File size: 77,453 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 |
"""
Test the parallel module.
"""
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Copyright (c) 2010-2011 Gael Varoquaux
# License: BSD Style, 3 clauses.
import mmap
import os
import re
import sys
import threading
import time
import warnings
import weakref
from contextlib import nullcontext
from math import sqrt
from multiprocessing import TimeoutError
from pickle import PicklingError
from time import sleep
from traceback import format_exception
import pytest
import joblib
from joblib import dump, load, parallel
from joblib._multiprocessing_helpers import mp
from joblib.test.common import (
IS_GIL_DISABLED,
np,
with_multiprocessing,
with_numpy,
)
from joblib.testing import check_subprocess_call, parametrize, raises, skipif, warns
if mp is not None:
# Loky is not available if multiprocessing is not
from joblib.externals.loky import get_reusable_executor
from queue import Queue
try:
import posix
except ImportError:
posix = None
try:
from ._openmp_test_helper.parallel_sum import parallel_sum
except ImportError:
parallel_sum = None
try:
import distributed
except ImportError:
distributed = None
from joblib._parallel_backends import (
LokyBackend,
MultiprocessingBackend,
ParallelBackendBase,
SequentialBackend,
ThreadingBackend,
)
from joblib.parallel import (
BACKENDS,
Parallel,
cpu_count,
delayed,
effective_n_jobs,
mp,
parallel_backend,
parallel_config,
register_parallel_backend,
)
RETURN_GENERATOR_BACKENDS = BACKENDS.copy()
RETURN_GENERATOR_BACKENDS.pop("multiprocessing", None)
ALL_VALID_BACKENDS = [None] + sorted(BACKENDS.keys())
# Add instances of backend classes deriving from ParallelBackendBase
ALL_VALID_BACKENDS += [BACKENDS[backend_str]() for backend_str in BACKENDS]
if mp is None:
PROCESS_BACKENDS = []
else:
PROCESS_BACKENDS = ["multiprocessing", "loky"]
PARALLEL_BACKENDS = PROCESS_BACKENDS + ["threading"]
if hasattr(mp, "get_context"):
# Custom multiprocessing context in Python 3.4+
ALL_VALID_BACKENDS.append(mp.get_context("spawn"))
def get_default_backend_instance():
# The default backend can be changed before running the tests through
# JOBLIB_DEFAULT_PARALLEL_BACKEND environment variable so we need to use
# parallel.DEFAULT_BACKEND here and not
# from joblib.parallel import DEFAULT_BACKEND
return BACKENDS[parallel.DEFAULT_BACKEND]
def get_workers(backend):
return getattr(backend, "_pool", getattr(backend, "_workers", None))
def division(x, y):
return x / y
def square(x):
return x**2
class MyExceptionWithFinickyInit(Exception):
"""An exception class with non trivial __init__"""
def __init__(self, a, b, c, d):
pass
def exception_raiser(x, custom_exception=False):
if x == 7:
raise (
MyExceptionWithFinickyInit("a", "b", "c", "d")
if custom_exception
else ValueError
)
return x
def interrupt_raiser(x):
time.sleep(0.05)
raise KeyboardInterrupt
def f(x, y=0, z=0):
"""A module-level function so that it can be spawn with
multiprocessing.
"""
return x**2 + y + z
def _active_backend_type():
return type(parallel.get_active_backend()[0])
def parallel_func(inner_n_jobs, backend):
return Parallel(n_jobs=inner_n_jobs, backend=backend)(
delayed(square)(i) for i in range(3)
)
###############################################################################
def test_cpu_count():
assert cpu_count() > 0
def test_effective_n_jobs():
assert effective_n_jobs() > 0
@parametrize("context", [parallel_config, parallel_backend])
@pytest.mark.parametrize(
"backend_n_jobs, expected_n_jobs",
[(3, 3), (-1, effective_n_jobs(n_jobs=-1)), (None, 1)],
ids=["positive-int", "negative-int", "None"],
)
@with_multiprocessing
def test_effective_n_jobs_None(context, backend_n_jobs, expected_n_jobs):
# check the number of effective jobs when `n_jobs=None`
# non-regression test for https://github.com/joblib/joblib/issues/984
with context("threading", n_jobs=backend_n_jobs):
# when using a backend, the default of number jobs will be the one set
# in the backend
assert effective_n_jobs(n_jobs=None) == expected_n_jobs
# without any backend, None will default to a single job
assert effective_n_jobs(n_jobs=None) == 1
###############################################################################
# Test parallel
@parametrize("backend", ALL_VALID_BACKENDS)
@parametrize("n_jobs", [1, 2, -1, -2])
@parametrize("verbose", [2, 11, 100])
def test_simple_parallel(backend, n_jobs, verbose):
assert [square(x) for x in range(5)] == Parallel(
n_jobs=n_jobs, backend=backend, verbose=verbose
)(delayed(square)(x) for x in range(5))
@parametrize("backend", ALL_VALID_BACKENDS)
@parametrize("n_jobs", [1, 2])
def test_parallel_pretty_print(backend, n_jobs):
n_tasks = 100
pattern = re.compile(r"(Done\s+\d+ out of \d+ \|)")
class ParallelLog(Parallel):
messages = []
def _print(self, msg):
self.messages.append(msg)
executor = ParallelLog(n_jobs=n_jobs, backend=backend, verbose=10000)
executor([delayed(f)(i) for i in range(n_tasks)])
lens = set()
for message in executor.messages:
if s := pattern.search(message):
a, b = s.span()
lens.add(b - a)
assert len(lens) == 1
@parametrize("backend", ALL_VALID_BACKENDS)
def test_main_thread_renamed_no_warning(backend, monkeypatch):
# Check that no default backend relies on the name of the main thread:
# https://github.com/joblib/joblib/issues/180#issuecomment-253266247
# Some programs use a different name for the main thread. This is the case
# for uWSGI apps for instance.
monkeypatch.setattr(
target=threading.current_thread(),
name="name",
value="some_new_name_for_the_main_thread",
)
with warnings.catch_warnings(record=True) as warninfo:
results = Parallel(n_jobs=2, backend=backend)(
delayed(square)(x) for x in range(3)
)
assert results == [0, 1, 4]
# Due to the default parameters of LokyBackend, there is a chance that
# warninfo catches Warnings from worker timeouts. We remove it if it exists
# We also remove DeprecationWarnings which could lead to false negatives.
warninfo = [
w
for w in warninfo
if "worker timeout" not in str(w.message)
and not isinstance(w.message, DeprecationWarning)
]
# Under Python 3.13 if backend='multiprocessing', you will get a
# warning saying that forking a multi-threaded process is not a good idea,
# we ignore them in this test
if backend in [None, "multiprocessing"] or isinstance(
backend, MultiprocessingBackend
):
message_part = "multi-threaded, use of fork() may lead to deadlocks"
warninfo = [w for w in warninfo if message_part not in str(w.message)]
# The multiprocessing backend will raise a warning when detecting that is
# started from the non-main thread. Let's check that there is no false
# positive because of the name change.
assert len(warninfo) == 0
def _assert_warning_nested(backend, inner_n_jobs, expected):
with warnings.catch_warnings(record=True) as warninfo:
warnings.simplefilter("always")
parallel_func(backend=backend, inner_n_jobs=inner_n_jobs)
warninfo = [w.message for w in warninfo]
if expected:
if warninfo:
warnings_are_correct = all(
"backed parallel loops cannot" in each.args[0] for each in warninfo
)
# With free-threaded Python, when the outer backend is threading,
# we might see more that one warning
warnings_have_the_right_length = (
len(warninfo) >= 1 if IS_GIL_DISABLED else len(warninfo) == 1
)
return warnings_are_correct and warnings_have_the_right_length
return False
else:
assert not warninfo
return True
@with_multiprocessing
@parametrize(
"parent_backend,child_backend,expected",
[
("loky", "multiprocessing", True),
("loky", "loky", False),
("multiprocessing", "multiprocessing", True),
("multiprocessing", "loky", True),
("threading", "multiprocessing", True),
("threading", "loky", True),
],
)
def test_nested_parallel_warnings(parent_backend, child_backend, expected):
# no warnings if inner_n_jobs=1
Parallel(n_jobs=2, backend=parent_backend)(
delayed(_assert_warning_nested)(
backend=child_backend, inner_n_jobs=1, expected=False
)
for _ in range(5)
)
# warnings if inner_n_jobs != 1 and expected
res = Parallel(n_jobs=2, backend=parent_backend)(
delayed(_assert_warning_nested)(
backend=child_backend, inner_n_jobs=2, expected=expected
)
for _ in range(5)
)
# warning handling is not thread safe. One thread might see multiple
# warning or no warning at all.
if parent_backend == "threading":
assert any(res)
else:
assert all(res)
@with_multiprocessing
@parametrize("backend", ["loky", "multiprocessing", "threading"])
def test_background_thread_parallelism(backend):
is_run_parallel = [False]
def background_thread(is_run_parallel):
with warnings.catch_warnings(record=True) as warninfo:
Parallel(n_jobs=2)(delayed(sleep)(0.1) for _ in range(4))
print(len(warninfo))
is_run_parallel[0] = len(warninfo) == 0
t = threading.Thread(target=background_thread, args=(is_run_parallel,))
t.start()
t.join()
assert is_run_parallel[0]
def nested_loop(backend):
Parallel(n_jobs=2, backend=backend)(delayed(square)(0.01) for _ in range(2))
@parametrize("child_backend", BACKENDS)
@parametrize("parent_backend", BACKENDS)
def test_nested_loop(parent_backend, child_backend):
Parallel(n_jobs=2, backend=parent_backend)(
delayed(nested_loop)(child_backend) for _ in range(2)
)
def raise_exception(backend):
raise ValueError
@with_multiprocessing
def test_nested_loop_with_exception_with_loky():
with raises(ValueError):
with Parallel(n_jobs=2, backend="loky") as parallel:
parallel([delayed(nested_loop)("loky"), delayed(raise_exception)("loky")])
def test_mutate_input_with_threads():
"""Input is mutable when using the threading backend"""
q = Queue(maxsize=5)
Parallel(n_jobs=2, backend="threading")(delayed(q.put)(1) for _ in range(5))
assert q.full()
@parametrize("n_jobs", [1, 2, 3])
def test_parallel_kwargs(n_jobs):
"""Check the keyword argument processing of pmap."""
lst = range(10)
assert [f(x, y=1) for x in lst] == Parallel(n_jobs=n_jobs)(
delayed(f)(x, y=1) for x in lst
)
@parametrize("backend", PARALLEL_BACKENDS)
def test_parallel_as_context_manager(backend):
lst = range(10)
expected = [f(x, y=1) for x in lst]
with Parallel(n_jobs=4, backend=backend) as p:
# Internally a pool instance has been eagerly created and is managed
# via the context manager protocol
managed_backend = p._backend
# We make call with the managed parallel object several times inside
# the managed block:
assert expected == p(delayed(f)(x, y=1) for x in lst)
assert expected == p(delayed(f)(x, y=1) for x in lst)
# Those calls have all used the same pool instance:
if mp is not None:
assert get_workers(managed_backend) is get_workers(p._backend)
# As soon as we exit the context manager block, the pool is terminated and
# no longer referenced from the parallel object:
if mp is not None:
assert get_workers(p._backend) is None
# It's still possible to use the parallel instance in non-managed mode:
assert expected == p(delayed(f)(x, y=1) for x in lst)
if mp is not None:
assert get_workers(p._backend) is None
@with_multiprocessing
def test_parallel_pickling():
"""Check that pmap captures the errors when it is passed an object
that cannot be pickled.
"""
class UnpicklableObject(object):
def __reduce__(self):
raise RuntimeError("123")
with raises(PicklingError, match=r"the task to send"):
Parallel(n_jobs=2, backend="loky")(
delayed(id)(UnpicklableObject()) for _ in range(10)
)
@with_numpy
@with_multiprocessing
@parametrize("byteorder", ["<", ">", "="])
@parametrize("max_nbytes", [1, "1M"])
def test_parallel_byteorder_corruption(byteorder, max_nbytes):
def inspect_byteorder(x):
return x, x.dtype.byteorder
x = np.arange(6).reshape((2, 3)).view(f"{byteorder}i4")
initial_np_byteorder = x.dtype.byteorder
result = Parallel(n_jobs=2, backend="loky", max_nbytes=max_nbytes)(
delayed(inspect_byteorder)(x) for _ in range(3)
)
for x_returned, byteorder_in_worker in result:
assert byteorder_in_worker == initial_np_byteorder
assert byteorder_in_worker == x_returned.dtype.byteorder
np.testing.assert_array_equal(x, x_returned)
@parametrize("backend", PARALLEL_BACKENDS)
def test_parallel_timeout_success(backend):
# Check that timeout isn't thrown when function is fast enough
assert (
len(
Parallel(n_jobs=2, backend=backend, timeout=30)(
delayed(sleep)(0.001) for x in range(10)
)
)
== 10
)
@with_multiprocessing
@parametrize("backend", PARALLEL_BACKENDS)
def test_parallel_timeout_fail(backend):
# Check that timeout properly fails when function is too slow
with raises(TimeoutError):
Parallel(n_jobs=2, backend=backend, timeout=0.01)(
delayed(sleep)(10) for x in range(10)
)
@with_multiprocessing
@parametrize("backend", set(RETURN_GENERATOR_BACKENDS) - {"sequential"})
@parametrize("return_as", ["generator", "generator_unordered"])
def test_parallel_timeout_fail_with_generator(backend, return_as):
# Check that timeout properly fails when function is too slow with
# return_as=generator
with raises(TimeoutError):
list(
Parallel(n_jobs=2, backend=backend, return_as=return_as, timeout=0.1)(
delayed(sleep)(10) for x in range(10)
)
)
# Fast tasks and high timeout should not raise
list(
Parallel(n_jobs=2, backend=backend, return_as=return_as, timeout=10)(
delayed(sleep)(0.01) for x in range(10)
)
)
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS)
def test_error_capture(backend):
# Check that error are captured, and that correct exceptions
# are raised.
if mp is not None:
with raises(ZeroDivisionError):
Parallel(n_jobs=2, backend=backend)(
[delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))]
)
with raises(KeyboardInterrupt):
Parallel(n_jobs=2, backend=backend)(
[delayed(interrupt_raiser)(x) for x in (1, 0)]
)
# Try again with the context manager API
with Parallel(n_jobs=2, backend=backend) as parallel:
assert get_workers(parallel._backend) is not None
original_workers = get_workers(parallel._backend)
with raises(ZeroDivisionError):
parallel([delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))])
# The managed pool should still be available and be in a working
# state despite the previously raised (and caught) exception
assert get_workers(parallel._backend) is not None
# The pool should have been interrupted and restarted:
assert get_workers(parallel._backend) is not original_workers
assert [f(x, y=1) for x in range(10)] == parallel(
delayed(f)(x, y=1) for x in range(10)
)
original_workers = get_workers(parallel._backend)
with raises(KeyboardInterrupt):
parallel([delayed(interrupt_raiser)(x) for x in (1, 0)])
# The pool should still be available despite the exception
assert get_workers(parallel._backend) is not None
# The pool should have been interrupted and restarted:
assert get_workers(parallel._backend) is not original_workers
assert [f(x, y=1) for x in range(10)] == parallel(
delayed(f)(x, y=1) for x in range(10)
), (
parallel._iterating,
parallel.n_completed_tasks,
parallel.n_dispatched_tasks,
parallel._aborting,
)
# Check that the inner pool has been terminated when exiting the
# context manager
assert get_workers(parallel._backend) is None
else:
with raises(KeyboardInterrupt):
Parallel(n_jobs=2)([delayed(interrupt_raiser)(x) for x in (1, 0)])
# wrapped exceptions should inherit from the class of the original
# exception to make it easy to catch them
with raises(ZeroDivisionError):
Parallel(n_jobs=2)([delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))])
with raises(MyExceptionWithFinickyInit):
Parallel(n_jobs=2, verbose=0)(
(delayed(exception_raiser)(i, custom_exception=True) for i in range(30))
)
@with_multiprocessing
@parametrize("backend", BACKENDS)
def test_error_in_task_iterator(backend):
def my_generator(raise_at=0):
for i in range(20):
if i == raise_at:
raise ValueError("Iterator Raising Error")
yield i
with Parallel(n_jobs=2, backend=backend) as p:
# The error is raised in the pre-dispatch phase
with raises(ValueError, match="Iterator Raising Error"):
p(delayed(square)(i) for i in my_generator(raise_at=0))
# The error is raised when dispatching a new task after the
# pre-dispatch (likely to happen in a different thread)
with raises(ValueError, match="Iterator Raising Error"):
p(delayed(square)(i) for i in my_generator(raise_at=5))
# Same, but raises long after the pre-dispatch phase
with raises(ValueError, match="Iterator Raising Error"):
p(delayed(square)(i) for i in my_generator(raise_at=19))
def consumer(queue, item):
queue.append("Consumed %s" % item)
@parametrize("backend", BACKENDS)
@parametrize(
"batch_size, expected_queue",
[
(
1,
[
"Produced 0",
"Consumed 0",
"Produced 1",
"Consumed 1",
"Produced 2",
"Consumed 2",
"Produced 3",
"Consumed 3",
"Produced 4",
"Consumed 4",
"Produced 5",
"Consumed 5",
],
),
(
4,
[ # First Batch
"Produced 0",
"Produced 1",
"Produced 2",
"Produced 3",
"Consumed 0",
"Consumed 1",
"Consumed 2",
"Consumed 3",
# Second batch
"Produced 4",
"Produced 5",
"Consumed 4",
"Consumed 5",
],
),
],
)
def test_dispatch_one_job(backend, batch_size, expected_queue):
"""Test that with only one job, Parallel does act as a iterator."""
queue = list()
def producer():
for i in range(6):
queue.append("Produced %i" % i)
yield i
Parallel(n_jobs=1, batch_size=batch_size, backend=backend)(
delayed(consumer)(queue, x) for x in producer()
)
assert queue == expected_queue
assert len(queue) == 12
@with_multiprocessing
@parametrize("backend", PARALLEL_BACKENDS)
def test_dispatch_multiprocessing(backend):
"""Check that using pre_dispatch Parallel does indeed dispatch items
lazily.
"""
manager = mp.Manager()
queue = manager.list()
def producer():
for i in range(6):
queue.append("Produced %i" % i)
yield i
Parallel(n_jobs=2, batch_size=1, pre_dispatch=3, backend=backend)(
delayed(consumer)(queue, "any") for _ in producer()
)
queue_contents = list(queue)
assert queue_contents[0] == "Produced 0"
# Only 3 tasks are pre-dispatched out of 6. The 4th task is dispatched only
# after any of the first 3 jobs have completed.
first_consumption_index = queue_contents[:4].index("Consumed any")
assert first_consumption_index > -1
produced_3_index = queue_contents.index("Produced 3") # 4th task produced
assert produced_3_index > first_consumption_index
assert len(queue) == 12
def test_batching_auto_threading():
# batching='auto' with the threading backend leaves the effective batch
# size to 1 (no batching) as it has been found to never be beneficial with
# this low-overhead backend.
with Parallel(n_jobs=2, batch_size="auto", backend="threading") as p:
p(delayed(id)(i) for i in range(5000)) # many very fast tasks
assert p._backend.compute_batch_size() == 1
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS)
def test_batching_auto_subprocesses(backend):
with Parallel(n_jobs=2, batch_size="auto", backend=backend) as p:
p(delayed(id)(i) for i in range(5000)) # many very fast tasks
# It should be strictly larger than 1 but as we don't want heisen
# failures on clogged CI worker environment be safe and only check that
# it's a strictly positive number.
assert p._backend.compute_batch_size() > 0
def test_exception_dispatch():
"""Make sure that exception raised during dispatch are indeed captured"""
with raises(ValueError):
Parallel(n_jobs=2, pre_dispatch=16, verbose=0)(
delayed(exception_raiser)(i) for i in range(30)
)
def nested_function_inner(i):
Parallel(n_jobs=2)(delayed(exception_raiser)(j) for j in range(30))
def nested_function_outer(i):
Parallel(n_jobs=2)(delayed(nested_function_inner)(j) for j in range(30))
@with_multiprocessing
@parametrize("backend", PARALLEL_BACKENDS)
@pytest.mark.xfail(reason="https://github.com/joblib/loky/pull/255")
def test_nested_exception_dispatch(backend):
"""Ensure errors for nested joblib cases gets propagated
We rely on the Python 3 built-in __cause__ system that already
report this kind of information to the user.
"""
with raises(ValueError) as excinfo:
Parallel(n_jobs=2, backend=backend)(
delayed(nested_function_outer)(i) for i in range(30)
)
# Check that important information such as function names are visible
# in the final error message reported to the user
report_lines = format_exception(excinfo.type, excinfo.value, excinfo.tb)
report = "".join(report_lines)
assert "nested_function_outer" in report
assert "nested_function_inner" in report
assert "exception_raiser" in report
assert type(excinfo.value) is ValueError
class FakeParallelBackend(SequentialBackend):
"""Pretends to run concurrently while running sequentially."""
def configure(self, n_jobs=1, parallel=None, **backend_args):
self.n_jobs = self.effective_n_jobs(n_jobs)
self.parallel = parallel
return n_jobs
def effective_n_jobs(self, n_jobs=1):
if n_jobs < 0:
n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1)
return n_jobs
def test_invalid_backend():
with raises(ValueError, match="Invalid backend:"):
Parallel(backend="unit-testing")
with raises(ValueError, match="Invalid backend:"):
with parallel_config(backend="unit-testing"):
pass
with raises(ValueError, match="Invalid backend:"):
with parallel_config(backend="unit-testing"):
pass
@parametrize("backend", ALL_VALID_BACKENDS)
def test_invalid_njobs(backend):
with raises(ValueError) as excinfo:
Parallel(n_jobs=0, backend=backend)._initialize_backend()
assert "n_jobs == 0 in Parallel has no meaning" in str(excinfo.value)
with raises(ValueError) as excinfo:
Parallel(n_jobs=0.5, backend=backend)._initialize_backend()
assert "n_jobs == 0 in Parallel has no meaning" in str(excinfo.value)
with raises(ValueError) as excinfo:
Parallel(n_jobs="2.3", backend=backend)._initialize_backend()
assert "n_jobs could not be converted to int" in str(excinfo.value)
with raises(ValueError) as excinfo:
Parallel(n_jobs="invalid_str", backend=backend)._initialize_backend()
assert "n_jobs could not be converted to int" in str(excinfo.value)
@with_multiprocessing
@parametrize("backend", PARALLEL_BACKENDS)
@parametrize("n_jobs", ["2", 2.3, 2])
def test_njobs_converted_to_int(backend, n_jobs):
p = Parallel(n_jobs=n_jobs, backend=backend)
assert p._effective_n_jobs() == 2
res = p(delayed(square)(i) for i in range(10))
assert all(r == square(i) for i, r in enumerate(res))
def test_register_parallel_backend():
try:
register_parallel_backend("test_backend", FakeParallelBackend)
assert "test_backend" in BACKENDS
assert BACKENDS["test_backend"] == FakeParallelBackend
finally:
del BACKENDS["test_backend"]
def test_overwrite_default_backend():
default_backend_orig = parallel.DEFAULT_BACKEND
assert _active_backend_type() == get_default_backend_instance()
try:
register_parallel_backend("threading", BACKENDS["threading"], make_default=True)
assert _active_backend_type() == ThreadingBackend
finally:
# Restore the global default manually
parallel.DEFAULT_BACKEND = default_backend_orig
assert _active_backend_type() == get_default_backend_instance()
@skipif(mp is not None, reason="Only without multiprocessing")
def test_backend_no_multiprocessing():
with warns(UserWarning, match="joblib backend '.*' is not available on.*"):
Parallel(backend="loky")(delayed(square)(i) for i in range(3))
# The below should now work without problems
with parallel_config(backend="loky"):
Parallel()(delayed(square)(i) for i in range(3))
def check_backend_context_manager(context, backend_name):
with context(backend_name, n_jobs=3):
active_backend, active_n_jobs = parallel.get_active_backend()
assert active_n_jobs == 3
assert effective_n_jobs(3) == 3
p = Parallel()
assert p.n_jobs == 3
if backend_name == "multiprocessing":
assert type(active_backend) is MultiprocessingBackend
assert type(p._backend) is MultiprocessingBackend
elif backend_name == "loky":
assert type(active_backend) is LokyBackend
assert type(p._backend) is LokyBackend
elif backend_name == "threading":
assert type(active_backend) is ThreadingBackend
assert type(p._backend) is ThreadingBackend
elif backend_name.startswith("test_"):
assert type(active_backend) is FakeParallelBackend
assert type(p._backend) is FakeParallelBackend
all_backends_for_context_manager = PARALLEL_BACKENDS[:]
all_backends_for_context_manager.extend(["test_backend_%d" % i for i in range(3)])
@with_multiprocessing
@parametrize("backend", all_backends_for_context_manager)
@parametrize("context", [parallel_backend, parallel_config])
def test_backend_context_manager(monkeypatch, backend, context):
if backend not in BACKENDS:
monkeypatch.setitem(BACKENDS, backend, FakeParallelBackend)
assert _active_backend_type() == get_default_backend_instance()
# check that this possible to switch parallel backends sequentially
check_backend_context_manager(context, backend)
# The default backend is restored
assert _active_backend_type() == get_default_backend_instance()
# Check that context manager switching is thread safe:
Parallel(n_jobs=2, backend="threading")(
delayed(check_backend_context_manager)(context, b)
for b in all_backends_for_context_manager
if not b
)
# The default backend is again restored
assert _active_backend_type() == get_default_backend_instance()
class ParameterizedParallelBackend(SequentialBackend):
"""Pretends to run conncurrently while running sequentially."""
def __init__(self, param=None):
if param is None:
raise ValueError("param should not be None")
self.param = param
@parametrize("context", [parallel_config, parallel_backend])
def test_parameterized_backend_context_manager(monkeypatch, context):
monkeypatch.setitem(BACKENDS, "param_backend", ParameterizedParallelBackend)
assert _active_backend_type() == get_default_backend_instance()
with context("param_backend", param=42, n_jobs=3):
active_backend, active_n_jobs = parallel.get_active_backend()
assert type(active_backend) is ParameterizedParallelBackend
assert active_backend.param == 42
assert active_n_jobs == 3
p = Parallel()
assert p.n_jobs == 3
assert p._backend is active_backend
results = p(delayed(sqrt)(i) for i in range(5))
assert results == [sqrt(i) for i in range(5)]
# The default backend is again restored
assert _active_backend_type() == get_default_backend_instance()
@parametrize("context", [parallel_config, parallel_backend])
def test_directly_parameterized_backend_context_manager(context):
assert _active_backend_type() == get_default_backend_instance()
# Check that it's possible to pass a backend instance directly,
# without registration
with context(ParameterizedParallelBackend(param=43), n_jobs=5):
active_backend, active_n_jobs = parallel.get_active_backend()
assert type(active_backend) is ParameterizedParallelBackend
assert active_backend.param == 43
assert active_n_jobs == 5
p = Parallel()
assert p.n_jobs == 5
assert p._backend is active_backend
results = p(delayed(sqrt)(i) for i in range(5))
assert results == [sqrt(i) for i in range(5)]
# The default backend is again restored
assert _active_backend_type() == get_default_backend_instance()
def sleep_and_return_pid():
sleep(0.1)
return os.getpid()
def get_nested_pids():
assert _active_backend_type() == ThreadingBackend
# Assert that the nested backend does not change the default number of
# jobs used in Parallel
assert Parallel()._effective_n_jobs() == 1
# Assert that the tasks are running only on one process
return Parallel(n_jobs=2)(delayed(sleep_and_return_pid)() for _ in range(2))
class MyBackend(joblib._parallel_backends.LokyBackend):
"""Backend to test backward compatibility with older backends"""
def get_nested_backend(
self,
):
# Older backends only return a backend, without n_jobs indications.
return super(MyBackend, self).get_nested_backend()[0]
register_parallel_backend("back_compat_backend", MyBackend)
@with_multiprocessing
@parametrize("backend", ["threading", "loky", "multiprocessing", "back_compat_backend"])
@parametrize("context", [parallel_config, parallel_backend])
def test_nested_backend_context_manager(context, backend):
# Check that by default, nested parallel calls will always use the
# ThreadingBackend
with context(backend):
pid_groups = Parallel(n_jobs=2)(delayed(get_nested_pids)() for _ in range(10))
for pid_group in pid_groups:
assert len(set(pid_group)) == 1
@with_multiprocessing
@parametrize("n_jobs", [2, -1, None])
@parametrize("backend", PARALLEL_BACKENDS)
@parametrize("context", [parallel_config, parallel_backend])
def test_nested_backend_in_sequential(backend, n_jobs, context):
# Check that by default, nested parallel calls will always use the
# ThreadingBackend
def check_nested_backend(expected_backend_type, expected_n_job):
# Assert that the sequential backend at top level, does not change the
# backend for nested calls.
assert _active_backend_type() == BACKENDS[expected_backend_type]
# Assert that the nested backend in SequentialBackend does not change
# the default number of jobs used in Parallel
expected_n_job = effective_n_jobs(expected_n_job)
assert Parallel()._effective_n_jobs() == expected_n_job
Parallel(n_jobs=1)(
delayed(check_nested_backend)(parallel.DEFAULT_BACKEND, 1) for _ in range(10)
)
with context(backend, n_jobs=n_jobs):
Parallel(n_jobs=1)(
delayed(check_nested_backend)(backend, n_jobs) for _ in range(10)
)
def check_nesting_level(context, inner_backend, expected_level):
with context(inner_backend) as ctx:
if context is parallel_config:
backend = ctx["backend"]
if context is parallel_backend:
backend = ctx[0]
assert backend.nesting_level == expected_level
@with_multiprocessing
@parametrize("outer_backend", PARALLEL_BACKENDS)
@parametrize("inner_backend", PARALLEL_BACKENDS)
@parametrize("context", [parallel_config, parallel_backend])
def test_backend_nesting_level(context, outer_backend, inner_backend):
# Check that the nesting level for the backend is correctly set
check_nesting_level(context, outer_backend, 0)
Parallel(n_jobs=2, backend=outer_backend)(
delayed(check_nesting_level)(context, inner_backend, 1) for _ in range(10)
)
with context(inner_backend, n_jobs=2):
Parallel()(
delayed(check_nesting_level)(context, inner_backend, 1) for _ in range(10)
)
@with_multiprocessing
@parametrize("context", [parallel_config, parallel_backend])
@parametrize("with_retrieve_callback", [True, False])
def test_retrieval_context(context, with_retrieve_callback):
import contextlib
class MyBackend(ThreadingBackend):
i = 0
supports_retrieve_callback = with_retrieve_callback
@contextlib.contextmanager
def retrieval_context(self):
self.i += 1
yield
register_parallel_backend("retrieval", MyBackend)
def nested_call(n):
return Parallel(n_jobs=2)(delayed(id)(i) for i in range(n))
with context("retrieval") as ctx:
Parallel(n_jobs=2)(delayed(nested_call)(i) for i in range(5))
if context is parallel_config:
assert ctx["backend"].i == 1
if context is parallel_backend:
assert ctx[0].i == 1
###############################################################################
# Test helpers
@parametrize("batch_size", [0, -1, 1.42])
def test_invalid_batch_size(batch_size):
with raises(ValueError):
Parallel(batch_size=batch_size)
@parametrize(
"n_tasks, n_jobs, pre_dispatch, batch_size",
[
(2, 2, "all", "auto"),
(2, 2, "n_jobs", "auto"),
(10, 2, "n_jobs", "auto"),
(517, 2, "n_jobs", "auto"),
(10, 2, "n_jobs", "auto"),
(10, 4, "n_jobs", "auto"),
(200, 12, "n_jobs", "auto"),
(25, 12, "2 * n_jobs", 1),
(250, 12, "all", 1),
(250, 12, "2 * n_jobs", 7),
(200, 12, "2 * n_jobs", "auto"),
],
)
def test_dispatch_race_condition(n_tasks, n_jobs, pre_dispatch, batch_size):
# Check that using (async-)dispatch does not yield a race condition on the
# iterable generator that is not thread-safe natively.
# This is a non-regression test for the "Pool seems closed" class of error
params = {"n_jobs": n_jobs, "pre_dispatch": pre_dispatch, "batch_size": batch_size}
expected = [square(i) for i in range(n_tasks)]
results = Parallel(**params)(delayed(square)(i) for i in range(n_tasks))
assert results == expected
@with_multiprocessing
def test_default_mp_context():
mp_start_method = mp.get_start_method()
p = Parallel(n_jobs=2, backend="multiprocessing")
context = p._backend_kwargs.get("context")
start_method = context.get_start_method()
assert start_method == mp_start_method
@with_numpy
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS)
def test_no_blas_crash_or_freeze_with_subprocesses(backend):
if backend == "multiprocessing":
# Use the spawn backend that is both robust and available on all
# platforms
backend = mp.get_context("spawn")
# Check that on recent Python version, the 'spawn' start method can make
# it possible to use multiprocessing in conjunction of any BLAS
# implementation that happens to be used by numpy with causing a freeze or
# a crash
rng = np.random.RandomState(42)
# call BLAS DGEMM to force the initialization of the internal thread-pool
# in the main process
a = rng.randn(1000, 1000)
np.dot(a, a.T)
# check that the internal BLAS thread-pool is not in an inconsistent state
# in the worker processes managed by multiprocessing
Parallel(n_jobs=2, backend=backend)(delayed(np.dot)(a, a.T) for i in range(2))
UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN = """\
from joblib import Parallel, delayed
def square(x):
return x ** 2
backend = "{}"
if backend == "spawn":
from multiprocessing import get_context
backend = get_context(backend)
print(Parallel(n_jobs=2, backend=backend)(
delayed(square)(i) for i in range(5)))
"""
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS)
def test_parallel_with_interactively_defined_functions(backend):
# When using the "-c" flag, interactive functions defined in __main__
# should work with any backend.
if backend == "multiprocessing" and mp.get_start_method() != "fork":
pytest.skip(
"Require fork start method to use interactively defined "
"functions with multiprocessing."
)
code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN.format(backend)
check_subprocess_call(
[sys.executable, "-c", code], timeout=10, stdout_regex=r"\[0, 1, 4, 9, 16\]"
)
UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN = """\
import sys
# Make sure that joblib is importable in the subprocess launching this
# script. This is needed in case we run the tests from the joblib root
# folder without having installed joblib
sys.path.insert(0, {joblib_root_folder!r})
from joblib import Parallel, delayed
def run(f, x):
return f(x)
{define_func}
if __name__ == "__main__":
backend = "{backend}"
if backend == "spawn":
from multiprocessing import get_context
backend = get_context(backend)
callable_position = "{callable_position}"
if callable_position == "delayed":
print(Parallel(n_jobs=2, backend=backend)(
delayed(square)(i) for i in range(5)))
elif callable_position == "args":
print(Parallel(n_jobs=2, backend=backend)(
delayed(run)(square, i) for i in range(5)))
else:
print(Parallel(n_jobs=2, backend=backend)(
delayed(run)(f=square, x=i) for i in range(5)))
"""
SQUARE_MAIN = """\
def square(x):
return x ** 2
"""
SQUARE_LOCAL = """\
def gen_square():
def square(x):
return x ** 2
return square
square = gen_square()
"""
SQUARE_LAMBDA = """\
square = lambda x: x ** 2
"""
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS + ([] if mp is None else ["spawn"]))
@parametrize("define_func", [SQUARE_MAIN, SQUARE_LOCAL, SQUARE_LAMBDA])
@parametrize("callable_position", ["delayed", "args", "kwargs"])
def test_parallel_with_unpicklable_functions_in_args(
backend, define_func, callable_position, tmpdir
):
if backend in ["multiprocessing", "spawn"] and (
define_func != SQUARE_MAIN or sys.platform == "win32"
):
pytest.skip("Not picklable with pickle")
code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN.format(
define_func=define_func,
backend=backend,
callable_position=callable_position,
joblib_root_folder=os.path.dirname(os.path.dirname(joblib.__file__)),
)
code_file = tmpdir.join("unpicklable_func_script.py")
code_file.write(code)
check_subprocess_call(
[sys.executable, code_file.strpath],
timeout=10,
stdout_regex=r"\[0, 1, 4, 9, 16\]",
)
INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT = """\
import sys
import faulthandler
# Make sure that joblib is importable in the subprocess launching this
# script. This is needed in case we run the tests from the joblib root
# folder without having installed joblib
sys.path.insert(0, {joblib_root_folder!r})
from joblib import Parallel, delayed
from functools import partial
class MyClass:
'''Class defined in the __main__ namespace'''
def __init__(self, value):
self.value = value
def square(x, ignored=None, ignored2=None):
'''Function defined in the __main__ namespace'''
return x.value ** 2
square2 = partial(square, ignored2='something')
# Here, we do not need the `if __name__ == "__main__":` safeguard when
# using the default `loky` backend (even on Windows).
# To make debugging easier
faulthandler.dump_traceback_later(30, exit=True)
# The following baroque function call is meant to check that joblib
# introspection rightfully uses cloudpickle instead of the (faster) pickle
# module of the standard library when necessary. In particular cloudpickle is
# necessary for functions and instances of classes interactively defined in the
# __main__ module.
print(Parallel(backend="loky", n_jobs=2)(
delayed(square2)(MyClass(i), ignored=[dict(a=MyClass(1))])
for i in range(5)
))
""".format(joblib_root_folder=os.path.dirname(os.path.dirname(joblib.__file__)))
@with_multiprocessing
def test_parallel_with_interactively_defined_functions_loky(tmpdir):
# loky accepts interactive functions defined in __main__ and does not
# require if __name__ == '__main__' even when the __main__ module is
# defined by the result of the execution of a filesystem script.
script = tmpdir.join("joblib_interactively_defined_function.py")
script.write(INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT)
check_subprocess_call(
[sys.executable, script.strpath],
stdout_regex=r"\[0, 1, 4, 9, 16\]",
timeout=None, # rely on faulthandler to kill the process
)
INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT = """\
import sys
# Make sure that joblib is importable in the subprocess launching this
# script. This is needed in case we run the tests from the joblib root
# folder without having installed joblib
sys.path.insert(0, {joblib_root_folder!r})
from joblib import Parallel, delayed, hash
import multiprocessing as mp
mp.util.log_to_stderr(5)
class MyList(list):
'''MyList is interactively defined by MyList.append is a built-in'''
def __hash__(self):
# XXX: workaround limitation in cloudpickle
return hash(self).__hash__()
l = MyList()
print(Parallel(backend="loky", n_jobs=2)(
delayed(l.append)(i) for i in range(3)
))
""".format(joblib_root_folder=os.path.dirname(os.path.dirname(joblib.__file__)))
@with_multiprocessing
def test_parallel_with_interactively_defined_bound_method_loky(tmpdir):
script = tmpdir.join("joblib_interactive_bound_method_script.py")
script.write(INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT)
check_subprocess_call(
[sys.executable, script.strpath],
stdout_regex=r"\[None, None, None\]",
stderr_regex=r"LokyProcess",
timeout=15,
)
def test_parallel_with_exhausted_iterator():
exhausted_iterator = iter([])
assert Parallel(n_jobs=2)(exhausted_iterator) == []
def check_memmap(a):
if not isinstance(a, np.memmap):
raise TypeError("Expected np.memmap instance, got %r", type(a))
return a.copy() # return a regular array instead of a memmap
@with_numpy
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS)
def test_auto_memmap_on_arrays_from_generator(backend):
# Non-regression test for a problem with a bad interaction between the
# GC collecting arrays recently created during iteration inside the
# parallel dispatch loop and the auto-memmap feature of Parallel.
# See: https://github.com/joblib/joblib/pull/294
def generate_arrays(n):
for i in range(n):
yield np.ones(10, dtype=np.float32) * i
# Use max_nbytes=1 to force the use of memory-mapping even for small
# arrays
results = Parallel(n_jobs=2, max_nbytes=1, backend=backend)(
delayed(check_memmap)(a) for a in generate_arrays(100)
)
for result, expected in zip(results, generate_arrays(len(results))):
np.testing.assert_array_equal(expected, result)
# Second call to force loky to adapt the executor by growing the number
# of worker processes. This is a non-regression test for:
# https://github.com/joblib/joblib/issues/629.
results = Parallel(n_jobs=4, max_nbytes=1, backend=backend)(
delayed(check_memmap)(a) for a in generate_arrays(100)
)
for result, expected in zip(results, generate_arrays(len(results))):
np.testing.assert_array_equal(expected, result)
def identity(arg):
return arg
@with_numpy
@with_multiprocessing
def test_memmap_with_big_offset(tmpdir):
fname = tmpdir.join("test.mmap").strpath
size = mmap.ALLOCATIONGRANULARITY
obj = [np.zeros(size, dtype="uint8"), np.ones(size, dtype="uint8")]
dump(obj, fname)
memmap = load(fname, mmap_mode="r")
(result,) = Parallel(n_jobs=2)(delayed(identity)(memmap) for _ in [0])
assert isinstance(memmap[1], np.memmap)
assert memmap[1].offset > size
np.testing.assert_array_equal(obj, result)
def test_warning_about_timeout_not_supported_by_backend():
with warnings.catch_warnings(record=True) as warninfo:
Parallel(n_jobs=1, timeout=1)(delayed(square)(i) for i in range(50))
assert len(warninfo) == 1
w = warninfo[0]
assert isinstance(w.message, UserWarning)
assert str(w.message) == (
"The backend class 'SequentialBackend' does not support timeout. "
"You have set 'timeout=1' in Parallel but the 'timeout' parameter "
"will not be used."
)
def set_list_value(input_list, index, value):
input_list[index] = value
return value
@pytest.mark.parametrize("n_jobs", [1, 2, 4])
def test_parallel_return_order_with_return_as_generator_parameter(n_jobs):
# This test inserts values in a list in some expected order
# in sequential computing, and then checks that this order has been
# respected by Parallel output generator.
input_list = [0] * 5
result = Parallel(n_jobs=n_jobs, return_as="generator", backend="threading")(
delayed(set_list_value)(input_list, i, i) for i in range(5)
)
# Ensure that all the tasks are completed before checking the result
result = list(result)
assert all(v == r for v, r in zip(input_list, result))
def _sqrt_with_delay(e, delay):
if delay:
sleep(30)
return sqrt(e)
# Use a private function so it can also be called for the dask backend in
# test_dask.py without triggering the test twice.
# We isolate the test with the dask backend to simplify optional deps
# management and leaking environment variables.
def _test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs):
# This test submits 10 tasks, but the second task is super slow. This test
# checks that the 9 other tasks return before the slow task is done, when
# `return_as` parameter is set to `'generator_unordered'`
result = Parallel(n_jobs=n_jobs, return_as="generator_unordered", backend=backend)(
delayed(_sqrt_with_delay)(i**2, (i == 1)) for i in range(10)
)
quickly_returned = sorted(next(result) for _ in range(9))
expected_quickly_returned = [0] + list(range(2, 10))
assert all(v == r for v, r in zip(expected_quickly_returned, quickly_returned))
del result
@pytest.mark.parametrize("n_jobs", [2, 4])
# NB: for this test to work, the backend must be allowed to process tasks
# concurrently, so at least two jobs with a non-sequential backend are
# mandatory.
@with_multiprocessing
@parametrize("backend", set(RETURN_GENERATOR_BACKENDS) - {"sequential"})
def test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs):
_test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs)
@parametrize("backend", ALL_VALID_BACKENDS)
@parametrize("n_jobs", [1, 2, -2, -1])
def test_abort_backend(n_jobs, backend):
delays = ["a"] + [10] * 100
with raises(TypeError):
t_start = time.time()
Parallel(n_jobs=n_jobs, backend=backend)(delayed(time.sleep)(i) for i in delays)
dt = time.time() - t_start
assert dt < 20
def get_large_object(arg):
result = np.ones(int(5 * 1e5), dtype=bool)
result[0] = False
return result
# Use a private function so it can also be called for the dask backend in
# test_dask.py without triggering the test twice.
# We isolate the test with the dask backend to simplify optional deps
# management and leaking environment variables.
def _test_deadlock_with_generator(backend, return_as, n_jobs):
# Non-regression test for a race condition in the backends when the pickler
# is delayed by a large object.
with Parallel(n_jobs=n_jobs, backend=backend, return_as=return_as) as parallel:
result = parallel(delayed(get_large_object)(i) for i in range(10))
next(result)
next(result)
del result
@with_numpy
@parametrize("backend", RETURN_GENERATOR_BACKENDS)
@parametrize("return_as", ["generator", "generator_unordered"])
@parametrize("n_jobs", [1, 2, -2, -1])
def test_deadlock_with_generator(backend, return_as, n_jobs):
_test_deadlock_with_generator(backend, return_as, n_jobs)
@parametrize("backend", RETURN_GENERATOR_BACKENDS)
@parametrize("return_as", ["generator", "generator_unordered"])
@parametrize("n_jobs", [1, 2, -2, -1])
def test_multiple_generator_call(backend, return_as, n_jobs):
# Non-regression test that ensures the dispatch of the tasks starts
# immediately when Parallel.__call__ is called. This test relies on the
# assumption that only one generator can be submitted at a time.
with raises(RuntimeError, match="This Parallel instance is already running"):
parallel = Parallel(n_jobs, backend=backend, return_as=return_as)
g = parallel(delayed(sleep)(1) for _ in range(10)) # noqa: F841
t_start = time.time()
gen2 = parallel(delayed(id)(i) for i in range(100)) # noqa: F841
# Make sure that the error is raised quickly
assert time.time() - t_start < 2, (
"The error should be raised immediately when submitting a new task "
"but it took more than 2s."
)
del g
@parametrize("backend", RETURN_GENERATOR_BACKENDS)
@parametrize("return_as", ["generator", "generator_unordered"])
@parametrize("n_jobs", [1, 2, -2, -1])
def test_multiple_generator_call_managed(backend, return_as, n_jobs):
# Non-regression test that ensures the dispatch of the tasks starts
# immediately when Parallel.__call__ is called. This test relies on the
# assumption that only one generator can be submitted at a time.
with Parallel(n_jobs, backend=backend, return_as=return_as) as parallel:
g = parallel(delayed(sleep)(10) for _ in range(10)) # noqa: F841
t_start = time.time()
with raises(RuntimeError, match="This Parallel instance is already running"):
g2 = parallel(delayed(id)(i) for i in range(100)) # noqa: F841
# Make sure that the error is raised quickly
assert time.time() - t_start < 2, (
"The error should be raised immediately when submitting a new task "
"but it took more than 2s."
)
del g
@parametrize("backend", RETURN_GENERATOR_BACKENDS)
@parametrize("return_as_1", ["generator", "generator_unordered"])
@parametrize("return_as_2", ["generator", "generator_unordered"])
@parametrize("n_jobs", [1, 2, -2, -1])
def test_multiple_generator_call_separated(backend, return_as_1, return_as_2, n_jobs):
# Check that for separated Parallel, both tasks are correctly returned.
g = Parallel(n_jobs, backend=backend, return_as=return_as_1)(
delayed(sqrt)(i**2) for i in range(10)
)
g2 = Parallel(n_jobs, backend=backend, return_as=return_as_2)(
delayed(sqrt)(i**2) for i in range(10, 20)
)
if return_as_1 == "generator_unordered":
g = sorted(g)
if return_as_2 == "generator_unordered":
g2 = sorted(g2)
assert all(res == i for res, i in zip(g, range(10)))
assert all(res == i for res, i in zip(g2, range(10, 20)))
@parametrize(
"backend, error",
[
("loky", True),
("threading", False),
("sequential", False),
],
)
@parametrize("return_as_1", ["generator", "generator_unordered"])
@parametrize("return_as_2", ["generator", "generator_unordered"])
def test_multiple_generator_call_separated_gc(backend, return_as_1, return_as_2, error):
if (backend == "loky") and (mp is None):
pytest.skip("Requires multiprocessing")
# Check that in loky, only one call can be run at a time with
# a single executor.
parallel = Parallel(2, backend=backend, return_as=return_as_1)
g = parallel(delayed(sleep)(10) for i in range(10))
g_wr = weakref.finalize(g, lambda: print("Generator collected"))
ctx = (
raises(RuntimeError, match="The executor underlying Parallel")
if error
else nullcontext()
)
with ctx:
# For loky, this call will raise an error as the gc of the previous
# generator will shutdown the shared executor.
# For the other backends, as the worker pools are not shared between
# the two calls, this should proceed correctly.
t_start = time.time()
g = Parallel(2, backend=backend, return_as=return_as_2)(
delayed(sqrt)(i**2) for i in range(10, 20)
)
if return_as_2 == "generator_unordered":
g = sorted(g)
assert all(res == i for res, i in zip(g, range(10, 20)))
assert time.time() - t_start < 5
# Make sure that the computation are stopped for the gc'ed generator
retry = 0
while g_wr.alive and retry < 3:
retry += 1
time.sleep(0.5)
assert time.time() - t_start < 5
if parallel._effective_n_jobs() != 1:
# check that the first parallel object is aborting (the final _aborted
# state might be delayed).
assert parallel._aborting
@with_numpy
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS)
def test_memmapping_leaks(backend, tmpdir):
# Non-regression test for memmapping backends. Ensure that the data
# does not stay too long in memory
tmpdir = tmpdir.strpath
# Use max_nbytes=1 to force the use of memory-mapping even for small
# arrays
with Parallel(n_jobs=2, max_nbytes=1, backend=backend, temp_folder=tmpdir) as p:
p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2)
# The memmap folder should not be clean in the context scope
assert len(os.listdir(tmpdir)) > 0
# Make sure that the shared memory is cleaned at the end when we exit
# the context
for _ in range(100):
if not os.listdir(tmpdir):
break
sleep(0.1)
else:
raise AssertionError("temporary directory of Parallel was not removed")
# Make sure that the shared memory is cleaned at the end of a call
p = Parallel(n_jobs=2, max_nbytes=1, backend=backend)
p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2)
for _ in range(100):
if not os.listdir(tmpdir):
break
sleep(0.1)
else:
raise AssertionError("temporary directory of Parallel was not removed")
@parametrize(
"backend", ([None, "threading"] if mp is None else [None, "loky", "threading"])
)
def test_lambda_expression(backend):
# cloudpickle is used to pickle delayed callables
results = Parallel(n_jobs=2, backend=backend)(
delayed(lambda x: x**2)(i) for i in range(10)
)
assert results == [i**2 for i in range(10)]
@with_multiprocessing
@parametrize("backend", PROCESS_BACKENDS)
def test_backend_batch_statistics_reset(backend):
"""Test that a parallel backend correctly resets its batch statistics."""
n_jobs = 2
n_inputs = 500
task_time = 2.0 / n_inputs
p = Parallel(verbose=10, n_jobs=n_jobs, backend=backend)
p(delayed(time.sleep)(task_time) for i in range(n_inputs))
assert p._backend._effective_batch_size == p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE
assert (
p._backend._smoothed_batch_duration
== p._backend._DEFAULT_SMOOTHED_BATCH_DURATION
)
p(delayed(time.sleep)(task_time) for i in range(n_inputs))
assert p._backend._effective_batch_size == p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE
assert (
p._backend._smoothed_batch_duration
== p._backend._DEFAULT_SMOOTHED_BATCH_DURATION
)
@with_multiprocessing
@parametrize("context", [parallel_config, parallel_backend])
def test_backend_hinting_and_constraints(context):
for n_jobs in [1, 2, -1]:
assert type(Parallel(n_jobs=n_jobs)._backend) is get_default_backend_instance()
p = Parallel(n_jobs=n_jobs, prefer="threads")
assert type(p._backend) is ThreadingBackend
p = Parallel(n_jobs=n_jobs, prefer="processes")
assert type(p._backend) is LokyBackend
p = Parallel(n_jobs=n_jobs, require="sharedmem")
assert type(p._backend) is ThreadingBackend
# Explicit backend selection can override backend hinting although it
# is useless to pass a hint when selecting a backend.
p = Parallel(n_jobs=2, backend="loky", prefer="threads")
assert type(p._backend) is LokyBackend
with context("loky", n_jobs=2):
# Explicit backend selection by the user with the context manager
# should be respected when combined with backend hints only.
p = Parallel(prefer="threads")
assert type(p._backend) is LokyBackend
assert p.n_jobs == 2
with context("loky", n_jobs=2):
# Locally hard-coded n_jobs value is respected.
p = Parallel(n_jobs=3, prefer="threads")
assert type(p._backend) is LokyBackend
assert p.n_jobs == 3
with context("loky", n_jobs=2):
# Explicit backend selection by the user with the context manager
# should be ignored when the Parallel call has hard constraints.
# In this case, the default backend that supports shared mem is
# used an the default number of processes is used.
p = Parallel(require="sharedmem")
assert type(p._backend) is ThreadingBackend
assert p.n_jobs == 1
with context("loky", n_jobs=2):
p = Parallel(n_jobs=3, require="sharedmem")
assert type(p._backend) is ThreadingBackend
assert p.n_jobs == 3
@parametrize("context", [parallel_config, parallel_backend])
def test_backend_hinting_and_constraints_with_custom_backends(capsys, context):
# Custom backends can declare that they use threads and have shared memory
# semantics:
class MyCustomThreadingBackend(ParallelBackendBase):
supports_sharedmem = True
use_threads = True
def apply_async(self):
pass
def effective_n_jobs(self, n_jobs):
return n_jobs
with context(MyCustomThreadingBackend()):
p = Parallel(n_jobs=2, prefer="processes") # ignored
assert type(p._backend) is MyCustomThreadingBackend
p = Parallel(n_jobs=2, require="sharedmem")
assert type(p._backend) is MyCustomThreadingBackend
class MyCustomProcessingBackend(ParallelBackendBase):
supports_sharedmem = False
use_threads = False
def apply_async(self):
pass
def effective_n_jobs(self, n_jobs):
return n_jobs
with context(MyCustomProcessingBackend()):
p = Parallel(n_jobs=2, prefer="processes")
assert type(p._backend) is MyCustomProcessingBackend
out, err = capsys.readouterr()
assert out == ""
assert err == ""
p = Parallel(n_jobs=2, require="sharedmem", verbose=10)
assert type(p._backend) is ThreadingBackend
out, err = capsys.readouterr()
expected = (
"Using ThreadingBackend as joblib backend "
"instead of MyCustomProcessingBackend as the latter "
"does not provide shared memory semantics."
)
assert out.strip() == expected
assert err == ""
with raises(ValueError):
Parallel(backend=MyCustomProcessingBackend(), require="sharedmem")
def test_invalid_backend_hinting_and_constraints():
with raises(ValueError):
Parallel(prefer="invalid")
with raises(ValueError):
Parallel(require="invalid")
with raises(ValueError):
# It is inconsistent to prefer process-based parallelism while
# requiring shared memory semantics.
Parallel(prefer="processes", require="sharedmem")
if mp is not None:
# It is inconsistent to ask explicitly for a process-based
# parallelism while requiring shared memory semantics.
with raises(ValueError):
Parallel(backend="loky", require="sharedmem")
with raises(ValueError):
Parallel(backend="multiprocessing", require="sharedmem")
def _recursive_backend_info(limit=3, **kwargs):
"""Perform nested parallel calls and introspect the backend on the way"""
with Parallel(n_jobs=2) as p:
this_level = [(type(p._backend).__name__, p._backend.nesting_level)]
if limit == 0:
return this_level
results = p(
delayed(_recursive_backend_info)(limit=limit - 1, **kwargs)
for i in range(1)
)
return this_level + results[0]
@with_multiprocessing
@parametrize("backend", ["loky", "threading"])
@parametrize("context", [parallel_config, parallel_backend])
def test_nested_parallelism_limit(context, backend):
with context(backend, n_jobs=2):
backend_types_and_levels = _recursive_backend_info()
top_level_backend_type = backend.title() + "Backend"
expected_types_and_levels = [
(top_level_backend_type, 0),
("ThreadingBackend", 1),
("SequentialBackend", 2),
("SequentialBackend", 2),
]
assert backend_types_and_levels == expected_types_and_levels
def _recursive_parallel(nesting_limit=None):
"""A horrible function that does recursive parallel calls"""
return Parallel()(delayed(_recursive_parallel)() for i in range(2))
@pytest.mark.no_cover
@parametrize("context", [parallel_config, parallel_backend])
@parametrize("backend", (["threading"] if mp is None else ["loky", "threading"]))
def test_thread_bomb_mitigation(context, backend):
# Test that recursive parallelism raises a recursion rather than
# saturating the operating system resources by creating a unbounded number
# of threads.
with context(backend, n_jobs=2):
with raises(BaseException) as excinfo:
_recursive_parallel()
exc = excinfo.value
if backend == "loky":
# Local import because loky may not be importable for lack of
# multiprocessing
from joblib.externals.loky.process_executor import TerminatedWorkerError # noqa
if isinstance(exc, (TerminatedWorkerError, PicklingError)):
# The recursion exception can itself cause an error when
# pickling it to be send back to the parent process. In this
# case the worker crashes but the original traceback is still
# printed on stderr. This could be improved but does not seem
# simple to do and this is not critical for users (as long
# as there is no process or thread bomb happening).
pytest.xfail("Loky worker crash when serializing RecursionError")
assert isinstance(exc, RecursionError)
def _run_parallel_sum():
env_vars = {}
for var in [
"OMP_NUM_THREADS",
"OPENBLAS_NUM_THREADS",
"MKL_NUM_THREADS",
"VECLIB_MAXIMUM_THREADS",
"NUMEXPR_NUM_THREADS",
"NUMBA_NUM_THREADS",
"ENABLE_IPC",
]:
env_vars[var] = os.environ.get(var)
return env_vars, parallel_sum(100)
@parametrize("backend", ([None, "loky"] if mp is not None else [None]))
@skipif(parallel_sum is None, reason="Need OpenMP helper compiled")
def test_parallel_thread_limit(backend):
results = Parallel(n_jobs=2, backend=backend)(
delayed(_run_parallel_sum)() for _ in range(2)
)
expected_num_threads = max(cpu_count() // 2, 1)
for worker_env_vars, omp_num_threads in results:
assert omp_num_threads == expected_num_threads
for name, value in worker_env_vars.items():
if name.endswith("_THREADS"):
assert value == str(expected_num_threads)
else:
assert name == "ENABLE_IPC"
assert value == "1"
@parametrize("context", [parallel_config, parallel_backend])
@skipif(distributed is not None, reason="This test requires dask")
def test_dask_backend_when_dask_not_installed(context):
with raises(ValueError, match="Please install dask"):
context("dask")
@parametrize("context", [parallel_config, parallel_backend])
def test_zero_worker_backend(context):
# joblib.Parallel should reject with an explicit error message parallel
# backends that have no worker.
class ZeroWorkerBackend(ThreadingBackend):
def configure(self, *args, **kwargs):
return 0
def apply_async(self, func, callback=None): # pragma: no cover
raise TimeoutError("No worker available")
def effective_n_jobs(self, n_jobs): # pragma: no cover
return 0
expected_msg = "ZeroWorkerBackend has no active worker"
with context(ZeroWorkerBackend()):
with pytest.raises(RuntimeError, match=expected_msg):
Parallel(n_jobs=2)(delayed(id)(i) for i in range(2))
def test_globals_update_at_each_parallel_call():
# This is a non-regression test related to joblib issues #836 and #833.
# Cloudpickle versions between 0.5.4 and 0.7 introduced a bug where global
# variables changes in a parent process between two calls to
# joblib.Parallel would not be propagated into the workers.
global MY_GLOBAL_VARIABLE
MY_GLOBAL_VARIABLE = "original value"
def check_globals():
global MY_GLOBAL_VARIABLE
return MY_GLOBAL_VARIABLE
assert check_globals() == "original value"
workers_global_variable = Parallel(n_jobs=2)(
delayed(check_globals)() for i in range(2)
)
assert set(workers_global_variable) == {"original value"}
# Change the value of MY_GLOBAL_VARIABLE, and make sure this change gets
# propagated into the workers environment
MY_GLOBAL_VARIABLE = "changed value"
assert check_globals() == "changed value"
workers_global_variable = Parallel(n_jobs=2)(
delayed(check_globals)() for i in range(2)
)
assert set(workers_global_variable) == {"changed value"}
##############################################################################
# Test environment variable in child env, in particular for limiting
# the maximal number of threads in C-library threadpools.
#
def _check_numpy_threadpool_limits():
import numpy as np
# Let's call BLAS on a Matrix Matrix multiplication with dimensions large
# enough to ensure that the threadpool managed by the underlying BLAS
# implementation is actually used so as to force its initialization.
a = np.random.randn(100, 100)
np.dot(a, a)
threadpoolctl = pytest.importorskip("threadpoolctl")
return threadpoolctl.threadpool_info()
def _parent_max_num_threads_for(child_module, parent_info):
for parent_module in parent_info:
if parent_module["filepath"] == child_module["filepath"]:
return parent_module["num_threads"]
raise ValueError(
"An unexpected module was loaded in child:\n{}".format(child_module)
)
def check_child_num_threads(workers_info, parent_info, num_threads):
# Check that the number of threads reported in workers_info is consistent
# with the expectation. We need to be careful to handle the cases where
# the requested number of threads is below max_num_thread for the library.
for child_threadpool_info in workers_info:
for child_module in child_threadpool_info:
parent_max_num_threads = _parent_max_num_threads_for(
child_module, parent_info
)
expected = {min(num_threads, parent_max_num_threads), num_threads}
assert child_module["num_threads"] in expected
@with_numpy
@with_multiprocessing
@parametrize("n_jobs", [2, 4, -2, -1])
def test_threadpool_limitation_in_child_loky(n_jobs):
# Check that the protection against oversubscription in workers is working
# using threadpoolctl functionalities.
# Skip this test if numpy is not linked to a BLAS library
parent_info = _check_numpy_threadpool_limits()
if len(parent_info) == 0:
pytest.skip(reason="Need a version of numpy linked to BLAS")
workers_threadpool_infos = Parallel(backend="loky", n_jobs=n_jobs)(
delayed(_check_numpy_threadpool_limits)() for i in range(2)
)
n_jobs = effective_n_jobs(n_jobs)
if n_jobs == 1:
expected_child_num_threads = parent_info[0]["num_threads"]
else:
expected_child_num_threads = max(cpu_count() // n_jobs, 1)
check_child_num_threads(
workers_threadpool_infos, parent_info, expected_child_num_threads
)
@with_numpy
@with_multiprocessing
@parametrize("inner_max_num_threads", [1, 2, 4, None])
@parametrize("n_jobs", [2, -1])
@parametrize("context", [parallel_config, parallel_backend])
def test_threadpool_limitation_in_child_context(context, n_jobs, inner_max_num_threads):
# Check that the protection against oversubscription in workers is working
# using threadpoolctl functionalities.
# Skip this test if numpy is not linked to a BLAS library
parent_info = _check_numpy_threadpool_limits()
if len(parent_info) == 0:
pytest.skip(reason="Need a version of numpy linked to BLAS")
with context("loky", inner_max_num_threads=inner_max_num_threads):
workers_threadpool_infos = Parallel(n_jobs=n_jobs)(
delayed(_check_numpy_threadpool_limits)() for i in range(2)
)
n_jobs = effective_n_jobs(n_jobs)
if n_jobs == 1:
expected_child_num_threads = parent_info[0]["num_threads"]
elif inner_max_num_threads is None:
expected_child_num_threads = max(cpu_count() // n_jobs, 1)
else:
expected_child_num_threads = inner_max_num_threads
check_child_num_threads(
workers_threadpool_infos, parent_info, expected_child_num_threads
)
@with_multiprocessing
@parametrize("n_jobs", [2, -1])
@parametrize("var_name", ["OPENBLAS_NUM_THREADS", "MKL_NUM_THREADS", "OMP_NUM_THREADS"])
@parametrize("context", [parallel_config, parallel_backend])
def test_threadpool_limitation_in_child_override(context, n_jobs, var_name):
# Check that environment variables set by the user on the main process
# always have the priority.
# Skip this test if the process is run sequetially
if effective_n_jobs(n_jobs) == 1:
pytest.skip("Skip test when n_jobs == 1")
# Clean up the existing executor because we change the environment of the
# parent at runtime and it is not detected in loky intentionally.
get_reusable_executor(reuse=True).shutdown()
def _get_env(var_name):
return os.environ.get(var_name)
original_var_value = os.environ.get(var_name)
try:
os.environ[var_name] = "4"
# Skip this test if numpy is not linked to a BLAS library
results = Parallel(n_jobs=n_jobs)(delayed(_get_env)(var_name) for i in range(2))
assert results == ["4", "4"]
with context("loky", inner_max_num_threads=1):
results = Parallel(n_jobs=n_jobs)(
delayed(_get_env)(var_name) for i in range(2)
)
assert results == ["1", "1"]
finally:
if original_var_value is None:
del os.environ[var_name]
else:
os.environ[var_name] = original_var_value
@with_multiprocessing
@parametrize("n_jobs", [2, 4, -1])
def test_loky_reuse_workers(n_jobs):
# Non-regression test for issue #967 where the workers are not reused when
# calling multiple Parallel loops.
def parallel_call(n_jobs):
x = range(10)
Parallel(n_jobs=n_jobs)(delayed(sum)(x) for i in range(10))
# Run a parallel loop and get the workers used for computations
parallel_call(n_jobs)
first_executor = get_reusable_executor(reuse=True)
# Ensure that the workers are reused for the next calls, as the executor is
# not restarted.
for _ in range(10):
parallel_call(n_jobs)
executor = get_reusable_executor(reuse=True)
assert executor == first_executor
def _set_initialized(status):
status[os.getpid()] = "initialized"
def _check_status(status, n_jobs, wait_workers=False):
pid = os.getpid()
state = status.get(pid, None)
assert state in ("initialized", "started"), (
f"worker should have been in initialized state, got {state}"
)
if not wait_workers:
return
status[pid] = "started"
# wait up to 30 seconds for the workers to be initialized
deadline = time.time() + 30
n_started = len([pid for pid, v in status.items() if v == "started"])
while time.time() < deadline and n_started < n_jobs:
time.sleep(0.1)
n_started = len([pid for pid, v in status.items() if v == "started"])
if time.time() >= deadline:
raise TimeoutError("Waited more than 30s to start all the workers")
return pid
@with_multiprocessing
@parametrize("n_jobs", [2, 4])
@parametrize("backend", PROCESS_BACKENDS)
@parametrize("context", [parallel_config, parallel_backend])
def test_initializer_context(n_jobs, backend, context):
manager = mp.Manager()
status = manager.dict()
# pass the initializer to the backend context
with context(
backend=backend,
n_jobs=n_jobs,
initializer=_set_initialized,
initargs=(status,),
):
# check_status checks that the initializer is correctly call
Parallel()(delayed(_check_status)(status, n_jobs) for i in range(100))
@with_multiprocessing
@parametrize("n_jobs", [2, 4])
@parametrize("backend", PROCESS_BACKENDS)
def test_initializer_parallel(n_jobs, backend):
manager = mp.Manager()
status = manager.dict()
# pass the initializer directly to the Parallel call
# check_status checks that the initializer is called in all tasks
Parallel(
backend=backend,
n_jobs=n_jobs,
initializer=_set_initialized,
initargs=(status,),
)(delayed(_check_status)(status, n_jobs) for i in range(100))
@with_multiprocessing
@pytest.mark.parametrize("n_jobs", [2, 4])
def test_initializer_reused(n_jobs):
# Check that it is possible to pass initializer config via the `Parallel`
# call directly and the worker are reused when the arguments are the same.
n_repetitions = 3
manager = mp.Manager()
status = manager.dict()
pids = set()
for i in range(n_repetitions):
results = Parallel(
backend="loky",
n_jobs=n_jobs,
initializer=_set_initialized,
initargs=(status,),
)(
delayed(_check_status)(status, n_jobs, wait_workers=True)
for i in range(n_jobs)
)
pids = pids.union(set(results))
assert len(pids) == n_jobs, (
"The workers should be reused when the initializer is the same"
)
@with_multiprocessing
@pytest.mark.parametrize("n_jobs", [2, 4])
def test_initializer_not_reused(n_jobs):
# Check that when changing the initializer arguments, each parallel call uses its
# own initializer args, independently of the previous calls, hence the loky workers
# are not reused.
n_repetitions = 3
manager = mp.Manager()
pids = set()
for i in range(n_repetitions):
status = manager.dict()
results = Parallel(
backend="loky",
n_jobs=n_jobs,
initializer=_set_initialized,
initargs=(status,),
)(
delayed(_check_status)(status, n_jobs, wait_workers=True)
for i in range(n_jobs)
)
pids = pids.union(set(results))
assert len(pids) == n_repetitions * n_jobs, (
"The workers should not be reused when the initializer arguments change"
)
|