File size: 48,572 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
from __future__ import annotations

from abc import (
    ABC,
    abstractmethod,
)
from collections import abc
from io import StringIO
from itertools import islice
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Generic,
    Literal,
    TypeVar,
    final,
    overload,
)
import warnings

import numpy as np

from pandas._libs import lib
from pandas._libs.json import (
    ujson_dumps,
    ujson_loads,
)
from pandas._libs.tslibs import iNaT
from pandas.compat._optional import import_optional_dependency
from pandas.errors import AbstractMethodError
from pandas.util._decorators import doc
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend

from pandas.core.dtypes.common import (
    ensure_str,
    is_string_dtype,
)
from pandas.core.dtypes.dtypes import PeriodDtype

from pandas import (
    ArrowDtype,
    DataFrame,
    Index,
    MultiIndex,
    Series,
    isna,
    notna,
    to_datetime,
)
from pandas.core.reshape.concat import concat
from pandas.core.shared_docs import _shared_docs

from pandas.io.common import (
    IOHandles,
    dedup_names,
    extension_to_compression,
    file_exists,
    get_handle,
    is_fsspec_url,
    is_potential_multi_index,
    is_url,
    stringify_path,
)
from pandas.io.json._normalize import convert_to_line_delimits
from pandas.io.json._table_schema import (
    build_table_schema,
    parse_table_schema,
)
from pandas.io.parsers.readers import validate_integer

if TYPE_CHECKING:
    from collections.abc import (
        Hashable,
        Mapping,
    )
    from types import TracebackType

    from pandas._typing import (
        CompressionOptions,
        DtypeArg,
        DtypeBackend,
        FilePath,
        IndexLabel,
        JSONEngine,
        JSONSerializable,
        ReadBuffer,
        Self,
        StorageOptions,
        WriteBuffer,
    )

    from pandas.core.generic import NDFrame

FrameSeriesStrT = TypeVar("FrameSeriesStrT", bound=Literal["frame", "series"])


# interface to/from
@overload
def to_json(
    path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes],
    obj: NDFrame,
    orient: str | None = ...,
    date_format: str = ...,
    double_precision: int = ...,
    force_ascii: bool = ...,
    date_unit: str = ...,
    default_handler: Callable[[Any], JSONSerializable] | None = ...,
    lines: bool = ...,
    compression: CompressionOptions = ...,
    index: bool | None = ...,
    indent: int = ...,
    storage_options: StorageOptions = ...,
    mode: Literal["a", "w"] = ...,
) -> None:
    ...


@overload
def to_json(
    path_or_buf: None,
    obj: NDFrame,
    orient: str | None = ...,
    date_format: str = ...,
    double_precision: int = ...,
    force_ascii: bool = ...,
    date_unit: str = ...,
    default_handler: Callable[[Any], JSONSerializable] | None = ...,
    lines: bool = ...,
    compression: CompressionOptions = ...,
    index: bool | None = ...,
    indent: int = ...,
    storage_options: StorageOptions = ...,
    mode: Literal["a", "w"] = ...,
) -> str:
    ...


def to_json(
    path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] | None,
    obj: NDFrame,
    orient: str | None = None,
    date_format: str = "epoch",
    double_precision: int = 10,
    force_ascii: bool = True,
    date_unit: str = "ms",
    default_handler: Callable[[Any], JSONSerializable] | None = None,
    lines: bool = False,
    compression: CompressionOptions = "infer",
    index: bool | None = None,
    indent: int = 0,
    storage_options: StorageOptions | None = None,
    mode: Literal["a", "w"] = "w",
) -> str | None:
    if orient in ["records", "values"] and index is True:
        raise ValueError(
            "'index=True' is only valid when 'orient' is 'split', 'table', "
            "'index', or 'columns'."
        )
    elif orient in ["index", "columns"] and index is False:
        raise ValueError(
            "'index=False' is only valid when 'orient' is 'split', 'table', "
            "'records', or 'values'."
        )
    elif index is None:
        # will be ignored for orient='records' and 'values'
        index = True

    if lines and orient != "records":
        raise ValueError("'lines' keyword only valid when 'orient' is records")

    if mode not in ["a", "w"]:
        msg = (
            f"mode={mode} is not a valid option."
            "Only 'w' and 'a' are currently supported."
        )
        raise ValueError(msg)

    if mode == "a" and (not lines or orient != "records"):
        msg = (
            "mode='a' (append) is only supported when "
            "lines is True and orient is 'records'"
        )
        raise ValueError(msg)

    if orient == "table" and isinstance(obj, Series):
        obj = obj.to_frame(name=obj.name or "values")

    writer: type[Writer]
    if orient == "table" and isinstance(obj, DataFrame):
        writer = JSONTableWriter
    elif isinstance(obj, Series):
        writer = SeriesWriter
    elif isinstance(obj, DataFrame):
        writer = FrameWriter
    else:
        raise NotImplementedError("'obj' should be a Series or a DataFrame")

    s = writer(
        obj,
        orient=orient,
        date_format=date_format,
        double_precision=double_precision,
        ensure_ascii=force_ascii,
        date_unit=date_unit,
        default_handler=default_handler,
        index=index,
        indent=indent,
    ).write()

    if lines:
        s = convert_to_line_delimits(s)

    if path_or_buf is not None:
        # apply compression and byte/text conversion
        with get_handle(
            path_or_buf, mode, compression=compression, storage_options=storage_options
        ) as handles:
            handles.handle.write(s)
    else:
        return s
    return None


class Writer(ABC):
    _default_orient: str

    def __init__(
        self,
        obj: NDFrame,
        orient: str | None,
        date_format: str,
        double_precision: int,
        ensure_ascii: bool,
        date_unit: str,
        index: bool,
        default_handler: Callable[[Any], JSONSerializable] | None = None,
        indent: int = 0,
    ) -> None:
        self.obj = obj

        if orient is None:
            orient = self._default_orient

        self.orient = orient
        self.date_format = date_format
        self.double_precision = double_precision
        self.ensure_ascii = ensure_ascii
        self.date_unit = date_unit
        self.default_handler = default_handler
        self.index = index
        self.indent = indent

        self.is_copy = None
        self._format_axes()

    def _format_axes(self) -> None:
        raise AbstractMethodError(self)

    def write(self) -> str:
        iso_dates = self.date_format == "iso"
        return ujson_dumps(
            self.obj_to_write,
            orient=self.orient,
            double_precision=self.double_precision,
            ensure_ascii=self.ensure_ascii,
            date_unit=self.date_unit,
            iso_dates=iso_dates,
            default_handler=self.default_handler,
            indent=self.indent,
        )

    @property
    @abstractmethod
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
        """Object to write in JSON format."""


class SeriesWriter(Writer):
    _default_orient = "index"

    @property
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
        if not self.index and self.orient == "split":
            return {"name": self.obj.name, "data": self.obj.values}
        else:
            return self.obj

    def _format_axes(self) -> None:
        if not self.obj.index.is_unique and self.orient == "index":
            raise ValueError(f"Series index must be unique for orient='{self.orient}'")


class FrameWriter(Writer):
    _default_orient = "columns"

    @property
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
        if not self.index and self.orient == "split":
            obj_to_write = self.obj.to_dict(orient="split")
            del obj_to_write["index"]
        else:
            obj_to_write = self.obj
        return obj_to_write

    def _format_axes(self) -> None:
        """
        Try to format axes if they are datelike.
        """
        if not self.obj.index.is_unique and self.orient in ("index", "columns"):
            raise ValueError(
                f"DataFrame index must be unique for orient='{self.orient}'."
            )
        if not self.obj.columns.is_unique and self.orient in (
            "index",
            "columns",
            "records",
        ):
            raise ValueError(
                f"DataFrame columns must be unique for orient='{self.orient}'."
            )


class JSONTableWriter(FrameWriter):
    _default_orient = "records"

    def __init__(
        self,
        obj,
        orient: str | None,
        date_format: str,
        double_precision: int,
        ensure_ascii: bool,
        date_unit: str,
        index: bool,
        default_handler: Callable[[Any], JSONSerializable] | None = None,
        indent: int = 0,
    ) -> None:
        """
        Adds a `schema` attribute with the Table Schema, resets
        the index (can't do in caller, because the schema inference needs
        to know what the index is, forces orient to records, and forces
        date_format to 'iso'.
        """
        super().__init__(
            obj,
            orient,
            date_format,
            double_precision,
            ensure_ascii,
            date_unit,
            index,
            default_handler=default_handler,
            indent=indent,
        )

        if date_format != "iso":
            msg = (
                "Trying to write with `orient='table'` and "
                f"`date_format='{date_format}'`. Table Schema requires dates "
                "to be formatted with `date_format='iso'`"
            )
            raise ValueError(msg)

        self.schema = build_table_schema(obj, index=self.index)

        # NotImplemented on a column MultiIndex
        if obj.ndim == 2 and isinstance(obj.columns, MultiIndex):
            raise NotImplementedError(
                "orient='table' is not supported for MultiIndex columns"
            )

        # TODO: Do this timedelta properly in objToJSON.c See GH #15137
        if (
            (obj.ndim == 1)
            and (obj.name in set(obj.index.names))
            or len(obj.columns.intersection(obj.index.names))
        ):
            msg = "Overlapping names between the index and columns"
            raise ValueError(msg)

        obj = obj.copy()
        timedeltas = obj.select_dtypes(include=["timedelta"]).columns
        if len(timedeltas):
            obj[timedeltas] = obj[timedeltas].map(lambda x: x.isoformat())
        # Convert PeriodIndex to datetimes before serializing
        if isinstance(obj.index.dtype, PeriodDtype):
            obj.index = obj.index.to_timestamp()

        # exclude index from obj if index=False
        if not self.index:
            self.obj = obj.reset_index(drop=True)
        else:
            self.obj = obj.reset_index(drop=False)
        self.date_format = "iso"
        self.orient = "records"
        self.index = index

    @property
    def obj_to_write(self) -> NDFrame | Mapping[IndexLabel, Any]:
        return {"schema": self.schema, "data": self.obj}


@overload
def read_json(
    path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
    *,
    orient: str | None = ...,
    typ: Literal["frame"] = ...,
    dtype: DtypeArg | None = ...,
    convert_axes: bool | None = ...,
    convert_dates: bool | list[str] = ...,
    keep_default_dates: bool = ...,
    precise_float: bool = ...,
    date_unit: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    lines: bool = ...,
    chunksize: int,
    compression: CompressionOptions = ...,
    nrows: int | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    engine: JSONEngine = ...,
) -> JsonReader[Literal["frame"]]:
    ...


@overload
def read_json(
    path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
    *,
    orient: str | None = ...,
    typ: Literal["series"],
    dtype: DtypeArg | None = ...,
    convert_axes: bool | None = ...,
    convert_dates: bool | list[str] = ...,
    keep_default_dates: bool = ...,
    precise_float: bool = ...,
    date_unit: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    lines: bool = ...,
    chunksize: int,
    compression: CompressionOptions = ...,
    nrows: int | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    engine: JSONEngine = ...,
) -> JsonReader[Literal["series"]]:
    ...


@overload
def read_json(
    path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
    *,
    orient: str | None = ...,
    typ: Literal["series"],
    dtype: DtypeArg | None = ...,
    convert_axes: bool | None = ...,
    convert_dates: bool | list[str] = ...,
    keep_default_dates: bool = ...,
    precise_float: bool = ...,
    date_unit: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    lines: bool = ...,
    chunksize: None = ...,
    compression: CompressionOptions = ...,
    nrows: int | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    engine: JSONEngine = ...,
) -> Series:
    ...


@overload
def read_json(
    path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
    *,
    orient: str | None = ...,
    typ: Literal["frame"] = ...,
    dtype: DtypeArg | None = ...,
    convert_axes: bool | None = ...,
    convert_dates: bool | list[str] = ...,
    keep_default_dates: bool = ...,
    precise_float: bool = ...,
    date_unit: str | None = ...,
    encoding: str | None = ...,
    encoding_errors: str | None = ...,
    lines: bool = ...,
    chunksize: None = ...,
    compression: CompressionOptions = ...,
    nrows: int | None = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
    engine: JSONEngine = ...,
) -> DataFrame:
    ...


@doc(
    storage_options=_shared_docs["storage_options"],
    decompression_options=_shared_docs["decompression_options"] % "path_or_buf",
)
def read_json(
    path_or_buf: FilePath | ReadBuffer[str] | ReadBuffer[bytes],
    *,
    orient: str | None = None,
    typ: Literal["frame", "series"] = "frame",
    dtype: DtypeArg | None = None,
    convert_axes: bool | None = None,
    convert_dates: bool | list[str] = True,
    keep_default_dates: bool = True,
    precise_float: bool = False,
    date_unit: str | None = None,
    encoding: str | None = None,
    encoding_errors: str | None = "strict",
    lines: bool = False,
    chunksize: int | None = None,
    compression: CompressionOptions = "infer",
    nrows: int | None = None,
    storage_options: StorageOptions | None = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
    engine: JSONEngine = "ujson",
) -> DataFrame | Series | JsonReader:
    """
    Convert a JSON string to pandas object.

    Parameters
    ----------
    path_or_buf : a valid JSON str, path object or file-like object
        Any valid string path is acceptable. The string could be a URL. Valid
        URL schemes include http, ftp, s3, and file. For file URLs, a host is
        expected. A local file could be:
        ``file://localhost/path/to/table.json``.

        If you want to pass in a path object, pandas accepts any
        ``os.PathLike``.

        By file-like object, we refer to objects with a ``read()`` method,
        such as a file handle (e.g. via builtin ``open`` function)
        or ``StringIO``.

        .. deprecated:: 2.1.0
            Passing json literal strings is deprecated.

    orient : str, optional
        Indication of expected JSON string format.
        Compatible JSON strings can be produced by ``to_json()`` with a
        corresponding orient value.
        The set of possible orients is:

        - ``'split'`` : dict like
          ``{{index -> [index], columns -> [columns], data -> [values]}}``
        - ``'records'`` : list like
          ``[{{column -> value}}, ... , {{column -> value}}]``
        - ``'index'`` : dict like ``{{index -> {{column -> value}}}}``
        - ``'columns'`` : dict like ``{{column -> {{index -> value}}}}``
        - ``'values'`` : just the values array
        - ``'table'`` : dict like ``{{'schema': {{schema}}, 'data': {{data}}}}``

        The allowed and default values depend on the value
        of the `typ` parameter.

        * when ``typ == 'series'``,

          - allowed orients are ``{{'split','records','index'}}``
          - default is ``'index'``
          - The Series index must be unique for orient ``'index'``.

        * when ``typ == 'frame'``,

          - allowed orients are ``{{'split','records','index',
            'columns','values', 'table'}}``
          - default is ``'columns'``
          - The DataFrame index must be unique for orients ``'index'`` and
            ``'columns'``.
          - The DataFrame columns must be unique for orients ``'index'``,
            ``'columns'``, and ``'records'``.

    typ : {{'frame', 'series'}}, default 'frame'
        The type of object to recover.

    dtype : bool or dict, default None
        If True, infer dtypes; if a dict of column to dtype, then use those;
        if False, then don't infer dtypes at all, applies only to the data.

        For all ``orient`` values except ``'table'``, default is True.

    convert_axes : bool, default None
        Try to convert the axes to the proper dtypes.

        For all ``orient`` values except ``'table'``, default is True.

    convert_dates : bool or list of str, default True
        If True then default datelike columns may be converted (depending on
        keep_default_dates).
        If False, no dates will be converted.
        If a list of column names, then those columns will be converted and
        default datelike columns may also be converted (depending on
        keep_default_dates).

    keep_default_dates : bool, default True
        If parsing dates (convert_dates is not False), then try to parse the
        default datelike columns.
        A column label is datelike if

        * it ends with ``'_at'``,

        * it ends with ``'_time'``,

        * it begins with ``'timestamp'``,

        * it is ``'modified'``, or

        * it is ``'date'``.

    precise_float : bool, default False
        Set to enable usage of higher precision (strtod) function when
        decoding string to double values. Default (False) is to use fast but
        less precise builtin functionality.

    date_unit : str, default None
        The timestamp unit to detect if converting dates. The default behaviour
        is to try and detect the correct precision, but if this is not desired
        then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds,
        milliseconds, microseconds or nanoseconds respectively.

    encoding : str, default is 'utf-8'
        The encoding to use to decode py3 bytes.

    encoding_errors : str, optional, default "strict"
        How encoding errors are treated. `List of possible values
        <https://docs.python.org/3/library/codecs.html#error-handlers>`_ .

        .. versionadded:: 1.3.0

    lines : bool, default False
        Read the file as a json object per line.

    chunksize : int, optional
        Return JsonReader object for iteration.
        See the `line-delimited json docs
        <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#line-delimited-json>`_
        for more information on ``chunksize``.
        This can only be passed if `lines=True`.
        If this is None, the file will be read into memory all at once.
    {decompression_options}

        .. versionchanged:: 1.4.0 Zstandard support.

    nrows : int, optional
        The number of lines from the line-delimited jsonfile that has to be read.
        This can only be passed if `lines=True`.
        If this is None, all the rows will be returned.

    {storage_options}

    dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
        Back-end data type applied to the resultant :class:`DataFrame`
        (still experimental). Behaviour is as follows:

        * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
          (default).
        * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
          DataFrame.

        .. versionadded:: 2.0

    engine : {{"ujson", "pyarrow"}}, default "ujson"
        Parser engine to use. The ``"pyarrow"`` engine is only available when
        ``lines=True``.

        .. versionadded:: 2.0

    Returns
    -------
    Series, DataFrame, or pandas.api.typing.JsonReader
        A JsonReader is returned when ``chunksize`` is not ``0`` or ``None``.
        Otherwise, the type returned depends on the value of ``typ``.

    See Also
    --------
    DataFrame.to_json : Convert a DataFrame to a JSON string.
    Series.to_json : Convert a Series to a JSON string.
    json_normalize : Normalize semi-structured JSON data into a flat table.

    Notes
    -----
    Specific to ``orient='table'``, if a :class:`DataFrame` with a literal
    :class:`Index` name of `index` gets written with :func:`to_json`, the
    subsequent read operation will incorrectly set the :class:`Index` name to
    ``None``. This is because `index` is also used by :func:`DataFrame.to_json`
    to denote a missing :class:`Index` name, and the subsequent
    :func:`read_json` operation cannot distinguish between the two. The same
    limitation is encountered with a :class:`MultiIndex` and any names
    beginning with ``'level_'``.

    Examples
    --------
    >>> from io import StringIO
    >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
    ...                   index=['row 1', 'row 2'],
    ...                   columns=['col 1', 'col 2'])

    Encoding/decoding a Dataframe using ``'split'`` formatted JSON:

    >>> df.to_json(orient='split')
        '\
{{\
"columns":["col 1","col 2"],\
"index":["row 1","row 2"],\
"data":[["a","b"],["c","d"]]\
}}\
'
    >>> pd.read_json(StringIO(_), orient='split')
          col 1 col 2
    row 1     a     b
    row 2     c     d

    Encoding/decoding a Dataframe using ``'index'`` formatted JSON:

    >>> df.to_json(orient='index')
    '{{"row 1":{{"col 1":"a","col 2":"b"}},"row 2":{{"col 1":"c","col 2":"d"}}}}'

    >>> pd.read_json(StringIO(_), orient='index')
          col 1 col 2
    row 1     a     b
    row 2     c     d

    Encoding/decoding a Dataframe using ``'records'`` formatted JSON.
    Note that index labels are not preserved with this encoding.

    >>> df.to_json(orient='records')
    '[{{"col 1":"a","col 2":"b"}},{{"col 1":"c","col 2":"d"}}]'
    >>> pd.read_json(StringIO(_), orient='records')
      col 1 col 2
    0     a     b
    1     c     d

    Encoding with Table Schema

    >>> df.to_json(orient='table')
        '\
{{"schema":{{"fields":[\
{{"name":"index","type":"string"}},\
{{"name":"col 1","type":"string"}},\
{{"name":"col 2","type":"string"}}],\
"primaryKey":["index"],\
"pandas_version":"1.4.0"}},\
"data":[\
{{"index":"row 1","col 1":"a","col 2":"b"}},\
{{"index":"row 2","col 1":"c","col 2":"d"}}]\
}}\
'

    The following example uses ``dtype_backend="numpy_nullable"``

    >>> data = '''{{"index": {{"0": 0, "1": 1}},
    ...        "a": {{"0": 1, "1": null}},
    ...        "b": {{"0": 2.5, "1": 4.5}},
    ...        "c": {{"0": true, "1": false}},
    ...        "d": {{"0": "a", "1": "b"}},
    ...        "e": {{"0": 1577.2, "1": 1577.1}}}}'''
    >>> pd.read_json(StringIO(data), dtype_backend="numpy_nullable")
       index     a    b      c  d       e
    0      0     1  2.5   True  a  1577.2
    1      1  <NA>  4.5  False  b  1577.1
    """
    if orient == "table" and dtype:
        raise ValueError("cannot pass both dtype and orient='table'")
    if orient == "table" and convert_axes:
        raise ValueError("cannot pass both convert_axes and orient='table'")

    check_dtype_backend(dtype_backend)

    if dtype is None and orient != "table":
        # error: Incompatible types in assignment (expression has type "bool", variable
        # has type "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float],
        # Type[int], Type[complex], Type[bool], Type[object], Dict[Hashable,
        # Union[ExtensionDtype, Union[str, dtype[Any]], Type[str], Type[float],
        # Type[int], Type[complex], Type[bool], Type[object]]], None]")
        dtype = True  # type: ignore[assignment]
    if convert_axes is None and orient != "table":
        convert_axes = True

    json_reader = JsonReader(
        path_or_buf,
        orient=orient,
        typ=typ,
        dtype=dtype,
        convert_axes=convert_axes,
        convert_dates=convert_dates,
        keep_default_dates=keep_default_dates,
        precise_float=precise_float,
        date_unit=date_unit,
        encoding=encoding,
        lines=lines,
        chunksize=chunksize,
        compression=compression,
        nrows=nrows,
        storage_options=storage_options,
        encoding_errors=encoding_errors,
        dtype_backend=dtype_backend,
        engine=engine,
    )

    if chunksize:
        return json_reader
    else:
        return json_reader.read()


class JsonReader(abc.Iterator, Generic[FrameSeriesStrT]):
    """
    JsonReader provides an interface for reading in a JSON file.

    If initialized with ``lines=True`` and ``chunksize``, can be iterated over
    ``chunksize`` lines at a time. Otherwise, calling ``read`` reads in the
    whole document.
    """

    def __init__(
        self,
        filepath_or_buffer,
        orient,
        typ: FrameSeriesStrT,
        dtype,
        convert_axes: bool | None,
        convert_dates,
        keep_default_dates: bool,
        precise_float: bool,
        date_unit,
        encoding,
        lines: bool,
        chunksize: int | None,
        compression: CompressionOptions,
        nrows: int | None,
        storage_options: StorageOptions | None = None,
        encoding_errors: str | None = "strict",
        dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
        engine: JSONEngine = "ujson",
    ) -> None:
        self.orient = orient
        self.typ = typ
        self.dtype = dtype
        self.convert_axes = convert_axes
        self.convert_dates = convert_dates
        self.keep_default_dates = keep_default_dates
        self.precise_float = precise_float
        self.date_unit = date_unit
        self.encoding = encoding
        self.engine = engine
        self.compression = compression
        self.storage_options = storage_options
        self.lines = lines
        self.chunksize = chunksize
        self.nrows_seen = 0
        self.nrows = nrows
        self.encoding_errors = encoding_errors
        self.handles: IOHandles[str] | None = None
        self.dtype_backend = dtype_backend

        if self.engine not in {"pyarrow", "ujson"}:
            raise ValueError(
                f"The engine type {self.engine} is currently not supported."
            )
        if self.chunksize is not None:
            self.chunksize = validate_integer("chunksize", self.chunksize, 1)
            if not self.lines:
                raise ValueError("chunksize can only be passed if lines=True")
            if self.engine == "pyarrow":
                raise ValueError(
                    "currently pyarrow engine doesn't support chunksize parameter"
                )
        if self.nrows is not None:
            self.nrows = validate_integer("nrows", self.nrows, 0)
            if not self.lines:
                raise ValueError("nrows can only be passed if lines=True")
        if (
            isinstance(filepath_or_buffer, str)
            and not self.lines
            and "\n" in filepath_or_buffer
        ):
            warnings.warn(
                "Passing literal json to 'read_json' is deprecated and "
                "will be removed in a future version. To read from a "
                "literal string, wrap it in a 'StringIO' object.",
                FutureWarning,
                stacklevel=find_stack_level(),
            )
        if self.engine == "pyarrow":
            if not self.lines:
                raise ValueError(
                    "currently pyarrow engine only supports "
                    "the line-delimited JSON format"
                )
            self.data = filepath_or_buffer
        elif self.engine == "ujson":
            data = self._get_data_from_filepath(filepath_or_buffer)
            self.data = self._preprocess_data(data)

    def _preprocess_data(self, data):
        """
        At this point, the data either has a `read` attribute (e.g. a file
        object or a StringIO) or is a string that is a JSON document.

        If self.chunksize, we prepare the data for the `__next__` method.
        Otherwise, we read it into memory for the `read` method.
        """
        if hasattr(data, "read") and not (self.chunksize or self.nrows):
            with self:
                data = data.read()
        if not hasattr(data, "read") and (self.chunksize or self.nrows):
            data = StringIO(data)

        return data

    def _get_data_from_filepath(self, filepath_or_buffer):
        """
        The function read_json accepts three input types:
            1. filepath (string-like)
            2. file-like object (e.g. open file object, StringIO)
            3. JSON string

        This method turns (1) into (2) to simplify the rest of the processing.
        It returns input types (2) and (3) unchanged.

        It raises FileNotFoundError if the input is a string ending in
        one of .json, .json.gz, .json.bz2, etc. but no such file exists.
        """
        # if it is a string but the file does not exist, it might be a JSON string
        filepath_or_buffer = stringify_path(filepath_or_buffer)
        if (
            not isinstance(filepath_or_buffer, str)
            or is_url(filepath_or_buffer)
            or is_fsspec_url(filepath_or_buffer)
            or file_exists(filepath_or_buffer)
        ):
            self.handles = get_handle(
                filepath_or_buffer,
                "r",
                encoding=self.encoding,
                compression=self.compression,
                storage_options=self.storage_options,
                errors=self.encoding_errors,
            )
            filepath_or_buffer = self.handles.handle
        elif (
            isinstance(filepath_or_buffer, str)
            and filepath_or_buffer.lower().endswith(
                (".json",) + tuple(f".json{c}" for c in extension_to_compression)
            )
            and not file_exists(filepath_or_buffer)
        ):
            raise FileNotFoundError(f"File {filepath_or_buffer} does not exist")
        else:
            warnings.warn(
                "Passing literal json to 'read_json' is deprecated and "
                "will be removed in a future version. To read from a "
                "literal string, wrap it in a 'StringIO' object.",
                FutureWarning,
                stacklevel=find_stack_level(),
            )
        return filepath_or_buffer

    def _combine_lines(self, lines) -> str:
        """
        Combines a list of JSON objects into one JSON object.
        """
        return (
            f'[{",".join([line for line in (line.strip() for line in lines) if line])}]'
        )

    @overload
    def read(self: JsonReader[Literal["frame"]]) -> DataFrame:
        ...

    @overload
    def read(self: JsonReader[Literal["series"]]) -> Series:
        ...

    @overload
    def read(self: JsonReader[Literal["frame", "series"]]) -> DataFrame | Series:
        ...

    def read(self) -> DataFrame | Series:
        """
        Read the whole JSON input into a pandas object.
        """
        obj: DataFrame | Series
        with self:
            if self.engine == "pyarrow":
                pyarrow_json = import_optional_dependency("pyarrow.json")
                pa_table = pyarrow_json.read_json(self.data)

                mapping: type[ArrowDtype] | None | Callable
                if self.dtype_backend == "pyarrow":
                    mapping = ArrowDtype
                elif self.dtype_backend == "numpy_nullable":
                    from pandas.io._util import _arrow_dtype_mapping

                    mapping = _arrow_dtype_mapping().get
                else:
                    mapping = None

                return pa_table.to_pandas(types_mapper=mapping)
            elif self.engine == "ujson":
                if self.lines:
                    if self.chunksize:
                        obj = concat(self)
                    elif self.nrows:
                        lines = list(islice(self.data, self.nrows))
                        lines_json = self._combine_lines(lines)
                        obj = self._get_object_parser(lines_json)
                    else:
                        data = ensure_str(self.data)
                        data_lines = data.split("\n")
                        obj = self._get_object_parser(self._combine_lines(data_lines))
                else:
                    obj = self._get_object_parser(self.data)
                if self.dtype_backend is not lib.no_default:
                    return obj.convert_dtypes(
                        infer_objects=False, dtype_backend=self.dtype_backend
                    )
                else:
                    return obj

    def _get_object_parser(self, json) -> DataFrame | Series:
        """
        Parses a json document into a pandas object.
        """
        typ = self.typ
        dtype = self.dtype
        kwargs = {
            "orient": self.orient,
            "dtype": self.dtype,
            "convert_axes": self.convert_axes,
            "convert_dates": self.convert_dates,
            "keep_default_dates": self.keep_default_dates,
            "precise_float": self.precise_float,
            "date_unit": self.date_unit,
            "dtype_backend": self.dtype_backend,
        }
        obj = None
        if typ == "frame":
            obj = FrameParser(json, **kwargs).parse()

        if typ == "series" or obj is None:
            if not isinstance(dtype, bool):
                kwargs["dtype"] = dtype
            obj = SeriesParser(json, **kwargs).parse()

        return obj

    def close(self) -> None:
        """
        If we opened a stream earlier, in _get_data_from_filepath, we should
        close it.

        If an open stream or file was passed, we leave it open.
        """
        if self.handles is not None:
            self.handles.close()

    def __iter__(self) -> Self:
        return self

    @overload
    def __next__(self: JsonReader[Literal["frame"]]) -> DataFrame:
        ...

    @overload
    def __next__(self: JsonReader[Literal["series"]]) -> Series:
        ...

    @overload
    def __next__(self: JsonReader[Literal["frame", "series"]]) -> DataFrame | Series:
        ...

    def __next__(self) -> DataFrame | Series:
        if self.nrows and self.nrows_seen >= self.nrows:
            self.close()
            raise StopIteration

        lines = list(islice(self.data, self.chunksize))
        if not lines:
            self.close()
            raise StopIteration

        try:
            lines_json = self._combine_lines(lines)
            obj = self._get_object_parser(lines_json)

            # Make sure that the returned objects have the right index.
            obj.index = range(self.nrows_seen, self.nrows_seen + len(obj))
            self.nrows_seen += len(obj)
        except Exception as ex:
            self.close()
            raise ex

        if self.dtype_backend is not lib.no_default:
            return obj.convert_dtypes(
                infer_objects=False, dtype_backend=self.dtype_backend
            )
        else:
            return obj

    def __enter__(self) -> Self:
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_value: BaseException | None,
        traceback: TracebackType | None,
    ) -> None:
        self.close()


class Parser:
    _split_keys: tuple[str, ...]
    _default_orient: str

    _STAMP_UNITS = ("s", "ms", "us", "ns")
    _MIN_STAMPS = {
        "s": 31536000,
        "ms": 31536000000,
        "us": 31536000000000,
        "ns": 31536000000000000,
    }
    json: str

    def __init__(
        self,
        json: str,
        orient,
        dtype: DtypeArg | None = None,
        convert_axes: bool = True,
        convert_dates: bool | list[str] = True,
        keep_default_dates: bool = False,
        precise_float: bool = False,
        date_unit=None,
        dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
    ) -> None:
        self.json = json

        if orient is None:
            orient = self._default_orient

        self.orient = orient

        self.dtype = dtype

        if date_unit is not None:
            date_unit = date_unit.lower()
            if date_unit not in self._STAMP_UNITS:
                raise ValueError(f"date_unit must be one of {self._STAMP_UNITS}")
            self.min_stamp = self._MIN_STAMPS[date_unit]
        else:
            self.min_stamp = self._MIN_STAMPS["s"]

        self.precise_float = precise_float
        self.convert_axes = convert_axes
        self.convert_dates = convert_dates
        self.date_unit = date_unit
        self.keep_default_dates = keep_default_dates
        self.obj: DataFrame | Series | None = None
        self.dtype_backend = dtype_backend

    @final
    def check_keys_split(self, decoded: dict) -> None:
        """
        Checks that dict has only the appropriate keys for orient='split'.
        """
        bad_keys = set(decoded.keys()).difference(set(self._split_keys))
        if bad_keys:
            bad_keys_joined = ", ".join(bad_keys)
            raise ValueError(f"JSON data had unexpected key(s): {bad_keys_joined}")

    @final
    def parse(self):
        self._parse()

        if self.obj is None:
            return None
        if self.convert_axes:
            self._convert_axes()
        self._try_convert_types()
        return self.obj

    def _parse(self) -> None:
        raise AbstractMethodError(self)

    @final
    def _convert_axes(self) -> None:
        """
        Try to convert axes.
        """
        obj = self.obj
        assert obj is not None  # for mypy
        for axis_name in obj._AXIS_ORDERS:
            ax = obj._get_axis(axis_name)
            ser = Series(ax, dtype=ax.dtype, copy=False)
            new_ser, result = self._try_convert_data(
                name=axis_name,
                data=ser,
                use_dtypes=False,
                convert_dates=True,
                is_axis=True,
            )
            if result:
                new_axis = Index(new_ser, dtype=new_ser.dtype, copy=False)
                setattr(self.obj, axis_name, new_axis)

    def _try_convert_types(self) -> None:
        raise AbstractMethodError(self)

    @final
    def _try_convert_data(
        self,
        name: Hashable,
        data: Series,
        use_dtypes: bool = True,
        convert_dates: bool | list[str] = True,
        is_axis: bool = False,
    ) -> tuple[Series, bool]:
        """
        Try to parse a Series into a column by inferring dtype.
        """
        # don't try to coerce, unless a force conversion
        if use_dtypes:
            if not self.dtype:
                if all(notna(data)):
                    return data, False

                with warnings.catch_warnings():
                    warnings.filterwarnings(
                        "ignore",
                        "Downcasting object dtype arrays",
                        category=FutureWarning,
                    )
                    filled = data.fillna(np.nan)

                return filled, True

            elif self.dtype is True:
                pass
            else:
                # dtype to force
                dtype = (
                    self.dtype.get(name) if isinstance(self.dtype, dict) else self.dtype
                )
                if dtype is not None:
                    try:
                        return data.astype(dtype), True
                    except (TypeError, ValueError):
                        return data, False

        if convert_dates:
            new_data, result = self._try_convert_to_date(data)
            if result:
                return new_data, True

        converted = False
        if self.dtype_backend is not lib.no_default and not is_axis:
            # Fall through for conversion later on
            return data, True
        elif is_string_dtype(data.dtype):
            # try float
            try:
                data = data.astype("float64")
                converted = True
            except (TypeError, ValueError):
                pass

        if data.dtype.kind == "f" and data.dtype != "float64":
            # coerce floats to 64
            try:
                data = data.astype("float64")
                converted = True
            except (TypeError, ValueError):
                pass

        # don't coerce 0-len data
        if len(data) and data.dtype in ("float", "object"):
            # coerce ints if we can
            try:
                new_data = data.astype("int64")
                if (new_data == data).all():
                    data = new_data
                    converted = True
            except (TypeError, ValueError, OverflowError):
                pass

        if data.dtype == "int" and data.dtype != "int64":
            # coerce ints to 64
            try:
                data = data.astype("int64")
                converted = True
            except (TypeError, ValueError):
                pass

        # if we have an index, we want to preserve dtypes
        if name == "index" and len(data):
            if self.orient == "split":
                return data, False

        return data, converted

    @final
    def _try_convert_to_date(self, data: Series) -> tuple[Series, bool]:
        """
        Try to parse a ndarray like into a date column.

        Try to coerce object in epoch/iso formats and integer/float in epoch
        formats. Return a boolean if parsing was successful.
        """
        # no conversion on empty
        if not len(data):
            return data, False

        new_data = data

        if new_data.dtype == "string":
            new_data = new_data.astype(object)

        if new_data.dtype == "object":
            try:
                new_data = data.astype("int64")
            except OverflowError:
                return data, False
            except (TypeError, ValueError):
                pass

        # ignore numbers that are out of range
        if issubclass(new_data.dtype.type, np.number):
            in_range = (
                isna(new_data._values)
                | (new_data > self.min_stamp)
                | (new_data._values == iNaT)
            )
            if not in_range.all():
                return data, False

        date_units = (self.date_unit,) if self.date_unit else self._STAMP_UNITS
        for date_unit in date_units:
            try:
                with warnings.catch_warnings():
                    warnings.filterwarnings(
                        "ignore",
                        ".*parsing datetimes with mixed time "
                        "zones will raise an error",
                        category=FutureWarning,
                    )
                    new_data = to_datetime(new_data, errors="raise", unit=date_unit)
            except (ValueError, OverflowError, TypeError):
                continue
            return new_data, True
        return data, False


class SeriesParser(Parser):
    _default_orient = "index"
    _split_keys = ("name", "index", "data")
    obj: Series | None

    def _parse(self) -> None:
        data = ujson_loads(self.json, precise_float=self.precise_float)

        if self.orient == "split":
            decoded = {str(k): v for k, v in data.items()}
            self.check_keys_split(decoded)
            self.obj = Series(**decoded)
        else:
            self.obj = Series(data)

    def _try_convert_types(self) -> None:
        if self.obj is None:
            return
        obj, result = self._try_convert_data(
            "data", self.obj, convert_dates=self.convert_dates
        )
        if result:
            self.obj = obj


class FrameParser(Parser):
    _default_orient = "columns"
    _split_keys = ("columns", "index", "data")
    obj: DataFrame | None

    def _parse(self) -> None:
        json = self.json
        orient = self.orient

        if orient == "columns":
            self.obj = DataFrame(
                ujson_loads(json, precise_float=self.precise_float), dtype=None
            )
        elif orient == "split":
            decoded = {
                str(k): v
                for k, v in ujson_loads(json, precise_float=self.precise_float).items()
            }
            self.check_keys_split(decoded)
            orig_names = [
                (tuple(col) if isinstance(col, list) else col)
                for col in decoded["columns"]
            ]
            decoded["columns"] = dedup_names(
                orig_names,
                is_potential_multi_index(orig_names, None),
            )
            self.obj = DataFrame(dtype=None, **decoded)
        elif orient == "index":
            self.obj = DataFrame.from_dict(
                ujson_loads(json, precise_float=self.precise_float),
                dtype=None,
                orient="index",
            )
        elif orient == "table":
            self.obj = parse_table_schema(json, precise_float=self.precise_float)
        else:
            self.obj = DataFrame(
                ujson_loads(json, precise_float=self.precise_float), dtype=None
            )

    def _process_converter(
        self,
        f: Callable[[Hashable, Series], tuple[Series, bool]],
        filt: Callable[[Hashable], bool] | None = None,
    ) -> None:
        """
        Take a conversion function and possibly recreate the frame.
        """
        if filt is None:
            filt = lambda col: True

        obj = self.obj
        assert obj is not None  # for mypy

        needs_new_obj = False
        new_obj = {}
        for i, (col, c) in enumerate(obj.items()):
            if filt(col):
                new_data, result = f(col, c)
                if result:
                    c = new_data
                    needs_new_obj = True
            new_obj[i] = c

        if needs_new_obj:
            # possibly handle dup columns
            new_frame = DataFrame(new_obj, index=obj.index)
            new_frame.columns = obj.columns
            self.obj = new_frame

    def _try_convert_types(self) -> None:
        if self.obj is None:
            return
        if self.convert_dates:
            self._try_convert_dates()

        self._process_converter(
            lambda col, c: self._try_convert_data(col, c, convert_dates=False)
        )

    def _try_convert_dates(self) -> None:
        if self.obj is None:
            return

        # our columns to parse
        convert_dates_list_bool = self.convert_dates
        if isinstance(convert_dates_list_bool, bool):
            convert_dates_list_bool = []
        convert_dates = set(convert_dates_list_bool)

        def is_ok(col) -> bool:
            """
            Return if this col is ok to try for a date parse.
            """
            if col in convert_dates:
                return True
            if not self.keep_default_dates:
                return False
            if not isinstance(col, str):
                return False

            col_lower = col.lower()
            if (
                col_lower.endswith(("_at", "_time"))
                or col_lower == "modified"
                or col_lower == "date"
                or col_lower == "datetime"
                or col_lower.startswith("timestamp")
            ):
                return True
            return False

        self._process_converter(lambda col, c: self._try_convert_to_date(c), filt=is_ok)