lrl-modelcloud commited on
Commit
e1f6933
·
verified ·
1 Parent(s): 16712cc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ base_model:
7
+ - Qwen/QwQ-32B-Preview
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - gptqmodel
11
+ - modelcloud
12
+ - chat
13
+ - qwen2
14
+ - qwq
15
+ - instruct
16
+ - int4
17
+ - gptq
18
+ - 4bit
19
+ - W4A16
20
+ ---
21
+
22
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/eWBjfA2fWJwBiL5Wd92Jl.png)
23
+
24
+ This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
25
+
26
+ - **bits**: 4
27
+ - **dynamic**: null
28
+ - **group_size**: 32
29
+ - **desc_act**: true
30
+ - **static_groups**: false
31
+ - **sym**: true
32
+ - **lm_head**: false
33
+ - **true_sequential**: true
34
+ - **quant_method**: "gptq"
35
+ - **checkpoint_format**: "gptq"
36
+ - **meta**:
37
+ - **quantizer**: gptqmodel:1.4.4
38
+ - **uri**: https://github.com/modelcloud/gptqmodel
39
+ - **damp_percent**: 0.1
40
+ - **damp_auto_increment**: 0.0025
41
+
42
+
43
+ ## Example:
44
+ ```python
45
+ from transformers import AutoTokenizer
46
+ from gptqmodel import GPTQModel
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained("ModelCloud/QwQ-32B-Preview-gptqmodel-4bit-vortex-v3")
49
+ model = GPTQModel.load("ModelCloud/QwQ-32B-Preview-gptqmodel-4bit-vortex-v3")
50
+
51
+ messages = [
52
+ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
53
+ {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
54
+ ]
55
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
56
+
57
+ outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
58
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
59
+
60
+ print(result)
61
+ ```