File size: 59,073 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
from __future__ import annotations

from collections.abc import (
    Hashable,
    Iterable,
    Mapping,
    Sequence,
)
import datetime
from functools import partial
from io import BytesIO
import os
from textwrap import fill
from typing import (
    IO,
    TYPE_CHECKING,
    Any,
    Callable,
    Generic,
    Literal,
    TypeVar,
    Union,
    cast,
    overload,
)
import warnings
import zipfile

from pandas._config import config

from pandas._libs import lib
from pandas._libs.parsers import STR_NA_VALUES
from pandas.compat._optional import (
    get_version,
    import_optional_dependency,
)
from pandas.errors import EmptyDataError
from pandas.util._decorators import (
    Appender,
    doc,
)
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend

from pandas.core.dtypes.common import (
    is_bool,
    is_float,
    is_integer,
    is_list_like,
)

from pandas.core.frame import DataFrame
from pandas.core.shared_docs import _shared_docs
from pandas.util.version import Version

from pandas.io.common import (
    IOHandles,
    get_handle,
    stringify_path,
    validate_header_arg,
)
from pandas.io.excel._util import (
    fill_mi_header,
    get_default_engine,
    get_writer,
    maybe_convert_usecols,
    pop_header_name,
)
from pandas.io.parsers import TextParser
from pandas.io.parsers.readers import validate_integer

if TYPE_CHECKING:
    from types import TracebackType

    from pandas._typing import (
        DtypeArg,
        DtypeBackend,
        ExcelWriterIfSheetExists,
        FilePath,
        IntStrT,
        ReadBuffer,
        Self,
        SequenceNotStr,
        StorageOptions,
        WriteExcelBuffer,
    )
_read_excel_doc = (
    """
Read an Excel file into a ``pandas`` ``DataFrame``.

Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions
read from a local filesystem or URL. Supports an option to read
a single sheet or a list of sheets.

Parameters
----------
io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object
    Any valid string path is acceptable. The string could be a URL. Valid
    URL schemes include http, ftp, s3, and file. For file URLs, a host is
    expected. A local file could be: ``file://localhost/path/to/table.xlsx``.

    If you want to pass in a path object, pandas accepts any ``os.PathLike``.

    By file-like object, we refer to objects with a ``read()`` method,
    such as a file handle (e.g. via builtin ``open`` function)
    or ``StringIO``.

    .. deprecated:: 2.1.0
        Passing byte strings is deprecated. To read from a
        byte string, wrap it in a ``BytesIO`` object.
sheet_name : str, int, list, or None, default 0
    Strings are used for sheet names. Integers are used in zero-indexed
    sheet positions (chart sheets do not count as a sheet position).
    Lists of strings/integers are used to request multiple sheets.
    Specify ``None`` to get all worksheets.

    Available cases:

    * Defaults to ``0``: 1st sheet as a `DataFrame`
    * ``1``: 2nd sheet as a `DataFrame`
    * ``"Sheet1"``: Load sheet with name "Sheet1"
    * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
      as a dict of `DataFrame`
    * ``None``: All worksheets.

header : int, list of int, default 0
    Row (0-indexed) to use for the column labels of the parsed
    DataFrame. If a list of integers is passed those row positions will
    be combined into a ``MultiIndex``. Use None if there is no header.
names : array-like, default None
    List of column names to use. If file contains no header row,
    then you should explicitly pass header=None.
index_col : int, str, list of int, default None
    Column (0-indexed) to use as the row labels of the DataFrame.
    Pass None if there is no such column.  If a list is passed,
    those columns will be combined into a ``MultiIndex``.  If a
    subset of data is selected with ``usecols``, index_col
    is based on the subset.

    Missing values will be forward filled to allow roundtripping with
    ``to_excel`` for ``merged_cells=True``. To avoid forward filling the
    missing values use ``set_index`` after reading the data instead of
    ``index_col``.
usecols : str, list-like, or callable, default None
    * If None, then parse all columns.
    * If str, then indicates comma separated list of Excel column letters
      and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
      both sides.
    * If list of int, then indicates list of column numbers to be parsed
      (0-indexed).
    * If list of string, then indicates list of column names to be parsed.
    * If callable, then evaluate each column name against it and parse the
      column if the callable returns ``True``.

    Returns a subset of the columns according to behavior above.
dtype : Type name or dict of column -> type, default None
    Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32}}
    Use ``object`` to preserve data as stored in Excel and not interpret dtype,
    which will necessarily result in ``object`` dtype.
    If converters are specified, they will be applied INSTEAD
    of dtype conversion.
    If you use ``None``, it will infer the dtype of each column based on the data.
engine : {{'openpyxl', 'calamine', 'odf', 'pyxlsb', 'xlrd'}}, default None
    If io is not a buffer or path, this must be set to identify io.
    Engine compatibility :

    - ``openpyxl`` supports newer Excel file formats.
    - ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
      and OpenDocument (.ods) file formats.
    - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
    - ``pyxlsb`` supports Binary Excel files.
    - ``xlrd`` supports old-style Excel files (.xls).

    When ``engine=None``, the following logic will be used to determine the engine:

    - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
      then `odf <https://pypi.org/project/odfpy/>`_ will be used.
    - Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used.
    - Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used.
    - Otherwise ``openpyxl`` will be used.
converters : dict, default None
    Dict of functions for converting values in certain columns. Keys can
    either be integers or column labels, values are functions that take one
    input argument, the Excel cell content, and return the transformed
    content.
true_values : list, default None
    Values to consider as True.
false_values : list, default None
    Values to consider as False.
skiprows : list-like, int, or callable, optional
    Line numbers to skip (0-indexed) or number of lines to skip (int) at the
    start of the file. If callable, the callable function will be evaluated
    against the row indices, returning True if the row should be skipped and
    False otherwise. An example of a valid callable argument would be ``lambda
    x: x in [0, 2]``.
nrows : int, default None
    Number of rows to parse.
na_values : scalar, str, list-like, or dict, default None
    Additional strings to recognize as NA/NaN. If dict passed, specific
    per-column NA values. By default the following values are interpreted
    as NaN: '"""
    + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent="    ")
    + """'.
keep_default_na : bool, default True
    Whether or not to include the default NaN values when parsing the data.
    Depending on whether ``na_values`` is passed in, the behavior is as follows:

    * If ``keep_default_na`` is True, and ``na_values`` are specified,
      ``na_values`` is appended to the default NaN values used for parsing.
    * If ``keep_default_na`` is True, and ``na_values`` are not specified, only
      the default NaN values are used for parsing.
    * If ``keep_default_na`` is False, and ``na_values`` are specified, only
      the NaN values specified ``na_values`` are used for parsing.
    * If ``keep_default_na`` is False, and ``na_values`` are not specified, no
      strings will be parsed as NaN.

    Note that if `na_filter` is passed in as False, the ``keep_default_na`` and
    ``na_values`` parameters will be ignored.
na_filter : bool, default True
    Detect missing value markers (empty strings and the value of na_values). In
    data without any NAs, passing ``na_filter=False`` can improve the
    performance of reading a large file.
verbose : bool, default False
    Indicate number of NA values placed in non-numeric columns.
parse_dates : bool, list-like, or dict, default False
    The behavior is as follows:

    * ``bool``. If True -> try parsing the index.
    * ``list`` of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
      each as a separate date column.
    * ``list`` of lists. e.g.  If [[1, 3]] -> combine columns 1 and 3 and parse as
      a single date column.
    * ``dict``, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
      result 'foo'

    If a column or index contains an unparsable date, the entire column or
    index will be returned unaltered as an object data type. If you don`t want to
    parse some cells as date just change their type in Excel to "Text".
    For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.

    Note: A fast-path exists for iso8601-formatted dates.
date_parser : function, optional
    Function to use for converting a sequence of string columns to an array of
    datetime instances. The default uses ``dateutil.parser.parser`` to do the
    conversion. Pandas will try to call `date_parser` in three different ways,
    advancing to the next if an exception occurs: 1) Pass one or more arrays
    (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
    string values from the columns defined by `parse_dates` into a single array
    and pass that; and 3) call `date_parser` once for each row using one or
    more strings (corresponding to the columns defined by `parse_dates`) as
    arguments.

    .. deprecated:: 2.0.0
       Use ``date_format`` instead, or read in as ``object`` and then apply
       :func:`to_datetime` as-needed.
date_format : str or dict of column -> format, default ``None``
   If used in conjunction with ``parse_dates``, will parse dates according to this
   format. For anything more complex,
   please read in as ``object`` and then apply :func:`to_datetime` as-needed.

   .. versionadded:: 2.0.0
thousands : str, default None
    Thousands separator for parsing string columns to numeric.  Note that
    this parameter is only necessary for columns stored as TEXT in Excel,
    any numeric columns will automatically be parsed, regardless of display
    format.
decimal : str, default '.'
    Character to recognize as decimal point for parsing string columns to numeric.
    Note that this parameter is only necessary for columns stored as TEXT in Excel,
    any numeric columns will automatically be parsed, regardless of display
    format.(e.g. use ',' for European data).

    .. versionadded:: 1.4.0

comment : str, default None
    Comments out remainder of line. Pass a character or characters to this
    argument to indicate comments in the input file. Any data between the
    comment string and the end of the current line is ignored.
skipfooter : int, default 0
    Rows at the end to skip (0-indexed).
{storage_options}

dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
    Back-end data type applied to the resultant :class:`DataFrame`
    (still experimental). Behaviour is as follows:

    * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
      (default).
    * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
      DataFrame.

    .. versionadded:: 2.0

engine_kwargs : dict, optional
    Arbitrary keyword arguments passed to excel engine.

Returns
-------
DataFrame or dict of DataFrames
    DataFrame from the passed in Excel file. See notes in sheet_name
    argument for more information on when a dict of DataFrames is returned.

See Also
--------
DataFrame.to_excel : Write DataFrame to an Excel file.
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.

Notes
-----
For specific information on the methods used for each Excel engine, refer to the pandas
:ref:`user guide <io.excel_reader>`

Examples
--------
The file can be read using the file name as string or an open file object:

>>> pd.read_excel('tmp.xlsx', index_col=0)  # doctest: +SKIP
       Name  Value
0   string1      1
1   string2      2
2  #Comment      3

>>> pd.read_excel(open('tmp.xlsx', 'rb'),
...               sheet_name='Sheet3')  # doctest: +SKIP
   Unnamed: 0      Name  Value
0           0   string1      1
1           1   string2      2
2           2  #Comment      3

Index and header can be specified via the `index_col` and `header` arguments

>>> pd.read_excel('tmp.xlsx', index_col=None, header=None)  # doctest: +SKIP
     0         1      2
0  NaN      Name  Value
1  0.0   string1      1
2  1.0   string2      2
3  2.0  #Comment      3

Column types are inferred but can be explicitly specified

>>> pd.read_excel('tmp.xlsx', index_col=0,
...               dtype={{'Name': str, 'Value': float}})  # doctest: +SKIP
       Name  Value
0   string1    1.0
1   string2    2.0
2  #Comment    3.0

True, False, and NA values, and thousands separators have defaults,
but can be explicitly specified, too. Supply the values you would like
as strings or lists of strings!

>>> pd.read_excel('tmp.xlsx', index_col=0,
...               na_values=['string1', 'string2'])  # doctest: +SKIP
       Name  Value
0       NaN      1
1       NaN      2
2  #Comment      3

Comment lines in the excel input file can be skipped using the
``comment`` kwarg.

>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#')  # doctest: +SKIP
      Name  Value
0  string1    1.0
1  string2    2.0
2     None    NaN
"""
)


@overload
def read_excel(
    io,
    # sheet name is str or int -> DataFrame
    sheet_name: str | int = ...,
    *,
    header: int | Sequence[int] | None = ...,
    names: SequenceNotStr[Hashable] | range | None = ...,
    index_col: int | str | Sequence[int] | None = ...,
    usecols: int
    | str
    | Sequence[int]
    | Sequence[str]
    | Callable[[str], bool]
    | None = ...,
    dtype: DtypeArg | None = ...,
    engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ...,
    converters: dict[str, Callable] | dict[int, Callable] | None = ...,
    true_values: Iterable[Hashable] | None = ...,
    false_values: Iterable[Hashable] | None = ...,
    skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
    nrows: int | None = ...,
    na_values=...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool = ...,
    parse_dates: list | dict | bool = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: dict[Hashable, str] | str | None = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    comment: str | None = ...,
    skipfooter: int = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
    ...


@overload
def read_excel(
    io,
    # sheet name is list or None -> dict[IntStrT, DataFrame]
    sheet_name: list[IntStrT] | None,
    *,
    header: int | Sequence[int] | None = ...,
    names: SequenceNotStr[Hashable] | range | None = ...,
    index_col: int | str | Sequence[int] | None = ...,
    usecols: int
    | str
    | Sequence[int]
    | Sequence[str]
    | Callable[[str], bool]
    | None = ...,
    dtype: DtypeArg | None = ...,
    engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ...,
    converters: dict[str, Callable] | dict[int, Callable] | None = ...,
    true_values: Iterable[Hashable] | None = ...,
    false_values: Iterable[Hashable] | None = ...,
    skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
    nrows: int | None = ...,
    na_values=...,
    keep_default_na: bool = ...,
    na_filter: bool = ...,
    verbose: bool = ...,
    parse_dates: list | dict | bool = ...,
    date_parser: Callable | lib.NoDefault = ...,
    date_format: dict[Hashable, str] | str | None = ...,
    thousands: str | None = ...,
    decimal: str = ...,
    comment: str | None = ...,
    skipfooter: int = ...,
    storage_options: StorageOptions = ...,
    dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> dict[IntStrT, DataFrame]:
    ...


@doc(storage_options=_shared_docs["storage_options"])
@Appender(_read_excel_doc)
def read_excel(
    io,
    sheet_name: str | int | list[IntStrT] | None = 0,
    *,
    header: int | Sequence[int] | None = 0,
    names: SequenceNotStr[Hashable] | range | None = None,
    index_col: int | str | Sequence[int] | None = None,
    usecols: int
    | str
    | Sequence[int]
    | Sequence[str]
    | Callable[[str], bool]
    | None = None,
    dtype: DtypeArg | None = None,
    engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = None,
    converters: dict[str, Callable] | dict[int, Callable] | None = None,
    true_values: Iterable[Hashable] | None = None,
    false_values: Iterable[Hashable] | None = None,
    skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
    nrows: int | None = None,
    na_values=None,
    keep_default_na: bool = True,
    na_filter: bool = True,
    verbose: bool = False,
    parse_dates: list | dict | bool = False,
    date_parser: Callable | lib.NoDefault = lib.no_default,
    date_format: dict[Hashable, str] | str | None = None,
    thousands: str | None = None,
    decimal: str = ".",
    comment: str | None = None,
    skipfooter: int = 0,
    storage_options: StorageOptions | None = None,
    dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
    engine_kwargs: dict | None = None,
) -> DataFrame | dict[IntStrT, DataFrame]:
    check_dtype_backend(dtype_backend)
    should_close = False
    if engine_kwargs is None:
        engine_kwargs = {}

    if not isinstance(io, ExcelFile):
        should_close = True
        io = ExcelFile(
            io,
            storage_options=storage_options,
            engine=engine,
            engine_kwargs=engine_kwargs,
        )
    elif engine and engine != io.engine:
        raise ValueError(
            "Engine should not be specified when passing "
            "an ExcelFile - ExcelFile already has the engine set"
        )

    try:
        data = io.parse(
            sheet_name=sheet_name,
            header=header,
            names=names,
            index_col=index_col,
            usecols=usecols,
            dtype=dtype,
            converters=converters,
            true_values=true_values,
            false_values=false_values,
            skiprows=skiprows,
            nrows=nrows,
            na_values=na_values,
            keep_default_na=keep_default_na,
            na_filter=na_filter,
            verbose=verbose,
            parse_dates=parse_dates,
            date_parser=date_parser,
            date_format=date_format,
            thousands=thousands,
            decimal=decimal,
            comment=comment,
            skipfooter=skipfooter,
            dtype_backend=dtype_backend,
        )
    finally:
        # make sure to close opened file handles
        if should_close:
            io.close()
    return data


_WorkbookT = TypeVar("_WorkbookT")


class BaseExcelReader(Generic[_WorkbookT]):
    book: _WorkbookT

    def __init__(
        self,
        filepath_or_buffer,
        storage_options: StorageOptions | None = None,
        engine_kwargs: dict | None = None,
    ) -> None:
        if engine_kwargs is None:
            engine_kwargs = {}

        # First argument can also be bytes, so create a buffer
        if isinstance(filepath_or_buffer, bytes):
            filepath_or_buffer = BytesIO(filepath_or_buffer)

        self.handles = IOHandles(
            handle=filepath_or_buffer, compression={"method": None}
        )
        if not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)):
            self.handles = get_handle(
                filepath_or_buffer, "rb", storage_options=storage_options, is_text=False
            )

        if isinstance(self.handles.handle, self._workbook_class):
            self.book = self.handles.handle
        elif hasattr(self.handles.handle, "read"):
            # N.B. xlrd.Book has a read attribute too
            self.handles.handle.seek(0)
            try:
                self.book = self.load_workbook(self.handles.handle, engine_kwargs)
            except Exception:
                self.close()
                raise
        else:
            raise ValueError(
                "Must explicitly set engine if not passing in buffer or path for io."
            )

    @property
    def _workbook_class(self) -> type[_WorkbookT]:
        raise NotImplementedError

    def load_workbook(self, filepath_or_buffer, engine_kwargs) -> _WorkbookT:
        raise NotImplementedError

    def close(self) -> None:
        if hasattr(self, "book"):
            if hasattr(self.book, "close"):
                # pyxlsb: opens a TemporaryFile
                # openpyxl: https://stackoverflow.com/questions/31416842/
                #     openpyxl-does-not-close-excel-workbook-in-read-only-mode
                self.book.close()
            elif hasattr(self.book, "release_resources"):
                # xlrd
                # https://github.com/python-excel/xlrd/blob/2.0.1/xlrd/book.py#L548
                self.book.release_resources()
        self.handles.close()

    @property
    def sheet_names(self) -> list[str]:
        raise NotImplementedError

    def get_sheet_by_name(self, name: str):
        raise NotImplementedError

    def get_sheet_by_index(self, index: int):
        raise NotImplementedError

    def get_sheet_data(self, sheet, rows: int | None = None):
        raise NotImplementedError

    def raise_if_bad_sheet_by_index(self, index: int) -> None:
        n_sheets = len(self.sheet_names)
        if index >= n_sheets:
            raise ValueError(
                f"Worksheet index {index} is invalid, {n_sheets} worksheets found"
            )

    def raise_if_bad_sheet_by_name(self, name: str) -> None:
        if name not in self.sheet_names:
            raise ValueError(f"Worksheet named '{name}' not found")

    def _check_skiprows_func(
        self,
        skiprows: Callable,
        rows_to_use: int,
    ) -> int:
        """
        Determine how many file rows are required to obtain `nrows` data
        rows when `skiprows` is a function.

        Parameters
        ----------
        skiprows : function
            The function passed to read_excel by the user.
        rows_to_use : int
            The number of rows that will be needed for the header and
            the data.

        Returns
        -------
        int
        """
        i = 0
        rows_used_so_far = 0
        while rows_used_so_far < rows_to_use:
            if not skiprows(i):
                rows_used_so_far += 1
            i += 1
        return i

    def _calc_rows(
        self,
        header: int | Sequence[int] | None,
        index_col: int | Sequence[int] | None,
        skiprows: Sequence[int] | int | Callable[[int], object] | None,
        nrows: int | None,
    ) -> int | None:
        """
        If nrows specified, find the number of rows needed from the
        file, otherwise return None.


        Parameters
        ----------
        header : int, list of int, or None
            See read_excel docstring.
        index_col : int, str, list of int, or None
            See read_excel docstring.
        skiprows : list-like, int, callable, or None
            See read_excel docstring.
        nrows : int or None
            See read_excel docstring.

        Returns
        -------
        int or None
        """
        if nrows is None:
            return None
        if header is None:
            header_rows = 1
        elif is_integer(header):
            header = cast(int, header)
            header_rows = 1 + header
        else:
            header = cast(Sequence, header)
            header_rows = 1 + header[-1]
        # If there is a MultiIndex header and an index then there is also
        # a row containing just the index name(s)
        if is_list_like(header) and index_col is not None:
            header = cast(Sequence, header)
            if len(header) > 1:
                header_rows += 1
        if skiprows is None:
            return header_rows + nrows
        if is_integer(skiprows):
            skiprows = cast(int, skiprows)
            return header_rows + nrows + skiprows
        if is_list_like(skiprows):

            def f(skiprows: Sequence, x: int) -> bool:
                return x in skiprows

            skiprows = cast(Sequence, skiprows)
            return self._check_skiprows_func(partial(f, skiprows), header_rows + nrows)
        if callable(skiprows):
            return self._check_skiprows_func(
                skiprows,
                header_rows + nrows,
            )
        # else unexpected skiprows type: read_excel will not optimize
        # the number of rows read from file
        return None

    def parse(
        self,
        sheet_name: str | int | list[int] | list[str] | None = 0,
        header: int | Sequence[int] | None = 0,
        names: SequenceNotStr[Hashable] | range | None = None,
        index_col: int | Sequence[int] | None = None,
        usecols=None,
        dtype: DtypeArg | None = None,
        true_values: Iterable[Hashable] | None = None,
        false_values: Iterable[Hashable] | None = None,
        skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
        nrows: int | None = None,
        na_values=None,
        verbose: bool = False,
        parse_dates: list | dict | bool = False,
        date_parser: Callable | lib.NoDefault = lib.no_default,
        date_format: dict[Hashable, str] | str | None = None,
        thousands: str | None = None,
        decimal: str = ".",
        comment: str | None = None,
        skipfooter: int = 0,
        dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
        **kwds,
    ):
        validate_header_arg(header)
        validate_integer("nrows", nrows)

        ret_dict = False

        # Keep sheetname to maintain backwards compatibility.
        sheets: list[int] | list[str]
        if isinstance(sheet_name, list):
            sheets = sheet_name
            ret_dict = True
        elif sheet_name is None:
            sheets = self.sheet_names
            ret_dict = True
        elif isinstance(sheet_name, str):
            sheets = [sheet_name]
        else:
            sheets = [sheet_name]

        # handle same-type duplicates.
        sheets = cast(Union[list[int], list[str]], list(dict.fromkeys(sheets).keys()))

        output = {}

        last_sheetname = None
        for asheetname in sheets:
            last_sheetname = asheetname
            if verbose:
                print(f"Reading sheet {asheetname}")

            if isinstance(asheetname, str):
                sheet = self.get_sheet_by_name(asheetname)
            else:  # assume an integer if not a string
                sheet = self.get_sheet_by_index(asheetname)

            file_rows_needed = self._calc_rows(header, index_col, skiprows, nrows)
            data = self.get_sheet_data(sheet, file_rows_needed)
            if hasattr(sheet, "close"):
                # pyxlsb opens two TemporaryFiles
                sheet.close()
            usecols = maybe_convert_usecols(usecols)

            if not data:
                output[asheetname] = DataFrame()
                continue

            is_list_header = False
            is_len_one_list_header = False
            if is_list_like(header):
                assert isinstance(header, Sequence)
                is_list_header = True
                if len(header) == 1:
                    is_len_one_list_header = True

            if is_len_one_list_header:
                header = cast(Sequence[int], header)[0]

            # forward fill and pull out names for MultiIndex column
            header_names = None
            if header is not None and is_list_like(header):
                assert isinstance(header, Sequence)

                header_names = []
                control_row = [True] * len(data[0])

                for row in header:
                    if is_integer(skiprows):
                        assert isinstance(skiprows, int)
                        row += skiprows

                    if row > len(data) - 1:
                        raise ValueError(
                            f"header index {row} exceeds maximum index "
                            f"{len(data) - 1} of data.",
                        )

                    data[row], control_row = fill_mi_header(data[row], control_row)

                    if index_col is not None:
                        header_name, _ = pop_header_name(data[row], index_col)
                        header_names.append(header_name)

            # If there is a MultiIndex header and an index then there is also
            # a row containing just the index name(s)
            has_index_names = False
            if is_list_header and not is_len_one_list_header and index_col is not None:
                index_col_list: Sequence[int]
                if isinstance(index_col, int):
                    index_col_list = [index_col]
                else:
                    assert isinstance(index_col, Sequence)
                    index_col_list = index_col

                # We have to handle mi without names. If any of the entries in the data
                # columns are not empty, this is a regular row
                assert isinstance(header, Sequence)
                if len(header) < len(data):
                    potential_index_names = data[len(header)]
                    potential_data = [
                        x
                        for i, x in enumerate(potential_index_names)
                        if not control_row[i] and i not in index_col_list
                    ]
                    has_index_names = all(x == "" or x is None for x in potential_data)

            if is_list_like(index_col):
                # Forward fill values for MultiIndex index.
                if header is None:
                    offset = 0
                elif isinstance(header, int):
                    offset = 1 + header
                else:
                    offset = 1 + max(header)

                # GH34673: if MultiIndex names present and not defined in the header,
                # offset needs to be incremented so that forward filling starts
                # from the first MI value instead of the name
                if has_index_names:
                    offset += 1

                # Check if we have an empty dataset
                # before trying to collect data.
                if offset < len(data):
                    assert isinstance(index_col, Sequence)

                    for col in index_col:
                        last = data[offset][col]

                        for row in range(offset + 1, len(data)):
                            if data[row][col] == "" or data[row][col] is None:
                                data[row][col] = last
                            else:
                                last = data[row][col]

            # GH 12292 : error when read one empty column from excel file
            try:
                parser = TextParser(
                    data,
                    names=names,
                    header=header,
                    index_col=index_col,
                    has_index_names=has_index_names,
                    dtype=dtype,
                    true_values=true_values,
                    false_values=false_values,
                    skiprows=skiprows,
                    nrows=nrows,
                    na_values=na_values,
                    skip_blank_lines=False,  # GH 39808
                    parse_dates=parse_dates,
                    date_parser=date_parser,
                    date_format=date_format,
                    thousands=thousands,
                    decimal=decimal,
                    comment=comment,
                    skipfooter=skipfooter,
                    usecols=usecols,
                    dtype_backend=dtype_backend,
                    **kwds,
                )

                output[asheetname] = parser.read(nrows=nrows)

                if header_names:
                    output[asheetname].columns = output[asheetname].columns.set_names(
                        header_names
                    )

            except EmptyDataError:
                # No Data, return an empty DataFrame
                output[asheetname] = DataFrame()

            except Exception as err:
                err.args = (f"{err.args[0]} (sheet: {asheetname})", *err.args[1:])
                raise err

        if last_sheetname is None:
            raise ValueError("Sheet name is an empty list")

        if ret_dict:
            return output
        else:
            return output[last_sheetname]


@doc(storage_options=_shared_docs["storage_options"])
class ExcelWriter(Generic[_WorkbookT]):
    """
    Class for writing DataFrame objects into excel sheets.

    Default is to use:

    * `xlsxwriter <https://pypi.org/project/XlsxWriter/>`__ for xlsx files if xlsxwriter
      is installed otherwise `openpyxl <https://pypi.org/project/openpyxl/>`__
    * `odswriter <https://pypi.org/project/odswriter/>`__ for ods files

    See ``DataFrame.to_excel`` for typical usage.

    The writer should be used as a context manager. Otherwise, call `close()` to save
    and close any opened file handles.

    Parameters
    ----------
    path : str or typing.BinaryIO
        Path to xls or xlsx or ods file.
    engine : str (optional)
        Engine to use for writing. If None, defaults to
        ``io.excel.<extension>.writer``.  NOTE: can only be passed as a keyword
        argument.
    date_format : str, default None
        Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
    datetime_format : str, default None
        Format string for datetime objects written into Excel files.
        (e.g. 'YYYY-MM-DD HH:MM:SS').
    mode : {{'w', 'a'}}, default 'w'
        File mode to use (write or append). Append does not work with fsspec URLs.
    {storage_options}

    if_sheet_exists : {{'error', 'new', 'replace', 'overlay'}}, default 'error'
        How to behave when trying to write to a sheet that already
        exists (append mode only).

        * error: raise a ValueError.
        * new: Create a new sheet, with a name determined by the engine.
        * replace: Delete the contents of the sheet before writing to it.
        * overlay: Write contents to the existing sheet without first removing,
          but possibly over top of, the existing contents.

        .. versionadded:: 1.3.0

        .. versionchanged:: 1.4.0

           Added ``overlay`` option

    engine_kwargs : dict, optional
        Keyword arguments to be passed into the engine. These will be passed to
        the following functions of the respective engines:

        * xlsxwriter: ``xlsxwriter.Workbook(file, **engine_kwargs)``
        * openpyxl (write mode): ``openpyxl.Workbook(**engine_kwargs)``
        * openpyxl (append mode): ``openpyxl.load_workbook(file, **engine_kwargs)``
        * odswriter: ``odf.opendocument.OpenDocumentSpreadsheet(**engine_kwargs)``

        .. versionadded:: 1.3.0

    Notes
    -----
    For compatibility with CSV writers, ExcelWriter serializes lists
    and dicts to strings before writing.

    Examples
    --------
    Default usage:

    >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])  # doctest: +SKIP
    >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
    ...     df.to_excel(writer)  # doctest: +SKIP

    To write to separate sheets in a single file:

    >>> df1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"])  # doctest: +SKIP
    >>> df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])  # doctest: +SKIP
    >>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
    ...     df1.to_excel(writer, sheet_name="Sheet1")  # doctest: +SKIP
    ...     df2.to_excel(writer, sheet_name="Sheet2")  # doctest: +SKIP

    You can set the date format or datetime format:

    >>> from datetime import date, datetime  # doctest: +SKIP
    >>> df = pd.DataFrame(
    ...     [
    ...         [date(2014, 1, 31), date(1999, 9, 24)],
    ...         [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
    ...     ],
    ...     index=["Date", "Datetime"],
    ...     columns=["X", "Y"],
    ... )  # doctest: +SKIP
    >>> with pd.ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     date_format="YYYY-MM-DD",
    ...     datetime_format="YYYY-MM-DD HH:MM:SS"
    ... ) as writer:
    ...     df.to_excel(writer)  # doctest: +SKIP

    You can also append to an existing Excel file:

    >>> with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:
    ...     df.to_excel(writer, sheet_name="Sheet3")  # doctest: +SKIP

    Here, the `if_sheet_exists` parameter can be set to replace a sheet if it
    already exists:

    >>> with ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     mode="a",
    ...     engine="openpyxl",
    ...     if_sheet_exists="replace",
    ... ) as writer:
    ...     df.to_excel(writer, sheet_name="Sheet1")  # doctest: +SKIP

    You can also write multiple DataFrames to a single sheet. Note that the
    ``if_sheet_exists`` parameter needs to be set to ``overlay``:

    >>> with ExcelWriter("path_to_file.xlsx",
    ...     mode="a",
    ...     engine="openpyxl",
    ...     if_sheet_exists="overlay",
    ... ) as writer:
    ...     df1.to_excel(writer, sheet_name="Sheet1")
    ...     df2.to_excel(writer, sheet_name="Sheet1", startcol=3)  # doctest: +SKIP

    You can store Excel file in RAM:

    >>> import io
    >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
    >>> buffer = io.BytesIO()
    >>> with pd.ExcelWriter(buffer) as writer:
    ...     df.to_excel(writer)

    You can pack Excel file into zip archive:

    >>> import zipfile  # doctest: +SKIP
    >>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])  # doctest: +SKIP
    >>> with zipfile.ZipFile("path_to_file.zip", "w") as zf:
    ...     with zf.open("filename.xlsx", "w") as buffer:
    ...         with pd.ExcelWriter(buffer) as writer:
    ...             df.to_excel(writer)  # doctest: +SKIP

    You can specify additional arguments to the underlying engine:

    >>> with pd.ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     engine="xlsxwriter",
    ...     engine_kwargs={{"options": {{"nan_inf_to_errors": True}}}}
    ... ) as writer:
    ...     df.to_excel(writer)  # doctest: +SKIP

    In append mode, ``engine_kwargs`` are passed through to
    openpyxl's ``load_workbook``:

    >>> with pd.ExcelWriter(
    ...     "path_to_file.xlsx",
    ...     engine="openpyxl",
    ...     mode="a",
    ...     engine_kwargs={{"keep_vba": True}}
    ... ) as writer:
    ...     df.to_excel(writer, sheet_name="Sheet2")  # doctest: +SKIP
    """

    # Defining an ExcelWriter implementation (see abstract methods for more...)

    # - Mandatory
    #   - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)``
    #     --> called to write additional DataFrames to disk
    #   - ``_supported_extensions`` (tuple of supported extensions), used to
    #      check that engine supports the given extension.
    #   - ``_engine`` - string that gives the engine name. Necessary to
    #     instantiate class directly and bypass ``ExcelWriterMeta`` engine
    #     lookup.
    #   - ``save(self)`` --> called to save file to disk
    # - Mostly mandatory (i.e. should at least exist)
    #   - book, cur_sheet, path

    # - Optional:
    #   - ``__init__(self, path, engine=None, **kwargs)`` --> always called
    #     with path as first argument.

    # You also need to register the class with ``register_writer()``.
    # Technically, ExcelWriter implementations don't need to subclass
    # ExcelWriter.

    _engine: str
    _supported_extensions: tuple[str, ...]

    def __new__(
        cls,
        path: FilePath | WriteExcelBuffer | ExcelWriter,
        engine: str | None = None,
        date_format: str | None = None,
        datetime_format: str | None = None,
        mode: str = "w",
        storage_options: StorageOptions | None = None,
        if_sheet_exists: ExcelWriterIfSheetExists | None = None,
        engine_kwargs: dict | None = None,
    ) -> Self:
        # only switch class if generic(ExcelWriter)
        if cls is ExcelWriter:
            if engine is None or (isinstance(engine, str) and engine == "auto"):
                if isinstance(path, str):
                    ext = os.path.splitext(path)[-1][1:]
                else:
                    ext = "xlsx"

                try:
                    engine = config.get_option(f"io.excel.{ext}.writer", silent=True)
                    if engine == "auto":
                        engine = get_default_engine(ext, mode="writer")
                except KeyError as err:
                    raise ValueError(f"No engine for filetype: '{ext}'") from err

            # for mypy
            assert engine is not None
            #  error: Incompatible types in assignment (expression has type
            #  "type[ExcelWriter[Any]]", variable has type "type[Self]")
            cls = get_writer(engine)  # type: ignore[assignment]

        return object.__new__(cls)

    # declare external properties you can count on
    _path = None

    @property
    def supported_extensions(self) -> tuple[str, ...]:
        """Extensions that writer engine supports."""
        return self._supported_extensions

    @property
    def engine(self) -> str:
        """Name of engine."""
        return self._engine

    @property
    def sheets(self) -> dict[str, Any]:
        """Mapping of sheet names to sheet objects."""
        raise NotImplementedError

    @property
    def book(self) -> _WorkbookT:
        """
        Book instance. Class type will depend on the engine used.

        This attribute can be used to access engine-specific features.
        """
        raise NotImplementedError

    def _write_cells(
        self,
        cells,
        sheet_name: str | None = None,
        startrow: int = 0,
        startcol: int = 0,
        freeze_panes: tuple[int, int] | None = None,
    ) -> None:
        """
        Write given formatted cells into Excel an excel sheet

        Parameters
        ----------
        cells : generator
            cell of formatted data to save to Excel sheet
        sheet_name : str, default None
            Name of Excel sheet, if None, then use self.cur_sheet
        startrow : upper left cell row to dump data frame
        startcol : upper left cell column to dump data frame
        freeze_panes: int tuple of length 2
            contains the bottom-most row and right-most column to freeze
        """
        raise NotImplementedError

    def _save(self) -> None:
        """
        Save workbook to disk.
        """
        raise NotImplementedError

    def __init__(
        self,
        path: FilePath | WriteExcelBuffer | ExcelWriter,
        engine: str | None = None,
        date_format: str | None = None,
        datetime_format: str | None = None,
        mode: str = "w",
        storage_options: StorageOptions | None = None,
        if_sheet_exists: ExcelWriterIfSheetExists | None = None,
        engine_kwargs: dict[str, Any] | None = None,
    ) -> None:
        # validate that this engine can handle the extension
        if isinstance(path, str):
            ext = os.path.splitext(path)[-1]
            self.check_extension(ext)

        # use mode to open the file
        if "b" not in mode:
            mode += "b"
        # use "a" for the user to append data to excel but internally use "r+" to let
        # the excel backend first read the existing file and then write any data to it
        mode = mode.replace("a", "r+")

        if if_sheet_exists not in (None, "error", "new", "replace", "overlay"):
            raise ValueError(
                f"'{if_sheet_exists}' is not valid for if_sheet_exists. "
                "Valid options are 'error', 'new', 'replace' and 'overlay'."
            )
        if if_sheet_exists and "r+" not in mode:
            raise ValueError("if_sheet_exists is only valid in append mode (mode='a')")
        if if_sheet_exists is None:
            if_sheet_exists = "error"
        self._if_sheet_exists = if_sheet_exists

        # cast ExcelWriter to avoid adding 'if self._handles is not None'
        self._handles = IOHandles(
            cast(IO[bytes], path), compression={"compression": None}
        )
        if not isinstance(path, ExcelWriter):
            self._handles = get_handle(
                path, mode, storage_options=storage_options, is_text=False
            )
        self._cur_sheet = None

        if date_format is None:
            self._date_format = "YYYY-MM-DD"
        else:
            self._date_format = date_format
        if datetime_format is None:
            self._datetime_format = "YYYY-MM-DD HH:MM:SS"
        else:
            self._datetime_format = datetime_format

        self._mode = mode

    @property
    def date_format(self) -> str:
        """
        Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
        """
        return self._date_format

    @property
    def datetime_format(self) -> str:
        """
        Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
        """
        return self._datetime_format

    @property
    def if_sheet_exists(self) -> str:
        """
        How to behave when writing to a sheet that already exists in append mode.
        """
        return self._if_sheet_exists

    def __fspath__(self) -> str:
        return getattr(self._handles.handle, "name", "")

    def _get_sheet_name(self, sheet_name: str | None) -> str:
        if sheet_name is None:
            sheet_name = self._cur_sheet
        if sheet_name is None:  # pragma: no cover
            raise ValueError("Must pass explicit sheet_name or set _cur_sheet property")
        return sheet_name

    def _value_with_fmt(
        self, val
    ) -> tuple[
        int | float | bool | str | datetime.datetime | datetime.date, str | None
    ]:
        """
        Convert numpy types to Python types for the Excel writers.

        Parameters
        ----------
        val : object
            Value to be written into cells

        Returns
        -------
        Tuple with the first element being the converted value and the second
            being an optional format
        """
        fmt = None

        if is_integer(val):
            val = int(val)
        elif is_float(val):
            val = float(val)
        elif is_bool(val):
            val = bool(val)
        elif isinstance(val, datetime.datetime):
            fmt = self._datetime_format
        elif isinstance(val, datetime.date):
            fmt = self._date_format
        elif isinstance(val, datetime.timedelta):
            val = val.total_seconds() / 86400
            fmt = "0"
        else:
            val = str(val)

        return val, fmt

    @classmethod
    def check_extension(cls, ext: str) -> Literal[True]:
        """
        checks that path's extension against the Writer's supported
        extensions.  If it isn't supported, raises UnsupportedFiletypeError.
        """
        if ext.startswith("."):
            ext = ext[1:]
        if not any(ext in extension for extension in cls._supported_extensions):
            raise ValueError(f"Invalid extension for engine '{cls.engine}': '{ext}'")
        return True

    # Allow use as a contextmanager
    def __enter__(self) -> Self:
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_value: BaseException | None,
        traceback: TracebackType | None,
    ) -> None:
        self.close()

    def close(self) -> None:
        """synonym for save, to make it more file-like"""
        self._save()
        self._handles.close()


XLS_SIGNATURES = (
    b"\x09\x00\x04\x00\x07\x00\x10\x00",  # BIFF2
    b"\x09\x02\x06\x00\x00\x00\x10\x00",  # BIFF3
    b"\x09\x04\x06\x00\x00\x00\x10\x00",  # BIFF4
    b"\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1",  # Compound File Binary
)
ZIP_SIGNATURE = b"PK\x03\x04"
PEEK_SIZE = max(map(len, XLS_SIGNATURES + (ZIP_SIGNATURE,)))


@doc(storage_options=_shared_docs["storage_options"])
def inspect_excel_format(
    content_or_path: FilePath | ReadBuffer[bytes],
    storage_options: StorageOptions | None = None,
) -> str | None:
    """
    Inspect the path or content of an excel file and get its format.

    Adopted from xlrd: https://github.com/python-excel/xlrd.

    Parameters
    ----------
    content_or_path : str or file-like object
        Path to file or content of file to inspect. May be a URL.
    {storage_options}

    Returns
    -------
    str or None
        Format of file if it can be determined.

    Raises
    ------
    ValueError
        If resulting stream is empty.
    BadZipFile
        If resulting stream does not have an XLS signature and is not a valid zipfile.
    """
    if isinstance(content_or_path, bytes):
        content_or_path = BytesIO(content_or_path)

    with get_handle(
        content_or_path, "rb", storage_options=storage_options, is_text=False
    ) as handle:
        stream = handle.handle
        stream.seek(0)
        buf = stream.read(PEEK_SIZE)
        if buf is None:
            raise ValueError("stream is empty")
        assert isinstance(buf, bytes)
        peek = buf
        stream.seek(0)

        if any(peek.startswith(sig) for sig in XLS_SIGNATURES):
            return "xls"
        elif not peek.startswith(ZIP_SIGNATURE):
            return None

        with zipfile.ZipFile(stream) as zf:
            # Workaround for some third party files that use forward slashes and
            # lower case names.
            component_names = [
                name.replace("\\", "/").lower() for name in zf.namelist()
            ]

        if "xl/workbook.xml" in component_names:
            return "xlsx"
        if "xl/workbook.bin" in component_names:
            return "xlsb"
        if "content.xml" in component_names:
            return "ods"
        return "zip"


class ExcelFile:
    """
    Class for parsing tabular Excel sheets into DataFrame objects.

    See read_excel for more documentation.

    Parameters
    ----------
    path_or_buffer : str, bytes, path object (pathlib.Path or py._path.local.LocalPath),
        A file-like object, xlrd workbook or openpyxl workbook.
        If a string or path object, expected to be a path to a
        .xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file.
    engine : str, default None
        If io is not a buffer or path, this must be set to identify io.
        Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``, ``calamine``
        Engine compatibility :

        - ``xlrd`` supports old-style Excel files (.xls).
        - ``openpyxl`` supports newer Excel file formats.
        - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
        - ``pyxlsb`` supports Binary Excel files.
        - ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb)
          and OpenDocument (.ods) file formats.

        .. versionchanged:: 1.2.0

           The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
           now only supports old-style ``.xls`` files.
           When ``engine=None``, the following logic will be
           used to determine the engine:

           - If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
             then `odf <https://pypi.org/project/odfpy/>`_ will be used.
           - Otherwise if ``path_or_buffer`` is an xls format,
             ``xlrd`` will be used.
           - Otherwise if ``path_or_buffer`` is in xlsb format,
             `pyxlsb <https://pypi.org/project/pyxlsb/>`_ will be used.

           .. versionadded:: 1.3.0

           - Otherwise if `openpyxl <https://pypi.org/project/openpyxl/>`_ is installed,
             then ``openpyxl`` will be used.
           - Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised.

           .. warning::

            Please do not report issues when using ``xlrd`` to read ``.xlsx`` files.
            This is not supported, switch to using ``openpyxl`` instead.
    engine_kwargs : dict, optional
        Arbitrary keyword arguments passed to excel engine.

    Examples
    --------
    >>> file = pd.ExcelFile('myfile.xlsx')  # doctest: +SKIP
    >>> with pd.ExcelFile("myfile.xls") as xls:  # doctest: +SKIP
    ...     df1 = pd.read_excel(xls, "Sheet1")  # doctest: +SKIP
    """

    from pandas.io.excel._calamine import CalamineReader
    from pandas.io.excel._odfreader import ODFReader
    from pandas.io.excel._openpyxl import OpenpyxlReader
    from pandas.io.excel._pyxlsb import PyxlsbReader
    from pandas.io.excel._xlrd import XlrdReader

    _engines: Mapping[str, Any] = {
        "xlrd": XlrdReader,
        "openpyxl": OpenpyxlReader,
        "odf": ODFReader,
        "pyxlsb": PyxlsbReader,
        "calamine": CalamineReader,
    }

    def __init__(
        self,
        path_or_buffer,
        engine: str | None = None,
        storage_options: StorageOptions | None = None,
        engine_kwargs: dict | None = None,
    ) -> None:
        if engine_kwargs is None:
            engine_kwargs = {}

        if engine is not None and engine not in self._engines:
            raise ValueError(f"Unknown engine: {engine}")

        # First argument can also be bytes, so create a buffer
        if isinstance(path_or_buffer, bytes):
            path_or_buffer = BytesIO(path_or_buffer)
            warnings.warn(
                "Passing bytes to 'read_excel' is deprecated and "
                "will be removed in a future version. To read from a "
                "byte string, wrap it in a `BytesIO` object.",
                FutureWarning,
                stacklevel=find_stack_level(),
            )

        # Could be a str, ExcelFile, Book, etc.
        self.io = path_or_buffer
        # Always a string
        self._io = stringify_path(path_or_buffer)

        # Determine xlrd version if installed
        if import_optional_dependency("xlrd", errors="ignore") is None:
            xlrd_version = None
        else:
            import xlrd

            xlrd_version = Version(get_version(xlrd))

        if engine is None:
            # Only determine ext if it is needed
            ext: str | None
            if xlrd_version is not None and isinstance(path_or_buffer, xlrd.Book):
                ext = "xls"
            else:
                ext = inspect_excel_format(
                    content_or_path=path_or_buffer, storage_options=storage_options
                )
                if ext is None:
                    raise ValueError(
                        "Excel file format cannot be determined, you must specify "
                        "an engine manually."
                    )

            engine = config.get_option(f"io.excel.{ext}.reader", silent=True)
            if engine == "auto":
                engine = get_default_engine(ext, mode="reader")

        assert engine is not None
        self.engine = engine
        self.storage_options = storage_options

        self._reader = self._engines[engine](
            self._io,
            storage_options=storage_options,
            engine_kwargs=engine_kwargs,
        )

    def __fspath__(self):
        return self._io

    def parse(
        self,
        sheet_name: str | int | list[int] | list[str] | None = 0,
        header: int | Sequence[int] | None = 0,
        names: SequenceNotStr[Hashable] | range | None = None,
        index_col: int | Sequence[int] | None = None,
        usecols=None,
        converters=None,
        true_values: Iterable[Hashable] | None = None,
        false_values: Iterable[Hashable] | None = None,
        skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
        nrows: int | None = None,
        na_values=None,
        parse_dates: list | dict | bool = False,
        date_parser: Callable | lib.NoDefault = lib.no_default,
        date_format: str | dict[Hashable, str] | None = None,
        thousands: str | None = None,
        comment: str | None = None,
        skipfooter: int = 0,
        dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
        **kwds,
    ) -> DataFrame | dict[str, DataFrame] | dict[int, DataFrame]:
        """
        Parse specified sheet(s) into a DataFrame.

        Equivalent to read_excel(ExcelFile, ...)  See the read_excel
        docstring for more info on accepted parameters.

        Returns
        -------
        DataFrame or dict of DataFrames
            DataFrame from the passed in Excel file.

        Examples
        --------
        >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
        >>> df.to_excel('myfile.xlsx')  # doctest: +SKIP
        >>> file = pd.ExcelFile('myfile.xlsx')  # doctest: +SKIP
        >>> file.parse()  # doctest: +SKIP
        """
        return self._reader.parse(
            sheet_name=sheet_name,
            header=header,
            names=names,
            index_col=index_col,
            usecols=usecols,
            converters=converters,
            true_values=true_values,
            false_values=false_values,
            skiprows=skiprows,
            nrows=nrows,
            na_values=na_values,
            parse_dates=parse_dates,
            date_parser=date_parser,
            date_format=date_format,
            thousands=thousands,
            comment=comment,
            skipfooter=skipfooter,
            dtype_backend=dtype_backend,
            **kwds,
        )

    @property
    def book(self):
        return self._reader.book

    @property
    def sheet_names(self):
        return self._reader.sheet_names

    def close(self) -> None:
        """close io if necessary"""
        self._reader.close()

    def __enter__(self) -> Self:
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_value: BaseException | None,
        traceback: TracebackType | None,
    ) -> None:
        self.close()