data[col].isna()
        if is_nullable_int:
            fv = 0 if data[col].dtype.kind in "iu" else False
            # Replace with NumPy-compatible column
            data[col] = data[col].fillna(fv).astype(data[col].dtype.numpy_dtype)
        elif isinstance(data[col].dtype, ExtensionDtype):
            if getattr(data[col].dtype, "numpy_dtype", None) is not None:
                data[col] = data[col].astype(data[col].dtype.numpy_dtype)
            elif is_string_dtype(data[col].dtype):
                data[col] = data[col].astype("object")

        dtype = data[col].dtype
        empty_df = data.shape[0] == 0
        for c_data in conversion_data:
            if dtype == c_data[0]:
                if empty_df or data[col].max() <= np.iinfo(c_data[1]).max:
                    dtype = c_data[1]
                else:
                    dtype = c_data[2]
                if c_data[2] == np.int64:  # Warn if necessary
                    if data[col].max() >= 2**53:
                        ws = precision_loss_doc.format("uint64", "float64")

                data[col] = data[col].astype(dtype)

        # Check values and upcast if necessary

        if dtype == np.int8 and not empty_df:
            if data[col].max() > 100 or data[col].min() < -127:
                data[col] = data[col].astype(np.int16)
        elif dtype == np.int16 and not empty_df:
            if data[col].max() > 32740 or data[col].min() < -32767:
                data[col] = data[col].astype(np.int32)
        elif dtype == np.int64:
            if empty_df or (
                data[col].max() <= 2147483620 and data[col].min() >= -2147483647
            ):
                data[col] = data[col].astype(np.int32)
            else:
                data[col] = data[col].astype(np.float64)
                if data[col].max() >= 2**53 or data[col].min() <= -(2**53):
                    ws = precision_loss_doc.format("int64", "float64")
        elif dtype in (np.float32, np.float64):
            if np.isinf(data[col]).any():
                raise ValueError(
                    f"Column {col} contains infinity or -infinity"
                    "which is outside the range supported by Stata."
                )
            value = data[col].max()
            if dtype == np.float32 and value > float32_max:
                data[col] = data[col].astype(np.float64)
            elif dtype == np.float64:
                if value > float64_max:
                    raise ValueError(
                        f"Column {col} has a maximum value ({value}) outside the range "
                        f"supported by Stata ({float64_max})"
                    )
        if is_nullable_int:
            if orig_missing.any():
                # Replace missing by Stata sentinel value
                sentinel = StataMissingValue.BASE_MISSING_VALUES[data[col].dtype.name]
                data.loc[orig_missing, col] = sentinel
    if ws:
        warnings.warn(
            ws,
            PossiblePrecisionLoss,
            stacklevel=find_stack_level(),
        )

    return data


class StataValueLabel:
    """
    Parse a categorical column and prepare formatted output

    Parameters
    ----------
    catarray : Series
        Categorical Series to encode
    encoding : {"latin-1", "utf-8"}
        Encoding to use for value labels.
    """

    def __init__(
        self, catarray: Series, encoding: Literal["latin-1", "utf-8"] = "latin-1"
    ) -> None:
        if encoding not in ("latin-1", "utf-8"):
            raise ValueError("Only latin-1 and utf-8 are supported.")
        self.labname = catarray.name
        self._encoding = encoding
        categories = catarray.cat.categories
        self.value_labels = enumerate(categories)

        self._prepare_value_labels()

    def _prepare_value_labels(self) -> None:
        """Encode value labels."""

        self.text_len = 0
        self.txt: list[bytes] = []
        self.n = 0
        # Offsets (length of categories), converted to int32
        self.off = np.array([], dtype=np.int32)
        # Values, converted to int32
        self.val = np.array([], dtype=np.int32)
        self.len = 0

        # Compute lengths and setup lists of offsets and labels
        offsets: list[int] = []
        values: list[float] = []
        for vl in self.value_labels:
            category: str | bytes = vl[1]
            if not isinstance(category, str):
                category = str(category)
                warnings.warn(
                    value_label_mismatch_doc.format(self.labname),
                    ValueLabelTypeMismatch,
                    stacklevel=find_stack_level(),
                )
            category = category.encode(self._encoding)
            offsets.append(self.text_len)
            self.text_len += len(category) + 1  # +1 for the padding
            values.append(vl[0])
            self.txt.append(category)
            self.n += 1

        if self.text_len > 32000:
            raise ValueError(
                "Stata value labels for a single variable must "
                "have a combined length less than 32,000 characters."
            )

        # Ensure int32
        self.off = np.array(offsets, dtype=np.int32)
        self.val = np.array(values, dtype=np.int32)

        # Total length
        self.len = 4 + 4 + 4 * self.n + 4 * self.n + self.text_len

    def generate_value_label(self, byteorder: str) -> bytes:
        """
        Generate the binary representation of the value labels.

        Parameters
        ----------
        byteorder : str
            Byte order of the output

        Returns
        -------
        value_label : bytes
            Bytes containing the formatted value label
        """
        encoding = self._encoding
        bio = BytesIO()
        null_byte = b"\x00"

        # len
        bio.write(struct.pack(byteorder + "i", self.len))

        # labname
        labname = str(self.labname)[:32].encode(encoding)
        lab_len = 32 if encoding not in ("utf-8", "utf8") else 128
        labname = _pad_bytes(labname, lab_len + 1)
        bio.write(labname)

        # padding - 3 bytes
        for i in range(3):
            bio.write(struct.pack("c", null_byte))

        # value_label_table
        # n - int32
        bio.write(struct.pack(byteorder + "i", self.n))

        # textlen  - int32
        bio.write(struct.pack(byteorder + "i", self.text_len))

        # off - int32 array (n elements)
        for offset in self.off:
            bio.write(struct.pack(byteorder + "i", offset))

        # val - int32 array (n elements)
        for value in self.val:
            bio.write(struct.pack(byteorder + "i", value))

        # txt - Text labels, null terminated
        for text in self.txt:
            bio.write(text + null_byte)

        return bio.getvalue()


class StataNonCatValueLabel(StataValueLabel):
    """
    Prepare formatted version of value labels

    Parameters
    ----------
    labname : str
        Value label name
    value_labels: Dictionary
        Mapping of values to labels
    encoding : {"latin-1", "utf-8"}
        Encoding to use for value labels.
    """

    def __init__(
        self,
        labname: str,
        value_labels: dict[float, str],
        encoding: Literal["latin-1", "utf-8"] = "latin-1",
    ) -> None:
        if encoding not in ("latin-1", "utf-8"):
            raise ValueError("Only latin-1 and utf-8 are supported.")

        self.labname = labname
        self._encoding = encoding
        self.value_labels = sorted(  # type: ignore[assignment]
            value_labels.items(), key=lambda x: x[0]
        )
        self._prepare_value_labels()


class StataMissingValue:
    """
    An observation's missing value.

    Parameters
    ----------
    value : {int, float}
        The Stata missing value code

    Notes
    -----
    More information: <https://www.stata.com/help.cgi?missing>

    Integer missing values make the code '.', '.a', ..., '.z' to the ranges
    101 ... 127 (for int8), 32741 ... 32767  (for int16) and 2147483621 ...
    2147483647 (for int32).  Missing values for floating point data types are
    more complex but the pattern is simple to discern from the following table.

    np.float32 missing values (float in Stata)
    0000007f    .
    0008007f    .a
    0010007f    .b
    ...
    00c0007f    .x
    00c8007f    .y
    00d0007f    .z

    np.float64 missing values (double in Stata)
    000000000000e07f    .
    000000000001e07f    .a
    000000000002e07f    .b
    ...
    000000000018e07f    .x
    000000000019e07f    .y
    00000000001ae07f    .z
    """

    # Construct a dictionary of missing values
    MISSING_VALUES: dict[float, str] = {}
    bases: Final = (101, 32741, 2147483621)
    for b in bases:
        # Conversion to long to avoid hash issues on 32 bit platforms #8968
        MISSING_VALUES[b] = "."
        for i in range(1, 27):
            MISSING_VALUES[i + b] = "." + chr(96 + i)

    float32_base: bytes = b"\x00\x00\x00\x7f"
    increment_32: int = struct.unpack("<i", b"\x00\x08\x00\x00")[0]
    for i in range(27):
        key = struct.unpack("<f", float32_base)[0]
        MISSING_VALUES[key] = "."
        if i > 0:
            MISSING_VALUES[key] += chr(96 + i)
        int_value = struct.unpack("<i", struct.pack("<f", key))[0] + increment_32
        float32_base = struct.pack("<i", int_value)

    float64_base: bytes = b"\x00\x00\x00\x00\x00\x00\xe0\x7f"
    increment_64 = struct.unpack("q", b"\x00\x00\x00\x00\x00\x01\x00\x00")[0]
    for i in range(27):
        key = struct.unpack("<d", float64_base)[0]
        MISSING_VALUES[key] = "."
        if i > 0:
            MISSING_VALUES[key] += chr(96 + i)
        int_value = struct.unpack("q", struct.pack("<d", key))[0] + increment_64
        float64_base = struct.pack("q", int_value)

    BASE_MISSING_VALUES: Final = {
        "int8": 101,
        "int16": 32741,
        "int32": 2147483621,
        "float32": struct.unpack("<f", float32_base)[0],
        "float64": struct.unpack("<d", float64_base)[0],
    }

    def __init__(self, value: float) -> None:
        self._value = value
        # Conversion to int to avoid hash issues on 32 bit platforms #8968
        value = int(value) if value < 2147483648 else float(value)
        self._str = self.MISSING_VALUES[value]

    @property
    def string(self) -> str:
        """
        The Stata representation of the missing value: '.', '.a'..'.z'

        Returns
        -------
        str
            The representation of the missing value.
        """
        return self._str

    @property
    def value(self) -> float:
        """
        The binary representation of the missing value.

        Returns
        -------
        {int, float}
            The binary representation of the missing value.
        """
        return self._value

    def __str__(self) -> str:
        return self.string

    def __repr__(self) -> str:
        return f"{type(self)}({self})"

    def __eq__(self, other: object) -> bool:
        return (
            isinstance(other, type(self))
            and self.string == other.string
            and self.value == other.value
        )

    @classmethod
    def get_base_missing_value(cls, dtype: np.dtype) -> float:
        if dtype.type is np.int8:
            value = cls.BASE_MISSING_VALUES["int8"]
        elif dtype.type is np.int16:
            value = cls.BASE_MISSING_VALUES["int16"]
        elif dtype.type is np.int32:
            value = cls.BASE_MISSING_VALUES["int32"]
        elif dtype.type is np.float32:
            value = cls.BASE_MISSING_VALUES["float32"]
        elif dtype.type is np.float64:
            value = cls.BASE_MISSING_VALUES["float64"]
        else:
            raise ValueError("Unsupported dtype")
        return value


class StataParser:
    def __init__(self) -> None:
        # type          code.
        # --------------------
        # str1        1 = 0x01
        # str2        2 = 0x02
        # ...
        # str244    244 = 0xf4
        # byte      251 = 0xfb  (sic)
        # int       252 = 0xfc
        # long      253 = 0xfd
        # float     254 = 0xfe
        # double    255 = 0xff
        # --------------------
        # NOTE: the byte type seems to be reserved for categorical variables
        # with a label, but the underlying variable is -127 to 100
        # we're going to drop the label and cast to int
        self.DTYPE_MAP = dict(
            [(i, np.dtype(f"S{i}")) for i in range(1, 245)]
            + [
                (251, np.dtype(np.int8)),
                (252, np.dtype(np.int16)),
                (253, np.dtype(np.int32)),
                (254, np.dtype(np.float32)),
                (255, np.dtype(np.float64)),
            ]
        )
        self.DTYPE_MAP_XML: dict[int, np.dtype] = {
            32768: np.dtype(np.uint8),  # Keys to GSO
            65526: np.dtype(np.float64),
            65527: np.dtype(np.float32),
            65528: np.dtype(np.int32),
            65529: np.dtype(np.int16),
            65530: np.dtype(np.int8),
        }
        self.TYPE_MAP = list(tuple(range(251)) + tuple("bhlfd"))
        self.TYPE_MAP_XML = {
            # Not really a Q, unclear how to handle byteswap
            32768: "Q",
            65526: "d",
            65527: "f",
            65528: "l",
            65529: "h",
            65530: "b",
        }
        # NOTE: technically, some of these are wrong. there are more numbers
        # that can be represented. it's the 27 ABOVE and BELOW the max listed
        # numeric data type in [U] 12.2.2 of the 11.2 manual
        float32_min = b"\xff\xff\xff\xfe"
        float32_max = b"\xff\xff\xff\x7e"
        float64_min = b"\xff\xff\xff\xff\xff\xff\xef\xff"
        float64_max = b"\xff\xff\xff\xff\xff\xff\xdf\x7f"
        self.VALID_RANGE = {
            "b": (-127, 100),
            "h": (-32767, 32740),
            "l": (-2147483647, 2147483620),
            "f": (
                np.float32(struct.unpack("<f", float32_min)[0]),
                np.float32(struct.unpack("<f", float32_max)[0]),
            ),
            "d": (
                np.float64(struct.unpack("<d", float64_min)[0]),
                np.float64(struct.unpack("<d", float64_max)[0]),
            ),
        }

        self.OLD_TYPE_MAPPING = {
            98: 251,  # byte
            105: 252,  # int
            108: 253,  # long
            102: 254,  # float
            100: 255,  # double
        }

        # These missing values are the generic '.' in Stata, and are used
        # to replace nans
        self.MISSING_VALUES = {
            "b": 101,
            "h": 32741,
            "l": 2147483621,
            "f": np.float32(struct.unpack("<f", b"\x00\x00\x00\x7f")[0]),
            "d": np.float64(
                struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0]
            ),
        }
        self.NUMPY_TYPE_MAP = {
            "b": "i1",
            "h": "i2",
            "l": "i4",
            "f": "f4",
            "d": "f8",
            "Q": "u8",
        }

        # Reserved words cannot be used as variable names
        self.RESERVED_WORDS = {
            "aggregate",
            "array",
            "boolean",
            "break",
            "byte",
            "case",
            "catch",
            "class",
            "colvector",
            "complex",
            "const",
            "continue",
            "default",
            "delegate",
            "delete",
            "do",
            "double",
            "else",
            "eltypedef",
            "end",
            "enum",
            "explicit",
            "export",
            "external",
            "float",
            "for",
            "friend",
            "function",
            "global",
            "goto",
            "if",
            "inline",
            "int",
            "local",
            "long",
            "NULL",
            "pragma",
            "protected",
            "quad",
            "rowvector",
            "short",
            "typedef",
            "typename",
            "virtual",
            "_all",
            "_N",
            "_skip",
            "_b",
            "_pi",
            "str#",
            "in",
            "_pred",
            "strL",
            "_coef",
            "_rc",
            "using",
            "_cons",
            "_se",
            "with",
            "_n",
        }


class StataReader(StataParser, abc.Iterator):
    __doc__ = _stata_reader_doc

    _path_or_buf: IO[bytes]  # Will be assigned by `_open_file`.

    def __init__(
        self,
        path_or_buf: FilePath | ReadBuffer[bytes],
        convert_dates: bool = True,
        convert_categoricals: bool = True,
        index_col: str | None = None,
        convert_missing: bool = False,
        preserve_dtypes: bool = True,
        columns: Sequence[str] | None = None,
        order_categoricals: bool = True,
        chunksize: int | None = None,
        compression: CompressionOptions = "infer",
        storage_options: StorageOptions | None = None,
    ) -> None:
        super().__init__()

        # Arguments to the reader (can be temporarily overridden in
        # calls to read).
        self._convert_dates = convert_dates
        self._convert_categoricals = convert_categoricals
        self._index_col = index_col
        self._convert_missing = convert_missing
        self._preserve_dtypes = preserve_dtypes
        self._columns = columns
        self._order_categoricals = order_categoricals
        self._original_path_or_buf = path_or_buf
        self._compression = compression
        self._storage_options = storage_options
        self._encoding = ""
        self._chunksize = chunksize
        self._using_iterator = False
        self._entered = False
        if self._chunksize is None:
            self._chunksize = 1
        elif not isinstance(chunksize, int) or chunksize <= 0:
            raise ValueError("chunksize must be a positive integer when set.")

        # State variables for the file
        self._close_file: Callable[[], None] | None = None
        self._missing_values = False
        self._can_read_value_labels = False
        self._column_selector_set = False
        self._value_labels_read = False
        self._data_read = False
        self._dtype: np.dtype | None = None
        self._lines_read = 0

        self._native_byteorder = _set_endianness(sys.byteorder)

    def _ensure_open(self) -> None:
        """
        Ensure the file has been opened and its header data read.
        """
        if not hasattr(self, "_path_or_buf"):
            self._open_file()

    def _open_file(self) -> None:
        """
        Open the file (with compression options, etc.), and read header information.
        """
        if not self._entered:
            warnings.warn(
                "StataReader is being used without using a context manager. "
                "Using StataReader as a context manager is the only supported method.",
                ResourceWarning,
                stacklevel=find_stack_level(),
            )
        handles = get_handle(
            self._original_path_or_buf,
            "rb",
            storage_options=self._storage_options,
            is_text=False,
            compression=self._compression,
        )
        if hasattr(handles.handle, "seekable") and handles.handle.seekable():
            # If the handle is directly seekable, use it without an extra copy.
            self._path_or_buf = handles.handle
            self._close_file = handles.close
        else:
            # Copy to memory, and ensure no encoding.
            with handles:
                self._path_or_buf = BytesIO(handles.handle.read())
            self._close_file = self._path_or_buf.close

        self._read_header()
        self._setup_dtype()

    def __enter__(self) -> Self:
        """enter context manager"""
        self._entered = True
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_value: BaseException | None,
        traceback: TracebackType | None,
    ) -> None:
        if self._close_file:
            self._close_file()

    def close(self) -> None:
        """Close the handle if its open.

        .. deprecated: 2.0.0

           The close method is not part of the public API.
           The only supported way to use StataReader is to use it as a context manager.
        """
        warnings.warn(
            "The StataReader.close() method is not part of the public API and "
            "will be removed in a future version without notice. "
            "Using StataReader as a context manager is the only supported method.",
            FutureWarning,
            stacklevel=find_stack_level(),
        )
        if self._close_file:
            self._close_file()

    def _set_encoding(self) -> None:
        """
        Set string encoding which depends on file version
        """
        if self._format_version < 118:
            self._encoding = "latin-1"
        else:
            self._encoding = "utf-8"

    def _read_int8(self) -> int:
        return struct.unpack("b", self._path_or_buf.read(1))[0]

    def _read_uint8(self) -> int:
        return struct.unpack("B", self._path_or_buf.read(1))[0]

    def _read_uint16(self) -> int:
        return struct.unpack(f"{self._byteorder}H", self._path_or_buf.read(2))[0]

    def _read_uint32(self) -> int:
        return struct.unpack(f"{self._byteorder}I", self._path_or_buf.read(4))[0]

    def _read_uint64(self) -> int:
        return struct.unpack(f"{self._byteorder}Q", self._path_or_buf.read(8))[0]

    def _read_int16(self) -> int:
        return struct.unpack(f"{self._byteorder}h", self._path_or_buf.read(2))[0]

    def _read_int32(self) -> int:
        return struct.unpack(f"{self._byteorder}i", self._path_or_buf.read(4))[0]

    def _read_int64(self) -> int:
        return struct.unpack(f"{self._byteorder}q", self._path_or_buf.read(8))[0]

    def _read_char8(self) -> bytes:
        return struct.unpack("c", self._path_or_buf.read(1))[0]

    def _read_int16_count(self, count: int) -> tuple[int, ...]:
        return struct.unpack(
            f"{self._byteorder}{'h' * count}",
            self._path_or_buf.read(2 * count),
        )

    def _read_header(self) -> None:
        first_char = self._read_char8()
        if first_char == b"<":
            self._read_new_header()
        else:
            self._read_old_header(first_char)

    def _read_new_header(self) -> None:
        # The first part of the header is common to 117 - 119.
        self._path_or_buf.read(27)  # stata_dta><header><release>
        self._format_version = int(self._path_or_buf.read(3))
        if self._format_version not in [117, 118, 119]:
            raise ValueError(_version_error.format(version=self._format_version))
        self._set_encoding()
        self._path_or_buf.read(21)  # </release><byteorder>
        self._byteorder = ">" if self._path_or_buf.read(3) == b"MSF" else "<"
        self._path_or_buf.read(15)  # </byteorder><K>
        self._nvar = (
            self._read_uint16() if self._format_version <= 118 else self._read_uint32()
        )
        self._path_or_buf.read(7)  # </K><N>

        self._nobs = self._get_nobs()
        self._path_or_buf.read(11)  # </N><label>
        self._data_label = self._get_data_label()
        self._path_or_buf.read(19)  # </label><timestamp>
        self._time_stamp = self._get_time_stamp()
        self._path_or_buf.read(26)  # </timestamp></header><map>
        self._path_or_buf.read(8)  # 0x0000000000000000
        self._path_or_buf.read(8)  # position of <map>

        self._seek_vartypes = self._read_int64() + 16
        self._seek_varnames = self._read_int64() + 10
        self._seek_sortlist = self._read_int64() + 10
        self._seek_formats = self._read_int64() + 9
        self._seek_value_label_names = self._read_int64() + 19

        # Requires version-specific treatment
        self._seek_variable_labels = self._get_seek_variable_labels()

        self._path_or_buf.read(8)  # <characteristics>
        self._data_location = self._read_int64() + 6
        self._seek_strls = self._read_int64() + 7
        self._seek_value_labels = self._read_int64() + 14

        self._typlist, self._dtyplist = self._get_dtypes(self._seek_vartypes)

        self._path_or_buf.seek(self._seek_varnames)
        self._varlist = self._get_varlist()

        self._path_or_buf.seek(self._seek_sortlist)
        self._srtlist = self._read_int16_count(self._nvar + 1)[:-1]

        self._path_or_buf.seek(self._seek_formats)
        self._fmtlist = self._get_fmtlist()

        self._path_or_buf.seek(self._seek_value_label_names)
        self._lbllist = self._get_lbllist()

        self._path_or_buf.seek(self._seek_variable_labels)
        self._variable_labels = self._get_variable_labels()

    # Get data type information, works for versions 117-119.
    def _get_dtypes(
        self, seek_vartypes: int
    ) -> tuple[list[int | str], list[str | np.dtype]]:
        self._path_or_buf.seek(seek_vartypes)
        typlist = []
        dtyplist = []
        for _ in range(self._nvar):
            typ = self._read_uint16()
            if typ <= 2045:
                typlist.append(typ)
                dtyplist.append(str(typ))
            else:
                try:
                    typlist.append(self.TYPE_MAP_XML[typ])  # type: ignore[arg-type]
                    dtyplist.append(self.DTYPE_MAP_XML[typ])  # type: ignore[arg-type]
                except KeyError as err:
                    raise ValueError(f"cannot convert stata types [{typ}]") from err

        return typlist, dtyplist  # type: ignore[return-value]

    def _get_varlist(self) -> list[str]:
        # 33 in order formats, 129 in formats 118 and 119
        b = 33 if self._format_version < 118 else 129
        return [self._decode(self._path_or_buf.read(b)) for _ in range(self._nvar)]

    # Returns the format list
    def _get_fmtlist(self) -> list[str]:
        if self._format_version >= 118:
            b = 57
        elif self._format_version > 113:
            b = 49
        elif self._format_version > 104:
            b = 12
        else:
            b = 7

        return [self._decode(self._path_or_buf.read(b)) for _ in range(self._nvar)]

    # Returns the label list
    def _get_lbllist(self) -> list[str]:
        if self._format_version >= 118:
            b = 129
        elif self._format_version > 108:
            b = 33
        else:
            b = 9
        return [self._decode(self._path_or_buf.read(b)) for _ in range(self._nvar)]

    def _get_variable_labels(self) -> list[str]:
        if self._format_version >= 118:
            vlblist = [
                self._decode(self._path_or_buf.read(321)) for _ in range(self._nvar)
            ]
        elif self._format_version > 105:
            vlblist = [
                self._decode(self._path_or_buf.read(81)) for _ in range(self._nvar)
            ]
        else:
            vlblist = [
                self._decode(self._path_or_buf.read(32)) for _ in range(self._nvar)
            ]
        return vlblist

    def _get_nobs(self) -> int:
        if self._format_version >= 118:
            return self._read_uint64()
        else:
            return self._read_uint32()

    def _get_data_label(self) -> str:
        if self._format_version >= 118:
            strlen = self._read_uint16()
            return self._decode(self._path_or_buf.read(strlen))
        elif self._format_version == 117:
            strlen = self._read_int8()
            return self._decode(self._path_or_buf.read(strlen))
        elif self._format_version > 105:
            return self._decode(self._path_or_buf.read(81))
        else:
            return self._decode(self._path_or_buf.read(32))

    def _get_time_stamp(self) -> str:
        if self._format_version >= 118:
            strlen = self._read_int8()
            return self._path_or_buf.read(strlen).decode("utf-8")
        elif self._format_version == 117:
            strlen = self._read_int8()
            return self._decode(self._path_or_buf.read(strlen))
        elif self._format_version > 104:
            return self._decode(self._path_or_buf.read(18))
        else:
            raise ValueError()

    def _get_seek_variable_labels(self) -> int:
        if self._format_version == 117:
            self._path_or_buf.read(8)  # <variable_labels>, throw away
            # Stata 117 data files do not follow the described format.  This is
            # a work around that uses the previous label, 33 bytes for each
            # variable, 20 for the closing tag and 17 for the opening tag
            return self._seek_value_label_names + (33 * self._nvar) + 20 + 17
        elif self._format_version >= 118:
            return self._read_int64() + 17
        else:
            raise ValueError()

    def _read_old_header(self, first_char: bytes) -> None:
        self._format_version = int(first_char[0])
        if self._format_version not in [104, 105, 108, 111, 113, 114, 115]:
            raise ValueError(_version_error.format(version=self._format_version))
        self._set_encoding()
        self._byteorder = ">" if self._read_int8() == 0x1 else "<"
        self._filetype = self._read_int8()
        self._path_or_buf.read(1)  # unused

        self._nvar = self._read_uint16()
        self._nobs = self._get_nobs()

        self._data_label = self._get_data_label()

        self._time_stamp = self._get_time_stamp()

        # descriptors
        if self._format_version > 108:
            typlist = [int(c) for c in self._path_or_buf.read(self._nvar)]
        else:
            buf = self._path_or_buf.read(self._nvar)
            typlistb = np.frombuffer(buf, dtype=np.uint8)
            typlist = []
            for tp in typlistb:
                if tp in self.OLD_TYPE_MAPPING:
                    typlist.append(self.OLD_TYPE_MAPPING[tp])
                else:
                    typlist.append(tp - 127)  # bytes

        try:
            self._typlist = [self.TYPE_MAP[typ] for typ in typlist]
        except ValueError as err:
            invalid_types = ",".join([str(x) for x in typlist])
            raise ValueError(f"cannot convert stata types [{invalid_types}]") from err
        try:
            self._dtyplist = [self.DTYPE_MAP[typ] for typ in typlist]
        except ValueError as err:
            invalid_dtypes = ",".join([str(x) for x in typlist])
            raise ValueError(f"cannot convert stata dtypes [{invalid_dtypes}]") from err

        if self._format_version > 108:
            self._varlist = [
                self._decode(self._path_or_buf.read(33)) for _ in range(self._nvar)
            ]
        else:
            self._varlist = [
                self._decode(self._path_or_buf.read(9)) for _ in range(self._nvar)
            ]
        self._srtlist = self._read_int16_count(self._nvar + 1)[:-1]

        self._fmtlist = self._get_fmtlist()

        self._lbllist = self._get_lbllist()

        self._variable_labels = self._get_variable_labels()

        # ignore expansion fields (Format 105 and later)
        # When reading, read five bytes; the last four bytes now tell you
        # the size of the next read, which you discard.  You then continue
        # like this until you read 5 bytes of zeros.

        if self._format_version > 104:
            while True:
                data_type = self._read_int8()
                if self._format_version > 108:
                    data_len = self._read_int32()
                else:
                    data_len = self._read_int16()
                if data_type == 0:
                    break
                self._path_or_buf.read(data_len)

        # necessary data to continue parsing
        self._data_location = self._path_or_buf.tell()

    def _setup_dtype(self) -> np.dtype:
        """Map between numpy and state dtypes"""
        if self._dtype is not None:
            return self._dtype

        dtypes = []  # Convert struct data types to numpy data type
        for i, typ in enumerate(self._typlist):
            if typ in self.NUMPY_TYPE_MAP:
                typ = cast(str, typ)  # only strs in NUMPY_TYPE_MAP
                dtypes.append((f"s{i}", f"{self._byteorder}{self.NUMPY_TYPE_MAP[typ]}"))
            else:
                dtypes.append((f"s{i}", f"S{typ}"))
        self._dtype = np.dtype(dtypes)

        return self._dtype

    def _decode(self, s: bytes) -> str:
        # have bytes not strings, so must decode
        s = s.partition(b"\0")[0]
        try:
            return s.decode(self._encoding)
        except UnicodeDecodeError:
            # GH 25960, fallback to handle incorrect format produced when 117
            # files are converted to 118 files in Stata
            encoding = self._encoding
            msg = f"""
One or more strings in the dta file could not be decoded using {encoding}, and
so the fallback encoding of latin-1 is being used.  This can happen when a file
has been incorrectly encoded by Stata or some other software. You should verify
the string values returned are correct."""
            warnings.warn(
                msg,
                UnicodeWarning,
                stacklevel=find_stack_level(),
            )
            return s.decode("latin-1")

    def _read_value_labels(self) -> None:
        self._ensure_open()
        if self._value_labels_read:
            # Don't read twice
            return
        if self._format_version <= 108:
            # Value labels are not supported in version 108 and earlier.
            self._value_labels_read = True
            self._value_label_dict: dict[str, dict[float, str]] = {}
            return

        if self._format_version >= 117:
            self._path_or_buf.seek(self._seek_value_labels)
        else:
            assert self._dtype is not None
            offset = self._nobs * self._dtype.itemsize
            self._path_or_buf.seek(self._data_location + offset)

        self._value_labels_read = True
        self._value_label_dict = {}

        while True:
            if self._format_version >= 117:
                if self._path_or_buf.read(5) == b"</val":  # <lbl>
                    break  # end of value label table

            slength = self._path_or_buf.read(4)
            if not slength:
                break  # end of value label table (format < 117)
            if self._format_version <= 117:
                labname = self._decode(self._path_or_buf.read(33))
            else:
                labname = self._decode(self._path_or_buf.read(129))
            self._path_or_buf.read(3)  # padding

            n = self._read_uint32()
            txtlen = self._read_uint32()
            off = np.frombuffer(
                self._path_or_buf.read(4 * n), dtype=f"{self._byteorder}i4", count=n
            )
            val = np.frombuffer(
                self._path_or_buf.read(4 * n), dtype=f"{self._byteorder}i4", count=n
            )
            ii = np.argsort(off)
            off = off[ii]
            val = val[ii]
            txt = self._path_or_buf.read(txtlen)
            self._value_label_dict[labname] = {}
            for i in range(n):
                end = off[i + 1] if i < n - 1 else txtlen
                self._value_label_dict[labname][val[i]] = self._decode(
                    txt[off[i] : end]
                )
            if self._format_version >= 117:
                self._path_or_buf.read(6)  # </lbl>
        self._value_labels_read = True

    def _read_strls(self) -> None:
        self._path_or_buf.seek(self._seek_strls)
        # Wrap v_o in a string to allow uint64 values as keys on 32bit OS
        self.GSO = {"0": ""}
        while True:
            if self._path_or_buf.read(3) != b"GSO":
                break

            if self._format_version == 117:
                v_o = self._read_uint64()
            else:
                buf = self._path_or_buf.read(12)
                # Only tested on little endian file on little endian machine.
                v_size = 2 if self._format_version == 118 else 3
                if self._byteorder == "<":
                    buf = buf[0:v_size] + buf[4 : (12 - v_size)]
                else:
                    # This path may not be correct, impossible to test
                    buf = buf[0:v_size] + buf[(4 + v_size) :]
                v_o = struct.unpack("Q", buf)[0]
            typ = self._read_uint8()
            length = self._read_uint32()
            va = self._path_or_buf.read(length)
            if typ == 130:
                decoded_va = va[0:-1].decode(self._encoding)
            else:
                # Stata says typ 129 can be binary, so use str
                decoded_va = str(va)
                # Wrap v_o in a string to allow uint64 values as keys on 32bit OS
            self.GSO[str(v_o)] = decoded_va

    def __next__(self) -> DataFrame:
        self._using_iterator = True
        return self.read(nrows=self._chunksize)

    def get_chunk(self, size: int | None = None) -> DataFrame:
        """
        Reads lines from Stata file and returns as dataframe

        Parameters
        ----------
        size : int, defaults to None
            Number of lines to read.  If None, reads whole file.

        Returns
        -------
        DataFrame
        """
        if size is None:
            size = self._chunksize
        return self.read(nrows=size)

    @Appender(_read_method_doc)
    def read(
        self,
        nrows: int | None = None,
        convert_dates: bool | None = None,
        convert_categoricals: bool | None = None,
        index_col: str | None = None,
        convert_missing: bool | None = None,
        preserve_dtypes: bool | None = None,
        columns: Sequence[str] | None = None,
        order_categoricals: bool | None = None,
    ) -> DataFrame:
        self._ensure_open()

        # Handle options
        if convert_dates is None:
            convert_dates = self._convert_dates
        if convert_categoricals is None:
            convert_categoricals = self._convert_categoricals
        if convert_missing is None:
            convert_missing = self._convert_missing
        if preserve_dtypes is None:
            preserve_dtypes = self._preserve_dtypes
        if columns is None:
            columns = self._columns
        if order_categoricals is None:
            order_categoricals = self._order_categoricals
        if index_col is None:
            index_col = self._index_col
        if nrows is None:
            nrows = self._nobs

        # Handle empty file or chunk.  If reading incrementally raise
        # StopIteration.  If reading the whole thing return an empty
        # data frame.
        if (self._nobs == 0) and nrows == 0:
            self._can_read_value_labels = True
            self._data_read = True
            data = DataFrame(columns=self._varlist)
            # Apply dtypes correctly
            for i, col in enumerate(data.columns):
                dt = self._dtyplist[i]
                if isinstance(dt, np.dtype):
                    if dt.char != "S":
                        data[col] = data[col].astype(dt)
            if columns is not None:
                data = self._do_select_columns(data, columns)
            return data

        if (self._format_version >= 117) and (not self._value_labels_read):
            self._can_read_value_labels = True
            self._read_strls()

        # Read data
        assert self._dtype is not None
        dtype = self._dtype
        max_read_len = (self._nobs - self._lines_read) * dtype.itemsize
        read_len = nrows * dtype.itemsize
        read_len = min(read_len, max_read_len)
        if read_len <= 0:
            # Iterator has finished, should never be here unless
            # we are reading the file incrementally
            if convert_categoricals:
                self._read_value_labels()
            raise StopIteration
        offset = self._lines_read * dtype.itemsize
        self._path_or_buf.seek(self._data_location + offset)
        read_lines = min(nrows, self._nobs - self._lines_read)
        raw_data = np.frombuffer(
            self._path_or_buf.read(read_len), dtype=dtype, count=read_lines
        )

        self._lines_read += read_lines
        if self._lines_read == self._nobs:
            self._can_read_value_labels = True
            self._data_read = True
        # if necessary, swap the byte order to native here
        if self._byteorder != self._native_byteorder:
            raw_data = raw_data.byteswap().view(raw_data.dtype.newbyteorder())

        if convert_categoricals:
            self._read_value_labels()

        if len(raw_data) == 0:
            data = DataFrame(columns=self._varlist)
        else:
            data = DataFrame.from_records(raw_data)
            data.columns = Index(self._varlist)

        # If index is not specified, use actual row number rather than
        # restarting at 0 for each chunk.
        if index_col is None:
            data.index = RangeIndex(
                self._lines_read - read_lines, self._lines_read
            )  # set attr instead of set_index to avoid copy

        if columns is not None:
            data = self._do_select_columns(data, columns)

        # Decode strings
        for col, typ in zip(data, self._typlist):
            if isinstance(typ, int):
                data[col] = data[col].apply(self._decode)

        data = self._insert_strls(data)

        # Convert columns (if needed) to match input type
        valid_dtypes = [i for i, dtyp in enumerate(self._dtyplist) if dtyp is not None]
        object_type = np.dtype(object)
        for idx in valid_dtypes:
            dtype = data.iloc[:, idx].dtype
            if dtype not in (object_type, self._dtyplist[idx]):
                data.isetitem(idx, data.iloc[:, idx].astype(dtype))

        data = self._do_convert_missing(data, convert_missing)

        if convert_dates:
            for i, fmt in enumerate(self._fmtlist):
                if any(fmt.startswith(date_fmt) for date_fmt in _date_formats):
                    data.isetitem(
                        i, _stata_elapsed_date_to_datetime_vec(data.iloc[:, i], fmt)
                    )

        if convert_categoricals and self._format_version > 108:
            data = self._do_convert_categoricals(
                data, self._value_label_dict, self._lbllist, order_categoricals
            )

        if not preserve_dtypes:
            retyped_data = []
            convert = False
            for col in data:
                dtype = data[col].dtype
                if dtype in (np.dtype(np.float16), np.dtype(np.float32)):
                    dtype = np.dtype(np.float64)
                    convert = True
                elif dtype in (
                    np.dtype(np.int8),
                    np.dtype(np.int16),
                    np.dtype(np.int32),
                ):
                    dtype = np.dtype(np.int64)
                    convert = True
                retyped_data.append((col, data[col].astype(dtype)))
            if convert:
                data = DataFrame.from_dict(dict(retyped_data))

        if index_col is not None:
            data = data.set_index(data.pop(index_col))

        return data

    def _do_convert_missing(self, data: DataFrame, convert_missing: bool) -> DataFrame:
        # Check for missing values, and replace if found
        replacements = {}
        for i in range(len(data.columns)):
            fmt = self._typlist[i]
            if fmt not in self.VALID_RANGE:
                continue

            fmt = cast(str, fmt)  # only strs in VALID_RANGE
            nmin, nmax = self.VALID_RANGE[fmt]
            series = data.iloc[:, i]

            # appreciably faster to do this with ndarray instead of Series
            svals = series._values
            missing = (svals < nmin) | (svals > nmax)

            if not missing.any():
                continue

            if convert_missing:  # Replacement follows Stata notation
                missing_loc = np.nonzero(np.asarray(missing))[0]
                umissing, umissing_loc = np.unique(series[missing], return_inverse=True)
                replacement = Series(series, dtype=object)
                for j, um in enumerate(umissing):
                    missing_value = StataMissingValue(um)

                    loc = missing_loc[umissing_loc == j]
                    replacement.iloc[loc] = missing_value
            else:  # All replacements are identical
                dtype = series.dtype
                if dtype not in (np.float32, np.float64):
                    dtype = np.float64
                replacement = Series(series, dtype=dtype)
                if not replacement._values.flags["WRITEABLE"]:
                    # only relevant for ArrayManager; construction
                    #  path for BlockManager ensures writeability
                    replacement = replacement.copy()
                # Note: operating on ._values is much faster than directly
                # TODO: can we fix that?
                replacement._values[missing] = np.nan
            replacements[i] = replacement
        if replacements:
            for idx, value in replacements.items():
                data.isetitem(idx, value)
        return data

    def _insert_strls(self, data: DataFrame) -> DataFrame:
        if not hasattr(self, "GSO") or len(self.GSO) == 0:
            return data
        for i, typ in enumerate(self._typlist):
            if typ != "Q":
                continue
            # Wrap v_o in a string to allow uint64 values as keys on 32bit OS
            data.isetitem(i, [self.GSO[str(k)] for k in data.iloc[:, i]])
        return data

    def _do_select_columns(self, data: DataFrame, columns: Sequence[str]) -> DataFrame:
        if not self._column_selector_set:
            column_set = set(columns)
            if len(column_set) != len(columns):
                raise ValueError("columns contains duplicate entries")
            unmatched = column_set.difference(data.columns)
            if unmatched:
                joined = ", ".join(list(unmatched))
                raise ValueError(
                    "The following columns were not "
                    f"found in the Stata data set: {joined}"
                )
            # Copy information for retained columns for later processing
            dtyplist = []
            typlist = []
            fmtlist = []
            lbllist = []
            for col in columns:
                i = data.columns.get_loc(col)
                dtyplist.append(self._dtyplist[i])
                typlist.append(self._typlist[i])
                fmtlist.append(self._fmtlist[i])
                lbllist.append(self._lbllist[i])

            self._dtyplist = dtyplist
            self._typlist = typlist
            self._fmtlist = fmtlist
            self._lbllist = lbllist
            self._column_selector_set = True

        return data[columns]

    def _do_convert_categoricals(
        self,
        data: DataFrame,
        value_label_dict: dict[str, dict[float, str]],
        lbllist: Sequence[str],
        order_categoricals: bool,
    ) -> DataFrame:
        """
        Converts categorical columns to Categorical type.
        """
        if not value_label_dict:
            return data
        cat_converted_data = []
        for col, label in zip(data, lbllist):
            if label in value_label_dict:
                # Explicit call with ordered=True
                vl = value_label_dict[label]
                keys = np.array(list(vl.keys()))
                column = data[col]
                key_matches = column.isin(keys)
                if self._using_iterator and key_matches.all():
                    initial_categories: np.ndarray | None = keys
                    # If all categories are in the keys and we are iterating,
                    # use the same keys for all chunks. If some are missing
                    # value labels, then we will fall back to the categories
                    # varying across chunks.
                else:
                    if self._using_iterator:
                        # warn is using an iterator
                        warnings.warn(
                            categorical_conversion_warning,
                            CategoricalConversionWarning,
                            stacklevel=find_stack_level(),
                        )
                    initial_categories = None
                cat_data = Categorical(
                    column, categories=initial_categories, ordered=order_categoricals
                )
                if initial_categories is None:
                    # If None here, then we need to match the cats in the Categorical
                    categories = []
                    for category in cat_data.categories:
                        if category in vl:
                            categories.append(vl[category])
                        else:
                            categories.append(category)
                else:
                    # If all cats are matched, we can use the values
                    categories = list(vl.values())
                try:
                    # Try to catch duplicate categories
                    # TODO: if we get a non-copying rename_categories, use that
                    cat_data = cat_data.rename_categories(categories)
                except ValueError as err:
                    vc = Series(categories, copy=False).value_counts()
                    repeated_cats = list(vc.index[vc > 1])
                    repeats = "-" * 80 + "\n" + "\n".join(repeated_cats)
                    # GH 25772
                    msg = f"""
Value labels for column {col} are not unique. These cannot be converted to
pandas categoricals.

Either read the file with `convert_categoricals` set to False or use the
low level interface in `StataReader` to separately read the values and the
value_labels.

The repeated labels are:
{repeats}
"""
                    raise ValueError(msg) from err
                # TODO: is the next line needed above in the data(...) method?
                cat_series = Series(cat_data, index=data.index, copy=False)
                cat_converted_data.append((col, cat_series))
            else:
                cat_converted_data.append((col, data[col]))
        data = DataFrame(dict(cat_converted_data), copy=False)
        return data

    @property
    def data_label(self) -> str:
        """
        Return data label of Stata file.

        Examples
        --------
        >>> df = pd.DataFrame([(1,)], columns=["variable"])
        >>> time_stamp = pd.Timestamp(2000, 2, 29, 14, 21)
        >>> data_label = "This is a data file."
        >>> path = "/My_path/filename.dta"
        >>> df.to_stata(path, time_stamp=time_stamp,    # doctest: +SKIP
        ...             data_label=data_label,  # doctest: +SKIP
        ...             version=None)  # doctest: +SKIP
        >>> with pd.io.stata.StataReader(path) as reader:  # doctest: +SKIP
        ...     print(reader.data_label)  # doctest: +SKIP
        This is a data file.
        """
        self._ensure_open()
        return self._data_label

    @property
    def time_stamp(self) -> str:
        """
        Return time stamp of Stata file.
        """
        self._ensure_open()
        return self._time_stamp

    def variable_labels(self) -> dict[str, str]:
        """
        Return a dict associating each variable name with corresponding label.

        Returns
        -------
        dict

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["col_1", "col_2"])
        >>> time_stamp = pd.Timestamp(2000, 2, 29, 14, 21)
        >>> path = "/My_path/filename.dta"
        >>> variable_labels = {"col_1": "This is an example"}
        >>> df.to_stata(path, time_stamp=time_stamp,  # doctest: +SKIP
        ...             variable_labels=variable_labels, version=None)  # doctest: +SKIP
        >>> with pd.io.stata.StataReader(path) as reader:  # doctest: +SKIP
        ...     print(reader.variable_labels())  # doctest: +SKIP
        {'index': '', 'col_1': 'This is an example', 'col_2': ''}
        >>> pd.read_stata(path)  # doctest: +SKIP
            index col_1 col_2
        0       0    1    2
        1       1    3    4
        """
        self._ensure_open()
        return dict(zip(self._varlist, self._variable_labels))

    def value_labels(self) -> dict[str, dict[float, str]]:
        """
        Return a nested dict associating each variable name to its value and label.

        Returns
        -------
        dict

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["col_1", "col_2"])
        >>> time_stamp = pd.Timestamp(2000, 2, 29, 14, 21)
        >>> path = "/My_path/filename.dta"
        >>> value_labels = {"col_1": {3: "x"}}
        >>> df.to_stata(path, time_stamp=time_stamp,  # doctest: +SKIP
        ...             value_labels=value_labels, version=None)  # doctest: +SKIP
        >>> with pd.io.stata.StataReader(path) as reader:  # doctest: +SKIP
        ...     print(reader.value_labels())  # doctest: +SKIP
        {'col_1': {3: 'x'}}
        >>> pd.read_stata(path)  # doctest: +SKIP
            index col_1 col_2
        0       0    1    2
        1       1    x    4
        """
        if not self._value_labels_read:
            self._read_value_labels()

        return self._value_label_dict


@Appender(_read_stata_doc)
def read_stata(
    filepath_or_buffer: FilePath | ReadBuffer[bytes],
    *,
    convert_dates: bool = True,
    convert_categoricals: bool = True,
    index_col: str | None = None,
    convert_missing: bool = False,
    preserve_dtypes: bool = True,
    columns: Sequence[str] | None = None,
    order_categoricals: bool = True,
    chunksize: int | None = None,
    iterator: bool = False,
    compression: CompressionOptions = "infer",
    storage_options: StorageOptions | None = None,
) -> DataFrame | StataReader:
    reader = StataReader(
        filepath_or_buffer,
        convert_dates=convert_dates,
        convert_categoricals=convert_categoricals,
        index_col=index_col,
        convert_missing=convert_missing,
        preserve_dtypes=preserve_dtypes,
        columns=columns,
        order_categoricals=order_categoricals,
        chunksize=chunksize,
        storage_options=storage_options,
        compression=compression,
    )

    if iterator or chunksize:
        return reader

    with reader:
        return reader.read()


def _set_endianness(endianness: str) -> str:
    if endianness.lower() in ["<", "little"]:
        return "<"
    elif endianness.lower() in [">", "big"]:
        return ">"
    else:  # pragma : no cover
        raise ValueError(f"Endianness {endianness} not understood")


def _pad_bytes(name: AnyStr, length: int) -> AnyStr:
    """
    Take a char string and pads it with null bytes until it's length chars.
    """
    if isinstance(name, bytes):
        return name + b"\x00" * (length - len(name))
    return name + "\x00" * (length - len(name))


def _convert_datetime_to_stata_type(fmt: str) -> np.dtype:
    """
    Convert from one of the stata date formats to a type in TYPE_MAP.
    """
    if fmt in [
        "tc",
        "%tc",
        "td",
        "%td",
        "tw",
        "%tw",
        "tm",
        "%tm",
        "tq",
        "%tq",
        "th",
        "%th",
        "ty",
        "%ty",
    ]:
        return np.dtype(np.float64)  # Stata expects doubles for SIFs
    else:
        raise NotImplementedError(f"Format {fmt} not implemented")


def _maybe_convert_to_int_keys(convert_dates: dict, varlist: list[Hashable]) -> dict:
    new_dict = {}
    for key in convert_dates:
        if not convert_dates[key].startswith("%"):  # make sure proper fmts
            convert_dates[key] = "%" + convert_dates[key]
        if key in varlist:
            new_dict.update({varlist.index(key): convert_dates[key]})
        else:
            if not isinstance(key, int):
                raise ValueError("convert_dates key must be a column or an integer")
            new_dict.update({key: convert_dates[key]})
    return new_dict


def _dtype_to_stata_type(dtype: np.dtype, column: Series) -> int:
    """
    Convert dtype types to stata types. Returns the byte of the given ordinal.
    See TYPE_MAP and comments for an explanation. This is also explained in
    the dta spec.
    1 - 244 are strings of this length
                         Pandas    Stata
    251 - for int8      byte
    252 - for int16     int
    253 - for int32     long
    254 - for float32   float
    255 - for double    double

    If there are dates to convert, then dtype will already have the correct
    type inserted.
    """
    # TODO: expand to handle datetime to integer conversion
    if dtype.type is np.object_:  # try to coerce it to the biggest string
        # not memory efficient, what else could we
        # do?
        itemsize = max_len_string_array(ensure_object(column._values))
        return max(itemsize, 1)
    elif dtype.type is np.float64:
        return 255
    elif dtype.type is np.float32:
        return 254
    elif dtype.type is np.int32:
        return 253
    elif dtype.type is np.int16:
        return 252
    elif dtype.type is np.int8:
        return 251
    else:  # pragma : no cover
        raise NotImplementedError(f"Data type {dtype} not supported.")


def _dtype_to_default_stata_fmt(
    dtype, column: Series, dta_version: int = 114, force_strl: bool = False
) -> str:
    """
    Map numpy dtype to stata's default format for this type. Not terribly
    important since users can change this in Stata. Semantics are

    object  -> "%DDs" where DD is the length of the string.  If not a string,
                raise ValueError
    float64 -> "%10.0g"
    float32 -> "%9.0g"
    int64   -> "%9.0g"
    int32   -> "%12.0g"
    int16   -> "%8.0g"
    int8    -> "%8.0g"
    strl    -> "%9s"
    """
    # TODO: Refactor to combine type with format
    # TODO: expand this to handle a default datetime format?
    if dta_version < 117:
        max_str_len = 244
    else:
        max_str_len = 2045
        if force_strl:
            return "%9s"
    if dtype.type is np.object_:
        itemsize = max_len_string_array(ensure_object(column._values))
        if itemsize > max_str_len:
            if dta_version >= 117:
                return "%9s"
            else:
                raise ValueError(excessive_string_length_error.format(column.name))
        return "%" + str(max(itemsize, 1)) + "s"
    elif dtype == np.float64:
        return "%10.0g"
    elif dtype == np.float32:
        return "%9.0g"
    elif dtype == np.int32:
        return "%12.0g"
    elif dtype in (np.int8, np.int16):
        return "%8.0g"
    else:  # pragma : no cover
        raise NotImplementedError(f"Data type {dtype} not supported.")


@doc(
    storage_options=_shared_docs["storage_options"],
    compression_options=_shared_docs["compression_options"] % "fname",
)
class StataWriter(StataParser):
    """
    A class for writing Stata binary dta files

    Parameters
    ----------
    fname : path (string), buffer or path object
        string, path object (pathlib.Path or py._path.local.LocalPath) or
        object implementing a binary write() functions. If using a buffer
        then the buffer will not be automatically closed after the file
        is written.
    data : DataFrame
        Input to save
    convert_dates : dict
        Dictionary mapping columns containing datetime types to stata internal
        format to use when writing the dates. Options are 'tc', 'td', 'tm',
        'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name.
        Datetime columns that do not have a conversion type specified will be
        converted to 'tc'. Raises NotImplementedError if a datetime column has
        timezone information
    write_index : bool
        Write the index to Stata dataset.
    byteorder : str
        Can be ">", "<", "little", or "big". default is `sys.byteorder`
    time_stamp : datetime
        A datetime to use as file creation date.  Default is the current time
    data_label : str
        A label for the data set.  Must be 80 characters or smaller.
    variable_labels : dict
        Dictionary containing columns as keys and variable labels as values.
        Each label must be 80 characters or smaller.
    {compression_options}

        .. versionchanged:: 1.4.0 Zstandard support.

    {storage_options}

    value_labels : dict of dicts
        Dictionary containing columns as keys and dictionaries of column value
        to labels as values. The combined length of all labels for a single
        variable must be 32,000 characters or smaller.

        .. versionadded:: 1.4.0

    Returns
    -------
    writer : StataWriter instance
        The StataWriter instance has a write_file method, which will
        write the file to the given `fname`.

    Raises
    ------
    NotImplementedError
        * If datetimes contain timezone information
    ValueError
        * Columns listed in convert_dates are neither datetime64[ns]
          or datetime
        * Column dtype is not representable in Stata
        * Column listed in convert_dates is not in DataFrame
        * Categorical label contains more than 32,000 characters

    Examples
    --------
    >>> data = pd.DataFrame([[1.0, 1]], columns=['a', 'b'])
    >>> writer = StataWriter('./data_file.dta', data)
    >>> writer.write_file()

    Directly write a zip file
    >>> compression = {{"method": "zip", "archive_name": "data_file.dta"}}
    >>> writer = StataWriter('./data_file.zip', data, compression=compression)
    >>> writer.write_file()

    Save a DataFrame with dates
    >>> from datetime import datetime
    >>> data = pd.DataFrame([[datetime(2000,1,1)]], columns=['date'])
    >>> writer = StataWriter('./date_data_file.dta', data, {{'date' : 'tw'}})
    >>> writer.write_file()
    """

    _max_string_length = 244
    _encoding: Literal["latin-1", "utf-8"] = "latin-1"

    def __init__(
        self,
        fname: FilePath | WriteBuffer[bytes],
        data: DataFrame,
        convert_dates: dict[Hashable, str] | None = None,
        write_index: bool = True,
        byteorder: str | None = None,
        time_stamp: datetime | None = None,
        data_label: str | None = None,
        variable_labels: dict[Hashable, str] | None = None,
        compression: CompressionOptions = "infer",
        storage_options: StorageOptions | None = None,
        *,
        value_labels: dict[Hashable, dict[float, str]] | None = None,
    ) -> None:
        super().__init__()
        self.data = data
        self._convert_dates = {} if convert_dates is None else convert_dates
        self._write_index = write_index
        self._time_stamp = time_stamp
        self._data_label = data_label
        self._variable_labels = variable_labels
        self._non_cat_value_labels = value_labels
        self._value_labels: list[StataValueLabel] = []
        self._has_value_labels = np.array([], dtype=bool)
        self._compression = compression
        self._output_file: IO[bytes] | None = None
        self._converted_names: dict[Hashable, str] = {}
        # attach nobs, nvars, data, varlist, typlist
        self._prepare_pandas(data)
        self.storage_options = storage_options

        if byteorder is None:
            byteorder = sys.byteorder
        self._byteorder = _set_endianness(byteorder)
        self._fname = fname
        self.type_converters = {253: np.int32, 252: np.int16, 251: np.int8}

    def _write(self, to_write: str) -> None:
        """
        Helper to call encode before writing to file for Python 3 compat.
        """
        self.handles.handle.write(to_write.encode(self._encoding))

    def _write_bytes(self, value: bytes) -> None:
        """
        Helper to assert file is open before writing.
        """
        self.handles.handle.write(value)

    def _prepare_non_cat_value_labels(
        self, data: DataFrame
    ) -> list[StataNonCatValueLabel]:
        """
        Check for value labels provided for non-categorical columns. Value
        labels
        """
        non_cat_value_labels: list[StataNonCatValueLabel] = []
        if self._non_cat_value_labels is None:
            return non_cat_value_labels

        for labname, labels in self._non_cat_value_labels.items():
            if labname in self._converted_names:
                colname = self._converted_names[labname]
            elif labname in data.columns:
                colname = str(labname)
            else:
                raise KeyError(
                    f"Can't create value labels for {labname}, it wasn't "
                    "found in the dataset."
                )

            if not is_numeric_dtype(data[colname].dtype):
                # Labels should not be passed explicitly for categorical
                # columns that will be converted to int
                raise ValueError(
                    f"Can't create value labels for {labname}, value labels "
                    "can only be applied to numeric columns."
                )
            svl = StataNonCatValueLabel(colname, labels, self._encoding)
            non_cat_value_labels.append(svl)
        return non_cat_value_labels

    def _prepare_categoricals(self, data: DataFrame) -> DataFrame:
        """
        Check for categorical columns, retain categorical information for
        Stata file and convert categorical data to int
        """
        is_cat = [isinstance(dtype, CategoricalDtype) for dtype in data.dtypes]
        if not any(is_cat):
            return data

        self._has_value_labels |= np.array(is_cat)

        get_base_missing_value = StataMissingValue.get_base_missing_value
        data_formatted = []
        for col, col_is_cat in zip(data, is_cat):
            if col_is_cat:
                svl = StataValueLabel(data[col], encoding=self._encoding)
                self._value_labels.append(svl)
                dtype = data[col].cat.codes.dtype
                if dtype == np.int64:
                    raise ValueError(
                        "It is not possible to export "
                        "int64-based categorical data to Stata."
                    )
                values = data[col].cat.codes._values.copy()

                # Upcast if needed so that correct missing values can be set
                if values.max() >= get_base_missing_value(dtype):
                    if dtype == np.int8:
                        dtype = np.dtype(np.int16)
                    elif dtype == np.int16:
                        dtype = np.dtype(np.int32)
                    else:
                        dtype = np.dtype(np.float64)
                    values = np.array(values, dtype=dtype)

                # Replace missing values with Stata missing value for type
                values[values == -1] = get_base_missing_value(dtype)
                data_formatted.append((col, values))
            else:
                data_formatted.append((col, data[col]))
        return DataFrame.from_dict(dict(data_formatted))

    def _replace_nans(self, data: DataFrame) -> DataFrame:
        # return data
        """
        Checks floating point data columns for nans, and replaces these with
        the generic Stata for missing value (.)
        """
        for c in data:
            dtype = data[c].dtype
            if dtype in (np.float32, np.float64):
                if dtype == np.float32:
                    replacement = self.MISSING_VALUES["f"]
                else:
                    replacement = self.MISSING_VALUES["d"]
                data[c] = data[c].fillna(replacement)

        return data

    def _update_strl_names(self) -> None:
        """No-op, forward compatibility"""

    def _validate_variable_name(self, name: str) -> str:
        """
        Validate variable names for Stata export.

        Parameters
        ----------
        name : str
            Variable name

        Returns
        -------
        str
            The validated name with invalid characters replaced with
            underscores.

        Notes
        -----
        Stata 114 and 117 support ascii characters in a-z, A-Z, 0-9
        and _.
        """
        for c in name:
            if (
                (c < "A" or c > "Z")
                and (c < "a" or c > "z")
                and (c < "0" or c > "9")
                and c != "_"
            ):
                name = name.replace(c, "_")
        return name

    def _check_column_names(self, data: DataFrame) -> DataFrame:
        """
        Checks column names to ensure that they are valid Stata column names.
        This includes checks for:
            * Non-string names
            * Stata keywords
            * Variables that start with numbers
            * Variables with names that are too long

        When an illegal variable name is detected, it is converted, and if
        dates are exported, the variable name is propagated to the date
        conversion dictionary
        """
        converted_names: dict[Hashable, str] = {}
        columns = list(data.columns)
        original_columns = columns[:]

        duplicate_var_id = 0
        for j, name in enumerate(columns):
            orig_name = name
            if not isinstance(name, str):
                name = str(name)

            name = self._validate_variable_name(name)

            # Variable name must not be a reserved word
            if name in self.RESERVED_WORDS:
                name = "_" + name

            # Variable name may not start with a number
            if "0" <= name[0] <= "9":
                name = "_" + name

            name = name[: min(len(name), 32)]

            if not name == orig_name:
                # check for duplicates
                while columns.count(name) > 0:
                    # prepend ascending number to avoid duplicates
                    name = "_" + str(duplicate_var_id) + name
                    name = name[: min(len(name), 32)]
                    duplicate_var_id += 1
                converted_names[orig_name] = name

            columns[j] = name

        data.columns = Index(columns)

        # Check date conversion, and fix key if needed
        if self._convert_dates:
            for c, o in zip(columns, original_columns):
                if c != o:
                    self._convert_dates[c] = self._convert_dates[o]
                    del self._convert_dates[o]

        if converted_names:
            conversion_warning = []
            for orig_name, name in converted_names.items():
                msg = f"{orig_name}   ->   {name}"
                conversion_warning.append(msg)

            ws = invalid_name_doc.format("\n    ".join(conversion_warning))
            warnings.warn(
                ws,
                InvalidColumnName,
                stacklevel=find_stack_level(),
            )

        self._converted_names = converted_names
        self._update_strl_names()

        return data

    def _set_formats_and_types(self, dtypes: Series) -> None:
        self.fmtlist: list[str] = []
        self.typlist: list[int] = []
        for col, dtype in dtypes.items():
            self.fmtlist.append(_dtype_to_default_stata_fmt(dtype, self.data[col]))
            self.typlist.append(_dtype_to_stata_type(dtype, self.data[col]))

    def _prepare_pandas(self, data: DataFrame) -> None:
        # NOTE: we might need a different API / class for pandas objects so
        # we can set different semantics - handle this with a PR to pandas.io

        data = data.copy()

        if self._write_index:
            temp = data.reset_index()
            if isinstance(temp, DataFrame):
                data = temp

        # Ensure column names are strings
        data = self._check_column_names(data)

        # Check columns for compatibility with stata, upcast if necessary
        # Raise if outside the supported range
        data = _cast_to_stata_types(data)

        # Replace NaNs with Stata missing values
        data = self._replace_nans(data)

        # Set all columns to initially unlabelled
        self._has_value_labels = np.repeat(False, data.shape[1])

        # Create value labels for non-categorical data
        non_cat_value_labels = self._prepare_non_cat_value_labels(data)

        non_cat_columns = [svl.labname for svl in non_cat_value_labels]
        has_non_cat_val_labels = data.columns.isin(non_cat_columns)
        self._has_value_labels |= has_non_cat_val_labels
        self._value_labels.extend(non_cat_value_labels)

        # Convert categoricals to int data, and strip labels
        data = self._prepare_categoricals(data)

        self.nobs, self.nvar = data.shape
        self.data = data
        self.varlist = data.columns.tolist()

        dtypes = data.dtypes

        # Ensure all date columns are converted
        for col in data:
            if col in self._convert_dates:
                continue
            if lib.is_np_dtype(data[col].dtype, "M"):
                self._convert_dates[col] = "tc"

        self._convert_dates = _maybe_convert_to_int_keys(
            self._convert_dates, self.varlist
        )
        for key in self._convert_dates:
            new_type = _convert_datetime_to_stata_type(self._convert_dates[key])
            dtypes.iloc[key] = np.dtype(new_type)

        # Verify object arrays are strings and encode to bytes
        self._encode_strings()

        self._set_formats_and_types(dtypes)

        # set the given format for the datetime cols
        if self._convert_dates is not None:
            for key in self._convert_dates:
                if isinstance(key, int):
                    self.fmtlist[key] = self._convert_dates[key]

    def _encode_strings(self) -> None:
        """
        Encode strings in dta-specific encoding

        Do not encode columns marked for date conversion or for strL
        conversion. The strL converter independently handles conversion and
        also accepts empty string arrays.
        """
        convert_dates = self._convert_dates
        # _convert_strl is not available in dta 114
        convert_strl = getattr(self, "_convert_strl", [])
        for i, col in enumerate(self.data):
            # Skip columns marked for date conversion or strl conversion
            if i in convert_dates or col in convert_strl:
                continue
            column = self.data[col]
            dtype = column.dtype
            if dtype.type is np.object_:
                inferred_dtype = infer_dtype(column, skipna=True)
                if not ((inferred_dtype == "string") or len(column) == 0):
                    col = column.name
                    raise ValueError(
                        f"""\
Column `{col}` cannot be exported.\n\nOnly string-like object arrays
containing all strings or a mix of strings and None can be exported.
Object arrays containing only null values are prohibited. Other object
types cannot be exported and must first be converted to one of the
supported types."""
                    )
                encoded = self.data[col].str.encode(self._encoding)
                # If larger than _max_string_length do nothing
                if (
                    max_len_string_array(ensure_object(encoded._values))
                    <= self._max_string_length
                ):
                    self.data[col] = encoded

    def write_file(self) -> None:
        """
        Export DataFrame object to Stata dta format.

        Examples
        --------
        >>> df = pd.DataFrame({"fully_labelled": [1, 2, 3, 3, 1],
        ...                    "partially_labelled": [1.0, 2.0, np.nan, 9.0, np.nan],
        ...                    "Y": [7, 7, 9, 8, 10],
        ...                    "Z": pd.Categorical(["j", "k", "l", "k", "j"]),
        ...                    })
        >>> path = "/My_path/filename.dta"
        >>> labels = {"fully_labelled": {1: "one", 2: "two", 3: "three"},
        ...           "partially_labelled": {1.0: "one", 2.0: "two"},
        ...           }
        >>> writer = pd.io.stata.StataWriter(path,
        ...                                  df,
        ...                                  value_labels=labels)  # doctest: +SKIP
        >>> writer.write_file()  # doctest: +SKIP
        >>> df = pd.read_stata(path)  # doctest: +SKIP
        >>> df  # doctest: +SKIP
            index fully_labelled  partially_labeled  Y  Z
        0       0            one                one  7  j
        1       1            two                two  7  k
        2       2          three                NaN  9  l
        3       3          three                9.0  8  k
        4       4            one                NaN 10  j
        """
        with get_handle(
            self._fname,
            "wb",
            compression=self._compression,
            is_text=False,
            storage_options=self.storage_options,
        ) as self.handles:
            if self.handles.compression["method"] is not None:
                # ZipFile creates a file (with the same name) for each write call.
                # Write it first into a buffer and then write the buffer to the ZipFile.
                self._output_file, self.handles.handle = self.handles.handle, BytesIO()
                self.handles.created_handles.append(self.handles.handle)

            try:
                self._write_header(
                    data_label=self._data_label, time_stamp=self._time_stamp
                )
                self._write_map()
                self._write_variable_types()
                self._write_varnames()
                self._write_sortlist()
                self._write_formats()
                self._write_value_label_names()
                self._write_variable_labels()
                self._write_expansion_fields()
                self._write_characteristics()
                records = self._prepare_data()
                self._write_data(records)
                self._write_strls()
                self._write_value_labels()
                self._write_file_close_tag()
                self._write_map()
                self._close()
            except Exception as exc:
                self.handles.close()
                if isinstance(self._fname, (str, os.PathLike)) and os.path.isfile(
                    self._fname
                ):
                    try:
                        os.unlink(self._fname)
                    except OSError:
                        warnings.warn(
                            f"This save was not successful but {self._fname} could not "
                            "be deleted. This file is not valid.",
                            ResourceWarning,
                            stacklevel=find_stack_level(),
                        )
                raise exc

    def _close(self) -> None:
        """
        Close the file if it was created by the writer.

        If a buffer or file-like object was passed in, for example a GzipFile,
        then leave this file open for the caller to close.
        """
        # write compression
        if self._output_file is not None:
            assert isinstance(self.handles.handle, BytesIO)
            bio, self.handles.handle = self.handles.handle, self._output_file
            self.handles.handle.write(bio.getvalue())

    def _write_map(self) -> None:
        """No-op, future compatibility"""

    def _write_file_close_tag(self) -> None:
        """No-op, future compatibility"""

    def _write_characteristics(self) -> None:
        """No-op, future compatibility"""

    def _write_strls(self) -> None:
        """No-op, future compatibility"""

    def _write_expansion_fields(self) -> None:
        """Write 5 zeros for expansion fields"""
        self._write(_pad_bytes("", 5))

    def _write_value_labels(self) -> None:
        for vl in self._value_labels:
            self._write_bytes(vl.generate_value_label(self._byteorder))

    def _write_header(
        self,
        data_label: str | None = None,
        time_stamp: datetime | None = None,
    ) -> None:
        byteorder = self._byteorder
        # ds_format - just use 114
        self._write_bytes(struct.pack("b", 114))
        # byteorder
        self._write(byteorder == ">" and "\x01" or "\x02")
        # filetype
        self._write("\x01")
        # unused
        self._write("\x00")
        # number of vars, 2 bytes
        self._write_bytes(struct.pack(byteorder + "h", self.nvar)[:2])
        # number of obs, 4 bytes
        self._write_bytes(struct.pack(byteorder + "i", self.nobs)[:4])
        # data label 81 bytes, char, null terminated
        if data_label is None:
            self._write_bytes(self._null_terminate_bytes(_pad_bytes("", 80)))
        else:
            self._write_bytes(
                self._null_terminate_bytes(_pad_bytes(data_label[:80], 80))
            )
        # time stamp, 18 bytes, char, null terminated
        # format dd Mon yyyy hh:mm
        if time_stamp is None:
            time_stamp = datetime.now()
        elif not isinstance(time_stamp, datetime):
            raise ValueError("time_stamp should be datetime type")
        # GH #13856
        # Avoid locale-specific month conversion
        months = [
            "Jan",
            "Feb",
            "Mar",
            "Apr",
            "May",
            "Jun",
            "Jul",
            "Aug",
            "Sep",
            "Oct",
            "Nov",
            "Dec",
        ]
        month_lookup = {i + 1: month for i, month in enumerate(months)}
        ts = (
            time_stamp.strftime("%d ")
            + month_lookup[time_stamp.month]
            + time_stamp.strftime(" %Y %H:%M")
        )
        self._write_bytes(self._null_terminate_bytes(ts))

    def _write_variable_types(self) -> None:
        for typ in self.typlist:
            self._write_bytes(struct.pack("B", typ))

    def _write_varnames(self) -> None:
        # varlist names are checked by _check_column_names
        # varlist, requires null terminated
        for name in self.varlist:
            name = self._null_terminate_str(name)
            name = _pad_bytes(name[:32], 33)
            self._write(name)

    def _write_sortlist(self) -> None:
        # srtlist, 2*(nvar+1), int array, encoded by byteorder
        srtlist = _pad_bytes("", 2 * (self.nvar + 1))
        self._write(srtlist)

    def _write_formats(self) -> None:
        # fmtlist, 49*nvar, char array
        for fmt in self.fmtlist:
            self._write(_pad_bytes(fmt, 49))

    def _write_value_label_names(self) -> None:
        # lbllist, 33*nvar, char array
        for i in range(self.nvar):
            # Use variable name when categorical
            if self._has_value_labels[i]:
                name = self.varlist[i]
                name = self._null_terminate_str(name)
                name = _pad_bytes(name[:32], 33)
                self._write(name)
            else:  # Default is empty label
                self._write(_pad_bytes("", 33))

    def _write_variable_labels(self) -> None:
        # Missing labels are 80 blank characters plus null termination
        blank = _pad_bytes("", 81)

        if self._variable_labels is None:
            for i in range(self.nvar):
                self._write(blank)
            return

        for col in self.data:
            if col in self._variable_labels:
                label = self._variable_labels[col]
                if len(label) > 80:
                    raise ValueError("Variable labels must be 80 characters or fewer")
                is_latin1 = all(ord(c) < 256 for c in label)
                if not is_latin1:
                    raise ValueError(
                        "Variable labels must contain only characters that "
                        "can be encoded in Latin-1"
                    )
                self._write(_pad_bytes(label, 81))
            else:
                self._write(blank)

    def _convert_strls(self, data: DataFrame) -> DataFrame:
        """No-op, future compatibility"""
        return data

    def _prepare_data(self) -> np.rec.recarray:
        data = self.data
        typlist = self.typlist
        convert_dates = self._convert_dates
        # 1. Convert dates
        if self._convert_dates is not None:
            for i, col in enumerate(data):
                if i in convert_dates:
                    data[col] = _datetime_to_stata_elapsed_vec(
                        data[col], self.fmtlist[i]
                    )
        # 2. Convert strls
        data = self._convert_strls(data)

        # 3. Convert bad string data to '' and pad to correct length
        dtypes = {}
        native_byteorder = self._byteorder == _set_endianness(sys.byteorder)
        for i, col in enumerate(data):
            typ = typlist[i]
            if typ <= self._max_string_length:
                with warnings.catch_warnings():
                    warnings.filterwarnings(
                        "ignore",
                        "Downcasting object dtype arrays",
                        category=FutureWarning,
                    )
                    dc = data[col].fillna("")
                data[col] = dc.apply(_pad_bytes, args=(typ,))
                stype = f"S{typ}"
                dtypes[col] = stype
                data[col] = data[col].astype(stype)
            else:
                dtype = data[col].dtype
                if not native_byteorder:
                    dtype = dtype.newbyteorder(self._byteorder)
                dtypes[col] = dtype

        return data.to_records(index=False, column_dtypes=dtypes)

    def _write_data(self, records: np.rec.recarray) -> None:
        self._write_bytes(records.tobytes())

    @staticmethod
    def _null_terminate_str(s: str) -> str:
        s += "\x00"
        return s

    def _null_terminate_bytes(self, s: str) -> bytes:
        return self._null_terminate_str(s).encode(self._encoding)


def _dtype_to_stata_type_117(dtype: np.dtype, column: Series, force_strl: bool) -> int:
    """
    Converts dtype types to stata types. Returns the byte of the given ordinal.
    See TYPE_MAP and comments for an explanation. This is also explained in
    the dta spec.
    1 - 2045 are strings of this length
                Pandas    Stata
    32768 - for object    strL
    65526 - for int8      byte
    65527 - for int16     int
    65528 - for int32     long
    65529 - for float32   float
    65530 - for double    double

    If there are dates to convert, then dtype will already have the correct
    type inserted.
    """
    # TODO: expand to handle datetime to integer conversion
    if force_strl:
        return 32768
    if dtype.type is np.object_:  # try to coerce it to the biggest string
        # not memory efficient, what else could we
        # do?
        itemsize = max_len_string_array(ensure_object(column._values))
        itemsize = max(itemsize, 1)
        if itemsize <= 2045:
            return itemsize
        return 32768
    elif dtype.type is np.float64:
        return 65526
    elif dtype.type is np.float32:
        return 65527
    elif dtype.type is np.int32:
        return 65528
    elif dtype.type is np.int16:
        return 65529
    elif dtype.type is np.int8:
        return 65530
    else:  # pragma : no cover
        raise NotImplementedError(f"Data type {dtype} not supported.")


def _pad_bytes_new(name: str | bytes, length: int) -> bytes:
    """
    Takes a bytes instance and pads it with null bytes until it's length chars.
    """
    if isinstance(name, str):
        name = bytes(name, "utf-8")
    return name + b"\x00" * (length - len(name))


class StataStrLWriter:
    """
    Converter for Stata StrLs

    Stata StrLs map 8 byte values to strings which are stored using a
    dictionary-like format where strings are keyed to two values.

    Parameters
    ----------
    df : DataFrame
        DataFrame to convert
    columns : Sequence[str]
        List of columns names to convert to StrL
    version : int, optional
        dta version.  Currently supports 117, 118 and 119
    byteorder : str, optional
        Can be ">", "<", "little", or "big". default is `sys.byteorder`

    Notes
    -----
    Supports creation of the StrL block of a dta file for dta versions
    117, 118 and 119.  These differ in how the GSO is stored.  118 and
    119 store the GSO lookup value as a uint32 and a uint64, while 117
    uses two uint32s. 118 and 119 also encode all strings as unicode
    which is required by the format.  117 uses 'latin-1' a fixed width
    encoding that extends the 7-bit ascii table with an additional 128
    characters.
    """

    def __init__(
        self,
        df: DataFrame,
        columns: Sequence[str],
        version: int = 117,
        byteorder: str | None = None,
    ) -> None:
        if version not in (117, 118, 119):
            raise ValueError("Only dta versions 117, 118 and 119 supported")
        self._dta_ver = version

        self.df = df
        self.columns = columns
        self._gso_table = {"": (0, 0)}
        if byteorder is None:
            byteorder = sys.byteorder
        self._byteorder = _set_endianness(byteorder)

        gso_v_type = "I"  # uint32
        gso_o_type = "Q"  # uint64
        self._encoding = "utf-8"
        if version == 117:
            o_size = 4
            gso_o_type = "I"  # 117 used uint32
            self._encoding = "latin-1"
        elif version == 118:
            o_size = 6
        else:  # version == 119
            o_size = 5
        self._o_offet = 2 ** (8 * (8 - o_size))
        self._gso_o_type = gso_o_type
        self._gso_v_type = gso_v_type

    def _convert_key(self, key: tuple[int, int]) -> int:
        v, o = key
        return v + self._o_offet * o

    def generate_table(self) -> tuple[dict[str, tuple[int, int]], DataFrame]:
        """
        Generates the GSO lookup table for the DataFrame

        Returns
        -------
        gso_table : dict
            Ordered dictionary using the string found as keys
            and their lookup position (v,o) as values
        gso_df : DataFrame
            DataFrame where strl columns have been converted to
            (v,o) values

        Notes
        -----
        Modifies the DataFrame in-place.

        The DataFrame returned encodes the (v,o) values as uint64s. The
        encoding depends on the dta version, and can be expressed as

        enc = v + o * 2 ** (o_size * 8)

        so that v is stored in the lower bits and o is in the upper
        bits. o_size is

          * 117: 4
          * 118: 6
          * 119: 5
        """
        gso_table = self._gso_table
        gso_df = self.df
        columns = list(gso_df.columns)
        selected = gso_df[self.columns]
        col_index = [(col, columns.index(col)) for col in self.columns]
        keys = np.empty(selected.shape, dtype=np.uint64)
        for o, (idx, row) in enumerate(selected.iterrows()):
            for j, (col, v) in enumerate(col_index):
                val = row[col]
                # Allow columns with mixed str and None (GH 23633)
                val = "" if val is None else val
                key = gso_table.get(val, None)
                if key is None:
                    # Stata prefers human numbers
                    key = (v + 1, o + 1)
                    gso_table[val] = key
                keys[o, j] = self._convert_key(key)
        for i, col in enumerate(self.columns):
            gso_df[col] = keys[:, i]

        return gso_table, gso_df

    def generate_blob(self, gso_table: dict[str, tuple[int, int]]) -> bytes:
        """
        Generates the binary blob of GSOs that is written to the dta file.

        Parameters
        ----------
        gso_table : dict
            Ordered dictionary (str, vo)

        Returns
        -------
        gso : bytes
            Binary content of dta file to be placed between strl tags

        Notes
        -----
        Output format depends on dta version.  117 uses two uint32s to
        express v and o while 118+ uses a uint32 for v and a uint64 for o.
        """
        # Format information
        # Length includes null term
        # 117
        # GSOvvvvooootllllxxxxxxxxxxxxxxx...x
        #  3  u4  u4 u1 u4  string + null term
        #
        # 118, 119
        # GSOvvvvooooooootllllxxxxxxxxxxxxxxx...x
        #  3  u4   u8   u1 u4    string + null term

        bio = BytesIO()
        gso = bytes("GSO", "ascii")
        gso_type = struct.pack(self._byteorder + "B", 130)
        null = struct.pack(self._byteorder + "B", 0)
        v_type = self._byteorder + self._gso_v_type
        o_type = self._byteorder + self._gso_o_type
        len_type = self._byteorder + "I"
        for strl, vo in gso_table.items():
            if vo == (0, 0):
                continue
            v, o = vo

            # GSO
            bio.write(gso)

            # vvvv
            bio.write(struct.pack(v_type, v))

            # oooo / oooooooo
            bio.write(struct.pack(o_type, o))

            # t
            bio.write(gso_type)

            # llll
            utf8_string = bytes(strl, "utf-8")
            bio.write(struct.pack(len_type, len(utf8_string) + 1))

            # xxx...xxx
            bio.write(utf8_string)
            bio.write(null)

        return bio.getvalue()


class StataWriter117(StataWriter):
    """
    A class for writing Stata binary dta files in Stata 13 format (117)

    Parameters
    ----------
    fname : path (string), buffer or path object
        string, path object (pathlib.Path or py._path.local.LocalPath) or
        object implementing a binary write() functions. If using a buffer
        then the buffer will not be automatically closed after the file
        is written.
    data : DataFrame
        Input to save
    convert_dates : dict
        Dictionary mapping columns containing datetime types to stata internal
        format to use when writing the dates. Options are 'tc', 'td', 'tm',
        'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name.
        Datetime columns that do not have a conversion type specified will be
        converted to 'tc'. Raises NotImplementedError if a datetime column has
        timezone information
    write_index : bool
        Write the index to Stata dataset.
    byteorder : str
        Can be ">", "<", "little", or "big". default is `sys.byteorder`
    time_stamp : datetime
        A datetime to use as file creation date.  Default is the current time
    data_label : str
        A label for the data set.  Must be 80 characters or smaller.
    variable_labels : dict
        Dictionary containing columns as keys and variable labels as values.
        Each label must be 80 characters or smaller.
    convert_strl : list
        List of columns names to convert to Stata StrL format.  Columns with
        more than 2045 characters are automatically written as StrL.
        Smaller columns can be converted by including the column name.  Using
        StrLs can reduce output file size when strings are longer than 8
        characters, and either frequently repeated or sparse.
    {compression_options}

        .. versionchanged:: 1.4.0 Zstandard support.

    value_labels : dict of dicts
        Dictionary containing columns as keys and dictionaries of column value
        to labels as values. The combined length of all labels for a single
        variable must be 32,000 characters or smaller.

        .. versionadded:: 1.4.0

    Returns
    -------
    writer : StataWriter117 instance
        The StataWriter117 instance has a write_file method, which will
        write the file to the given `fname`.

    Raises
    ------
    NotImplementedError
        * If datetimes contain timezone information
    ValueError
        * Columns listed in convert_dates are neither datetime64[ns]
          or datetime
        * Column dtype is not representable in Stata
        * Column listed in convert_dates is not in DataFrame
        * Categorical label contains more than 32,000 characters

    Examples
    --------
    >>> data = pd.DataFrame([[1.0, 1, 'a']], columns=['a', 'b', 'c'])
    >>> writer = pd.io.stata.StataWriter117('./data_file.dta', data)
    >>> writer.write_file()

    Directly write a zip file
    >>> compression = {"method": "zip", "archive_name": "data_file.dta"}
    >>> writer = pd.io.stata.StataWriter117(
    ...     './data_file.zip', data, compression=compression
    ...     )
    >>> writer.write_file()

    Or with long strings stored in strl format
    >>> data = pd.DataFrame([['A relatively long string'], [''], ['']],
    ...                     columns=['strls'])
    >>> writer = pd.io.stata.StataWriter117(
    ...     './data_file_with_long_strings.dta', data, convert_strl=['strls'])
    >>> writer.write_file()
    """

    _max_string_length = 2045
    _dta_version = 117

    def __init__(
        self,
        fname: FilePath | WriteBuffer[bytes],
        data: DataFrame,
        convert_dates: dict[Hashable, str] | None = None,
        write_index: bool = True,
        byteorder: str | None = None,
        time_stamp: datetime | None = None,
        data_label: str | None = None,
        variable_labels: dict[Hashable, str] | None = None,
        convert_strl: Sequence[Hashable] | None = None,
        compression: CompressionOptions = "infer",
        storage_options: StorageOptions | None = None,
        *,
        value_labels: dict[Hashable, dict[float, str]] | None = None,
    ) -> None:
        # Copy to new list since convert_strl might be modified later
        self._convert_strl: list[Hashable] = []
        if convert_strl is not None:
            self._convert_strl.extend(convert_strl)

        super().__init__(
            fname,
            data,
            convert_dates,
            write_index,
            byteorder=byteorder,
            time_stamp=time_stamp,
            data_label=data_label,
            variable_labels=variable_labels,
            value_labels=value_labels,
            compression=compression,
            storage_options=storage_options,
        )
        self._map: dict[str, int] = {}
        self._strl_blob = b""

    @staticmethod
    def _tag(val: str | bytes, tag: str) -> bytes:
        """Surround val with <tag></tag>"""
        if isinstance(val, str):
            val = bytes(val, "utf-8")
        return bytes("<" + tag + ">", "utf-8") + val + bytes("</" + tag + ">", "utf-8")

    def _update_map(self, tag: str) -> None:
        """Update map location for tag with file position"""
        assert self.handles.handle is not None
        self._map[tag] = self.handles.handle.tell()

    def _write_header(
        self,
        data_label: str | None = None,
        time_stamp: datetime | None = None,
    ) -> None:
        """Write the file header"""
        byteorder = self._byteorder
        self._write_bytes(bytes("<stata_dta>", "utf-8"))
        bio = BytesIO()
        # ds_format - 117
        bio.write(self._tag(bytes(str(self._dta_version), "utf-8"), "release"))
        # byteorder
        bio.write(self._tag(byteorder == ">" and "MSF" or "LSF", "byteorder"))
        # number of vars, 2 bytes in 117 and 118, 4 byte in 119
        nvar_type = "H" if self._dta_version <= 118 else "I"
        bio.write(self._tag(struct.pack(byteorder + nvar_type, self.nvar), "K"))
        # 117 uses 4 bytes, 118 uses 8
        nobs_size = "I" if self._dta_version == 117 else "Q"
        bio.write(self._tag(struct.pack(byteorder + nobs_size, self.nobs), "N"))
        # data label 81 bytes, char, null terminated
        label = data_label[:80] if data_label is not None else ""
        encoded_label = label.encode(self._encoding)
        label_size = "B" if self._dta_version == 117 else "H"
        label_len = struct.pack(byteorder + label_size, len(encoded_label))
        encoded_label = label_len + encoded_label
        bio.write(self._tag(encoded_label, "label"))
        # time stamp, 18 bytes, char, null terminated
        # format dd Mon yyyy hh:mm
        if time_stamp is None:
            time_stamp = datetime.now()
        elif not isinstance(time_stamp, datetime):
            raise ValueError("time_stamp should be datetime type")
        # Avoid locale-specific month conversion
        months = [
            "Jan",
            "Feb",
            "Mar",
            "Apr",
            "May",
            "Jun",
            "Jul",
            "Aug",
            "Sep",
            "Oct",
            "Nov",
            "Dec",
        ]
        month_lookup = {i + 1: month for i, month in enumerate(months)}
        ts = (
            time_stamp.strftime("%d ")
            + month_lookup[time_stamp.month]
            + time_stamp.strftime(" %Y %H:%M")
        )
        # '\x11' added due to inspection of Stata file
        stata_ts = b"\x11" + bytes(ts, "utf-8")
        bio.write(self._tag(stata_ts, "timestamp"))
        self._write_bytes(self._tag(bio.getvalue(), "header"))

    def _write_map(self) -> None:
        """
        Called twice during file write. The first populates the values in
        the map with 0s.  The second call writes the final map locations when
        all blocks have been written.
        """
        if not self._map:
            self._map = {
                "stata_data": 0,
                "map": self.handles.handle.tell(),
                "variable_types": 0,
                "varnames": 0,
                "sortlist": 0,
                "formats": 0,
                "value_label_names": 0,
                "variable_labels": 0,
                "characteristics": 0,
                "data": 0,
                "strls": 0,
                "value_labels": 0,
                "stata_data_close": 0,
                "end-of-file": 0,
            }
        # Move to start of map
        self.handles.handle.seek(self._map["map"])
        bio = BytesIO()
        for val in self._map.values():
            bio.write(struct.pack(self._byteorder + "Q", val))
        self._write_bytes(self._tag(bio.getvalue(), "map"))

    def _write_variable_types(self) -> None:
        self._update_map("variable_types")
        bio = BytesIO()
        for typ in self.typlist:
            bio.write(struct.pack(self._byteorder + "H", typ))
        self._write_bytes(self._tag(bio.getvalue(), "variable_types"))

    def _write_varnames(self) -> None:
        self._update_map("varnames")
        bio = BytesIO()
        # 118 scales by 4 to accommodate utf-8 data worst case encoding
        vn_len = 32 if self._dta_version == 117 else 128
        for name in self.varlist:
            name = self._null_terminate_str(name)
            name = _pad_bytes_new(name[:32].encode(self._encoding), vn_len + 1)
            bio.write(name)
        self._write_bytes(self._tag(bio.getvalue(), "varnames"))

    def _write_sortlist(self) -> None:
        self._update_map("sortlist")
        sort_size = 2 if self._dta_version < 119 else 4
        self._write_bytes(self._tag(b"\x00" * sort_size * (self.nvar + 1), "sortlist"))

    def _write_formats(self) -> None:
        self._update_map("formats")
        bio = BytesIO()
        fmt_len = 49 if self._dta_version == 117 else 57
        for fmt in self.fmtlist:
            bio.write(_pad_bytes_new(fmt.encode(self._encoding), fmt_len))
        self._write_bytes(self._tag(bio.getvalue(), "formats"))

    def _write_value_label_names(self) -> None:
        self._update_map("value_label_names")
        bio = BytesIO()
        # 118 scales by 4 to accommodate utf-8 data worst case encoding
        vl_len = 32 if self._dta_version == 117 else 128
        for i in range(self.nvar):
            # Use variable name when categorical
            name = ""  # default name
            if self._has_value_labels[i]:
                name = self.varlist[i]
            name = self._null_terminate_str(name)
            encoded_name = _pad_bytes_new(name[:32].encode(self._encoding), vl_len + 1)
            bio.write(encoded_name)
        self._write_bytes(self._tag(bio.getvalue(), "value_label_names"))

    def _write_variable_labels(self) -> None:
        # Missing labels are 80 blank characters plus null termination
        self._update_map("variable_labels")
        bio = BytesIO()
        # 118 scales by 4 to accommodate utf-8 data worst case encoding
        vl_len = 80 if self._dta_version == 117 else 320
        blank = _pad_bytes_new("", vl_len + 1)

        if self._variable_labels is None:
            for _ in range(self.nvar):
                bio.write(blank)
            self._write_bytes(self._tag(bio.getvalue(), "variable_labels"))
            return

        for col in self.data:
            if col in self._variable_labels:
                label = self._variable_labels[col]
                if len(label) > 80:
                    raise ValueError("Variable labels must be 80 characters or fewer")
                try:
                    encoded = label.encode(self._encoding)
                except UnicodeEncodeError as err:
                    raise ValueError(
                        "Variable labels must contain only characters that "
                        f"can be encoded in {self._encoding}"
                    ) from err

                bio.write(_pad_bytes_new(encoded, vl_len + 1))
            else:
                bio.write(blank)
        self._write_bytes(self._tag(bio.getvalue(), "variable_labels"))

    def _write_characteristics(self) -> None:
        self._update_map("characteristics")
        self._write_bytes(self._tag(b"", "characteristics"))

    def _write_data(self, records) -> None:
        self._update_map("data")
        self._write_bytes(b"<data>")
        self._write_bytes(records.tobytes())
        self._write_bytes(b"</data>")

    def _write_strls(self) -> None:
        self._update_map("strls")
        self._write_bytes(self._tag(self._strl_blob, "strls"))

    def _write_expansion_fields(self) -> None:
        """No-op in dta 117+"""

    def _write_value_labels(self) -> None:
        self._update_map("value_labels")
        bio = BytesIO()
        for vl in self._value_labels:
            lab = vl.generate_value_label(self._byteorder)
            lab = self._tag(lab, "lbl")
            bio.write(lab)
        self._write_bytes(self._tag(bio.getvalue(), "value_labels"))

    def _write_file_close_tag(self) -> None:
        self._update_map("stata_data_close")
        self._write_bytes(bytes("</stata_dta>", "utf-8"))
        self._update_map("end-of-file")

    def _update_strl_names(self) -> None:
        """
        Update column names for conversion to strl if they might have been
        changed to comply with Stata naming rules
        """
        # Update convert_strl if names changed
        for orig, new in self._converted_names.items():
            if orig in self._convert_strl:
                idx = self._convert_strl.index(orig)
                self._convert_strl[idx] = new

    def _convert_strls(self, data: DataFrame) -> DataFrame:
        """
        Convert columns to StrLs if either very large or in the
        convert_strl variable
        """
        convert_cols = [
            col
            for i, col in enumerate(data)
            if self.typlist[i] == 32768 or col in self._convert_strl
        ]

        if convert_cols:
            ssw = StataStrLWriter(data, convert_cols, version=self._dta_version)
            tab, new_data = ssw.generate_table()
            data = new_data
            self._strl_blob = ssw.generate_blob(tab)
        return data

    def _set_formats_and_types(self, dtypes: Series) -> None:
        self.typlist = []
        self.fmtlist = []
        for col, dtype in dtypes.items():
            force_strl = col in self._convert_strl
            fmt = _dtype_to_default_stata_fmt(
                dtype,
                self.data[col],
                dta_version=self._dta_version,
                force_strl=force_strl,
            )
            self.fmtlist.append(fmt)
            self.typlist.append(
                _dtype_to_stata_type_117(dtype, self.data[col], force_strl)
            )


class StataWriterUTF8(StataWriter117):
    """
    Stata binary dta file writing in Stata 15 (118) and 16 (119) formats

    DTA 118 and 119 format files support unicode string data (both fixed
    and strL) format. Unicode is also supported in value labels, variable
    labels and the dataset label. Format 119 is automatically used if the
    file contains more than 32,767 variables.

    Parameters
    ----------
    fname : path (string), buffer or path object
        string, path object (pathlib.Path or py._path.local.LocalPath) or
        object implementing a binary write() functions. If using a buffer
        then the buffer will not be automatically closed after the file
        is written.
    data : DataFrame
        Input to save
    convert_dates : dict, default None
        Dictionary mapping columns containing datetime types to stata internal
        format to use when writing the dates. Options are 'tc', 'td', 'tm',
        'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name.
        Datetime columns that do not have a conversion type specified will be
        converted to 'tc'. Raises NotImplementedError if a datetime column has
        timezone information
    write_index : bool, default True
        Write the index to Stata dataset.
    byteorder : str, default None
        Can be ">", "<", "little", or "big". default is `sys.byteorder`
    time_stamp : datetime, default None
        A datetime to use as file creation date.  Default is the current time
    data_label : str, default None
        A label for the data set.  Must be 80 characters or smaller.
    variable_labels : dict, default None
        Dictionary containing columns as keys and variable labels as values.
        Each label must be 80 characters or smaller.
    convert_strl : list, default None
        List of columns names to convert to Stata StrL format.  Columns with
        more than 2045 characters are automatically written as StrL.
        Smaller columns can be converted by including the column name.  Using
        StrLs can reduce output file size when strings are longer than 8
        characters, and either frequently repeated or sparse.
    version : int, default None
        The dta version to use. By default, uses the size of data to determine
        the version. 118 is used if data.shape[1] <= 32767, and 119 is used
        for storing larger DataFrames.
    {compression_options}

        .. versionchanged:: 1.4.0 Zstandard support.

    value_labels : dict of dicts
        Dictionary containing columns as keys and dictionaries of column value
        to labels as values. The combined length of all labels for a single
        variable must be 32,000 characters or smaller.

        .. versionadded:: 1.4.0

    Returns
    -------
    StataWriterUTF8
        The instance has a write_file method, which will write the file to the
        given `fname`.

    Raises
    ------
    NotImplementedError
        * If datetimes contain timezone information
    ValueError
        * Columns listed in convert_dates are neither datetime64[ns]
          or datetime
        * Column dtype is not representable in Stata
        * Column listed in convert_dates is not in DataFrame
        * Categorical label contains more than 32,000 characters

    Examples
    --------
    Using Unicode data and column names

    >>> from pandas.io.stata import StataWriterUTF8
    >>> data = pd.DataFrame([[1.0, 1, 'ᴬ']], columns=['a', 'β', 'ĉ'])
    >>> writer = StataWriterUTF8('./data_file.dta', data)
    >>> writer.write_file()

    Directly write a zip file
    >>> compression = {"method": "zip", "archive_name": "data_file.dta"}
    >>> writer = StataWriterUTF8('./data_file.zip', data, compression=compression)
    >>> writer.write_file()

    Or with long strings stored in strl format

    >>> data = pd.DataFrame([['ᴀ relatively long ŝtring'], [''], ['']],
    ...                     columns=['strls'])
    >>> writer = StataWriterUTF8('./data_file_with_long_strings.dta', data,
    ...                          convert_strl=['strls'])
    >>> writer.write_file()
    """

    _encoding: Literal["utf-8"] = "utf-8"

    def __init__(
        self,
        fname: FilePath | WriteBuffer[bytes],
        data: DataFrame,
        convert_dates: dict[Hashable, str] | None = None,
        write_index: bool = True,
        byteorder: str | None = None,
        time_stamp: datetime | None = None,
        data_label: str | None = None,
        variable_labels: dict[Hashable, str] | None = None,
        convert_strl: Sequence[Hashable] | None = None,
        version: int | None = None,
        compression: CompressionOptions = "infer",
        storage_options: StorageOptions | None = None,
        *,
        value_labels: dict[Hashable, dict[float, str]] | None = None,
    ) -> None:
        if version is None:
            version = 118 if data.shape[1] <= 32767 else 119
        elif version not in (118, 119):
            raise ValueError("version must be either 118 or 119.")
        elif version == 118 and data.shape[1] > 32767:
            raise ValueError(
                "You must use version 119 for data sets containing more than"
                "32,767 variables"
            )

        super().__init__(
            fname,
            data,
            convert_dates=convert_dates,
            write_index=write_index,
            byteorder=byteorder,
            time_stamp=time_stamp,
            data_label=data_label,
            variable_labels=variable_labels,
            value_labels=value_labels,
            convert_strl=convert_strl,
            compression=compression,
            storage_options=storage_options,
        )
        # Override version set in StataWriter117 init
        self._dta_version = version

    def _validate_variable_name(self, name: str) -> str:
        """
        Validate variable names for Stata export.

        Parameters
        ----------
        name : str
            Variable name

        Returns
        -------
        str
            The validated name with invalid characters replaced with
            underscores.

        Notes
        -----
        Stata 118+ support most unicode characters. The only limitation is in
        the ascii range where the characters supported are a-z, A-Z, 0-9 and _.
        """
        # High code points appear to be acceptable
        for c in name:
            if (
                (
                    ord(c) < 128
                    and (c < "A" or c > "Z")
                    and (c < "a" or c > "z")
                    and (c < "0" or c > "9")
                    and c != "_"
                )
                or 128 <= ord(c) < 192
                or c in {"×", "÷"}  # noqa: RUF001
            ):
                name = name.replace(c, "_")

        return name