Commit
·
7f43fca
1
Parent(s):
0ecb2c6
Upload PPO LunarLander-v2 trained agentv3
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 291.82 +/- 17.99
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb07b5314d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb07b531560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb07b5315f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb07b531680>", "_build": "<function ActorCriticPolicy._build at 0x7fb07b531710>", "forward": "<function ActorCriticPolicy.forward at 0x7fb07b5317a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb07b531830>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb07b5318c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb07b531950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb07b5319e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb07b531a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb07b57f840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAAAAAIDqrrG1NoIpckdrrB8bAfDg8D5T/A50B7U+S6eQLNWaNANXfyIAcqxl+Vj4/mB6x8iysoeIVygyRWkCbo2T4uFdWlHbwin2rSzUrlzlfxfFxYf5E7bI/9xBzbDwTkHCPUFzkKYm6WjeTKxc8zcLgFh+N4BrnvKrQeGhgvYjeGocskEFHljBbZer3nP5YltMQqCFY5+ihxcdH+DgUOwHGAolOtvF6Fc239uTskD5G0AqQX4qoQ5j/lZUIdtr3MLhyxX5ZUpntqlwbCXiWDDGrkm2FiqH9ZdlLKegEsUGZDekRSIIox5nF8BxphAZLx5PBzmNUIA58Qd9hrbKDuHkcOUkEGG0evARyGmtSwy7sTGOc4Lz0YC25H8E5qCiP6WQ7nJOdCgriC4Fm4ANOoVGMXbR0bDR2TWVRgNkfmK1SyvgcjnVIJSUOP3BHylLC7Z3SCNE5fHd073Ir9JqTBez0RiW0ER8sqBV/KEcbB2aFY52lzF9nl6x9lTLY0cctEOnjumVJVnp5gQUp4cKRiuxo4mZ1ZFjCj+BCRQWfJ2nFLDzEX2gnadqQJpZh+uMjg+xmX7RiZo++u0pQc/gHuQu4LZmkoP2MJUAiB51VHcn0dXPArA/v079/HHZqr/2ePpZKqxCRi327lycY0cOgWCar4DhmdoX9Ajj1hpSHbSELZKotP7ccUJ1s4MilYtFYKqMnm6MVB21gHUQbyPXPPR+3/pB62Hysb2KhMWH5PGODdcsGT4TNmTiSXl5K8JWlsN+PXwD9S7n9ZFsOa8fRgkyOOcqyT+bhXBS0ERlvpQhBtZCqQ+NH9RBaYrn0UxopgTZn0KS8d10+uZ07eAb6Ba4RMeayKceB/H6TOBAQuBAvjTi1Rt1a2aTgGIJicJfDSHvyqjMEsFcM9QJCzrh8xdeGsUAUdnyFNX6d25tqzti1k7aNgRyX2ZO6ziAEtZO4tVAU5QPKVLskQ2V4MlyTRfO8k8jU3uHuNFxXr3E/UlvvcWA4CE35CKO/MAbu+/3WzChuTWYApBhAagrRp07gXda2kRKbDq47kQNQGs3Q+xJyty1Sd0XOwC9qRzgHmLhbORFxUj/PcQqxF1nb2KMdKBfgj5kmN3B2PJAqfgmF3iF+WwIHYlPn2P0oyJtDsATv4GuTdxUOmp9zzM626ZP/PJi7O2LTvskpZpGsGyfk41Nk6Uy0B0gyXWUadvQbTtz0Go+3krZioITWUG/axhZrizuSRPg0JuV/jY6AeqA+Z4Mr7GIuFUdHZeydEPbl21U+yukDOvQ78w2McR/vbPkUTcFOQbOQWOsz5WtPz/YtJ+RG9+T/ZWpZJtBxC2uoFhnvgN01SwtzFdg9/TO1mJEqSMTG80m4ree1r+3/VaIqk7vlz1coZtIBQDqkA4rPLrq+sYSlrUKmvc1QBtyDmcPkGC129slGXNiGyA8Lq5q1PlAQ94RkAT4RNdqBzDm6ThJZ94+eekgfYh1mOUnnnnVOTIJVCEWLN/J/EII4FNHowag4Acvbcnd0jVMF5iaOWEIFJyhUsq/uOliG31X6fgNqbLqwFD4k/BF2hFUYmcS4RAjTNVJl2lEDYy53OpRhQr0Rwjzb8q+UGZa/4+j31uxgdrYifPZYNLQJ51k3VxG0DPJZPa51R1Sws4TVwjyriblFUdjyzkNhtuSqmGTMEQqVXGMT/Pc8SIy6+LK/cApCC5G4pzq614RsFoq+v4vmR3R0ALL0McmkgrEvcy1z6EJ9Ia9ALNEzxBUFAgddtHMwq2yeIhfWPmRmxd8i25SDJe/5/lROYdgM1V/S4OM7Ct8NT/Y7LAw32WsBDxH9k3Fv0QOj70F7PGMxjXBOEF66WQEpwxIJ1H/Cn6/nvvK7jJpp+wQmSUzgCdjgw7uhz9y8wHBZahDsignwCeO8FykykVnHgQfH4X6J0g2EYwvYeaURQk6BIBp7Zzsn5i1Vb9xbCxfXjDG5XRUGXVDs1qSqzOyAhocua9dvOKUKSinTS0O41hK+6IXg43vRTObMop5rgByRbH0jF+Bw0J8eae+BwiWlQR8hvDr/9J1Gp/5PWXrhGNMgIuF8jMgDOySevQCwYiUsZupZ+BKbRwsM367R5DjTRQqQbvAqdBlIheWMIyWVSAKQ1/me1SRRHSUM9qzutNeIaDVcZf6T51FRWe6LTsPM7dq+j8jXtEtXKrfHqoAGWFAuEVIGTxi87wtS5zR8nQuK3WFqtbbLjPkW3ck/QTkDkOFKxIeCXt7SEA2p3l/AKiOtQWoYGDpXKk1Jn8rwxd9RYXG11sKbfynWnl8qbp/D8LhSzKYt5VkLcq4Wh2HzdrxeYbSF97/whuBppvZ5Ro3xWBcRiySrgwCcjEzI2Uk4uGjH1TOzSAUw9/9S2ndtEKNGgDF5fzTr7PlD0+wud7/hBiAmvp6XHwzrSy1psrgCzP74OaHtn6M6iJwVZ++rh8uVkUuyEzOmSbPTZTHlH9jKQowbxbJejADo+rv/eWwPN4Rcg3yFLHDjijWa5aA5mdXYMFqGYYimXxAzROmOKjvsfBJnUyuvZ6SHO2nT/zLlTUCcrNP/Tl5+FwnI8pjWx5cBGlB4TIuo35nWsIXnNTORyGL+TCtpsnXn8wth3ZaTZ9MMU/VfqNS3YQawfkpRdPOhUT2lhOQh4SWddwbtqh1tCjRLqhsYY6ADG/j1DbSIMyh68O2wxYDgvnxiyC0nf7WlZYwffcvKyB0EGc5w/8chQioqqbiWKec60kcIf6gMhAnjdB/N9/PBtMWsThHreyfW5EthDsN2hHGNEE6hA8AywlzK6Rm7KD/Bu4Tz3Jie6vQ+UZ2UI6bepySAnrqaFG+d3p3OzXspWkRTU9VpVvM6Zj4SKf/31sPHrITWLy9LjP78nvmoQb7zMQgHTo67Vm9G/oft8zFE7lCVfbAtM5HJWR3iV9vWVqHBgi9eUdaciPQhrhQGcjsBSORO985G+bswTtVfalowA5r4vnIbKvHmhOjBaP+WBfedi9VV/2ckrZufEWyKpowWcwjPnLDuojT8nr2uGLTLaQlGTd199tncRXf1yeqYqRb/+u37O3jp3/NaGziIkdLP22KcZ2ZUarbZOe3mb8i+6r9x6PZ/6loxBKk7HJ6gNIwQZ0+KZQoVb3cvl5Xg/AnH7e4oDhBVlvc48l/hLOkS9m0KOP3SASA0gqxVtvGMG2p8k+33LoBOK+x1f7B4HX+SeSlLNUkB3lyYP5RjKOgHyUxCtIx3zw4CfzskI0t2fqyAnC3Eb2y1owO4nswyoe/VuyRgRivDIMIgnhNpzws6V0xZohG6Qpql02ZgX2n50xndwYHhgNBWJR0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 20, "num_timesteps": 512000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1653904476.5107265, "learning_rate": 1e-06, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz6wxvegte2NhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQMAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxRLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKAAgAAg5lRvo90oT6KXg8/fkzRviBfOzvTFVA+AAAAAAAAAACaQXq8KZAyuqYPLjP+HfKu5bkFOk2w0bMAAIA/AACAP3jA0b6E/0M/kccEPqASF78P0AS/coUXPgAAAAAAAAAAM5aWvFzleryqKMM90ZebvchqNzvVEE89AACAPwAAgD8AKDK7ZEa3P4HbE74ZTec+596uO80BnD0AAAAAAAAAAO2HQr4JFlM/9VVTvorYD7/gGZW+0figvQAAAAAAAAAAjYCrPVWXiT+id6c+pGYxvykgKD6MGyM+AAAAAAAAAAAaiXc9Qt6nP756Dj+t4w+/GD2OPJ1xYD4AAAAAAAAAADNDYL69sik/ojWOvU0RBL/S8Z2+vUP8ugAAAAAAAAAAZsGyvI8SELq4aps29I4MMrrqCDsLz7m1AACAPwAAgD8NSdk99l1fP2L2LT7muh2/oTxgPlNuAjwAAAAAAAAAAACCQD2200W8P7SyO2ATGzzGCam9VBEFPQAAgD8AAIA/M7WaPTE7dz71eJS+U6PlvnxmVLsG8IW+AAAAAAAAAACa4Im8Ps20P74jKL5CuuW9DFFWPLu8hzsAAAAAAAAAAAAWnrzSoLA/TkymvXpon77BNb48Ytp/vQAAAAAAAAAAzT8mPt3wsT425YO+y6TjvjRYvD0RvQe+AAAAAAAAAADNpLg84RixuhqlEDxwi4w8PvJ8ui2HdD0AAIA/AACAP5rU3r3Ea7M+cSeSPdaT5b6Ybfy9O8cMuwAAAAAAAAAATbc8vTtojbw5+CA+JZwZvUlepL07NLu9AACAPwAAgD+AKD090mXlu1D4jb1EHve4fZo0PYjfAbsAAIA/AACAP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVnAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDFAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDAdCsoDkckCUhpRSlIwBbJRLtowBdJRHQK9Ne/336AR1fZQoaAZoCWgPQwha12g50NdOQJSGlFKUaBVLj2gWR0CvTbMyzolldX2UKGgGaAloD0MIeLZHbziBc0CUhpRSlGgVS8doFkdAr3CnndO6/nV9lChoBmgJaA9DCOAu+3Wn+3BAlIaUUpRoFUvHaBZHQK9wpz+3pfR1fZQoaAZoCWgPQwgepn1zf9FSQJSGlFKUaBVLlmgWR0CvcKqv/zasdX2UKGgGaAloD0MIg1K0cm8wc0CUhpRSlGgVS8hoFkdAr3DqkCV8kXV9lChoBmgJaA9DCAW/DTFee29AlIaUUpRoFUu3aBZHQK9xapEQXhx1fZQoaAZoCWgPQwgk0jb+RKZxQJSGlFKUaBVLvGgWR0CvcXpBPbfxdX2UKGgGaAloD0MIWtb9Y6GbcUCUhpRSlGgVS9hoFkdAr3GNSsKb8XV9lChoBmgJaA9DCEsC1NRyfHFAlIaUUpRoFUvaaBZHQK9xxAX2ugZ1fZQoaAZoCWgPQwg9gbBTLCxyQJSGlFKUaBVLsmgWR0CvcdyZBsyjdX2UKGgGaAloD0MImyDqPoAxcUCUhpRSlGgVS8hoFkdAr3H/DJlrdnV9lChoBmgJaA9DCAcHexMDCXNAlIaUUpRoFUvOaBZHQK9x/kn1Fph1fZQoaAZoCWgPQwjaBBiWPzRzQJSGlFKUaBVLxGgWR0Cvcjau4gA7dX2UKGgGaAloD0MIz4QmiaWBcUCUhpRSlGgVS9doFkdAr3J/yAhB7nV9lChoBmgJaA9DCFg4SfOHhnBAlIaUUpRoFUvQaBZHQK9ys7p3X7N1fZQoaAZoCWgPQwiPVN/5BTJyQJSGlFKUaBVLsWgWR0CvcuMiSq2jdX2UKGgGaAloD0MIrwYoDXUUcECUhpRSlGgVS7loFkdAr3L617Y023V9lChoBmgJaA9DCGk7pu7K4nJAlIaUUpRoFUvZaBZHQK9zNl/Yrax1fZQoaAZoCWgPQwg9murJvN9wQJSGlFKUaBVLumgWR0Cvc0gieNDMdX2UKGgGaAloD0MIL4UHza6CcUCUhpRSlGgVS+RoFkdAr3NlCkXUIHV9lChoBmgJaA9DCKzhIvf0t3JAlIaUUpRoFUvDaBZHQK90agfU4Jh1fZQoaAZoCWgPQwhQNA9gkVhvQJSGlFKUaBVLxGgWR0CvdHBD5TIedX2UKGgGaAloD0MIcnDpmHMfcUCUhpRSlGgVS6hoFkdAr3SsS9M9KXV9lChoBmgJaA9DCFwBhXq6c3FAlIaUUpRoFUvfaBZHQK90/I065oZ1fZQoaAZoCWgPQwj6CWe3Fm1zQJSGlFKUaBVL3GgWR0CvdSz6rNnodX2UKGgGaAloD0MICHWRQlmncUCUhpRSlGgVS8BoFkdAr3U7/S6UaHV9lChoBmgJaA9DCBOc+kDyvnJAlIaUUpRoFUuyaBZHQK91RwazeGh1fZQoaAZoCWgPQwiHhsWoa8dvQJSGlFKUaBVLt2gWR0CvdUZRCQcQdX2UKGgGaAloD0MIMCsU6f7UbkCUhpRSlGgVS8xoFkdAr3VXkili0HV9lChoBmgJaA9DCIHLY81I4W5AlIaUUpRoFUuzaBZHQK91a7btZ3d1fZQoaAZoCWgPQwgi41EqYQRyQJSGlFKUaBVLzGgWR0Cvdd2r4nF6dX2UKGgGaAloD0MITzv8NVkMc0CUhpRSlGgVS9BoFkdAr3Yqynk1dnV9lChoBmgJaA9DCMKHEi35fW5AlIaUUpRoFUvRaBZHQK92su27Wd51fZQoaAZoCWgPQwgSvYxieVlxQJSGlFKUaBVLxmgWR0CvdsEhzNlidX2UKGgGaAloD0MIX0TbMXUAckCUhpRSlGgVS+JoFkdAr3bQvtdAxHV9lChoBmgJaA9DCGIx6lq7TnJAlIaUUpRoFUvQaBZHQK923b1yvLZ1fZQoaAZoCWgPQwgxC+2cpgdxQJSGlFKUaBVLymgWR0CvdxCHh0hedX2UKGgGaAloD0MI0qxsH/Kgc0CUhpRSlGgVS9hoFkdAr3diekHlfnV9lChoBmgJaA9DCLraiv1lSVNAlIaUUpRoFUt6aBZHQK93mhKUVzp1fZQoaAZoCWgPQwizt5TzxZNyQJSGlFKUaBVL5GgWR0Cvd7VmrbQDdX2UKGgGaAloD0MIWYrkK4GNc0CUhpRSlGgVS8loFkdAr3g/rhR64XV9lChoBmgJaA9DCJKWytuRA3RAlIaUUpRoFUvSaBZHQK94Z18stkF1fZQoaAZoCWgPQwjePqvMlOFvQJSGlFKUaBVLxmgWR0CveGuJcgQpdX2UKGgGaAloD0MIGqN1VPWncECUhpRSlGgVS8BoFkdAr3jgIv8IiXV9lChoBmgJaA9DCGnGouns/HJAlIaUUpRoFUvGaBZHQK945ps41gp1fZQoaAZoCWgPQwhWgVoMXn1xQJSGlFKUaBVLw2gWR0CvePE9+w1SdX2UKGgGaAloD0MIEW+df7vrcECUhpRSlGgVS69oFkdAr3kzXDm8unV9lChoBmgJaA9DCK+UZYjj1nJAlIaUUpRoFUvVaBZHQK95QVKPGQ11fZQoaAZoCWgPQwhxWYXNALRxQJSGlFKUaBVL5mgWR0CveVao/A0sdX2UKGgGaAloD0MIQuigSzhRcUCUhpRSlGgVS9NoFkdAr3loKSgXdnV9lChoBmgJaA9DCFm/mZjuunJAlIaUUpRoFUuqaBZHQK95/Ex7AtZ1fZQoaAZoCWgPQwhgdk8eViFyQJSGlFKUaBVLzmgWR0Cvehh3iaRZdX2UKGgGaAloD0MI/YUeMfqocECUhpRSlGgVS6loFkdAr3pI/RmbsnV9lChoBmgJaA9DCDBK0F9orGdAlIaUUpRoFU3oA2gWR0CveqVgpjMFdX2UKGgGaAloD0MIj1a1pGPDckCUhpRSlGgVS9toFkdAr3rbpu/DcnV9lChoBmgJaA9DCN+l1CUjl3JAlIaUUpRoFUvcaBZHQK97BZElVtJ1fZQoaAZoCWgPQwg6IAn7dmdyQJSGlFKUaBVL4GgWR0Cvew5iExqPdX2UKGgGaAloD0MIz0vFxvwPc0CUhpRSlGgVS7doFkdAr3sWrCFbmnV9lChoBmgJaA9DCH+kiAxrvHFAlIaUUpRoFUvDaBZHQK97XtxdY4h1fZQoaAZoCWgPQwiiz0cZcW9yQJSGlFKUaBVL4WgWR0Cve5GJN0vHdX2UKGgGaAloD0MICJRNuUIfcUCUhpRSlGgVS7doFkdAr3vBqO938nV9lChoBmgJaA9DCDz2s1hKCnJAlIaUUpRoFUvUaBZHQK98O4J/oaF1fZQoaAZoCWgPQwj8HYoC/VlvQJSGlFKUaBVLv2gWR0CvfFWDg62fdX2UKGgGaAloD0MI86rOaoEJckCUhpRSlGgVS8FoFkdAr3xUKZ2IPHV9lChoBmgJaA9DCMdJYd6jrHJAlIaUUpRoFUvnaBZHQK98aNsnAqN1fZQoaAZoCWgPQwgBh1ClpvRyQJSGlFKUaBVLymgWR0CvfHWGyon8dX2UKGgGaAloD0MIogip25nJcUCUhpRSlGgVS8poFkdAr3y6McZLqXV9lChoBmgJaA9DCKRyE7W0gHJAlIaUUpRoFUvKaBZHQK98w4Otnwp1fZQoaAZoCWgPQwhpGan3FDlzQJSGlFKUaBVLzWgWR0CvfPM6q815dX2UKGgGaAloD0MI8iN+xRqsckCUhpRSlGgVS9JoFkdAr3z7pzLfUHV9lChoBmgJaA9DCGh5HtwdH3BAlIaUUpRoFUvAaBZHQK99erJ8v251fZQoaAZoCWgPQwg3xeOiWrVxQJSGlFKUaBVL5mgWR0Cvfdw+UyHmdX2UKGgGaAloD0MIvMrapnjqb0CUhpRSlGgVS7xoFkdAr33uAPNFB3V9lChoBmgJaA9DCCs1e6AV23JAlIaUUpRoFUvLaBZHQK9+ZuivgWJ1fZQoaAZoCWgPQwheud42k+9zQJSGlFKUaBVL62gWR0Cvfodrwe/6dX2UKGgGaAloD0MI73TniSebcUCUhpRSlGgVS9loFkdAr36VwNsnA3V9lChoBmgJaA9DCBwKn62DHHNAlIaUUpRoFUvcaBZHQK9+q6IWP911fZQoaAZoCWgPQwjVk/lH3+BwQJSGlFKUaBVLwWgWR0CvfsAZjx0/dX2UKGgGaAloD0MIW3heKjacckCUhpRSlGgVS9loFkdAr37y00FbFHV9lChoBmgJaA9DCLcm3ZbIl3FAlIaUUpRoFUvQaBZHQK9/O7GvOhV1fZQoaAZoCWgPQwjVA+YhE7VxQJSGlFKUaBVLt2gWR0Cvf2xpDeCTdX2UKGgGaAloD0MIGD4ipkTiTUCUhpRSlGgVS6FoFkdAr3+BTyauwHV9lChoBmgJaA9DCNHLKJYbPHJAlIaUUpRoFUvKaBZHQK9/p9zfaYh1fZQoaAZoCWgPQwjpKAezCQ1yQJSGlFKUaBVLwWgWR0Cvf7stsenydX2UKGgGaAloD0MIAmVTrrAUckCUhpRSlGgVS9NoFkdAr3/6S9ugpXV9lChoBmgJaA9DCH/Bbti29E1AlIaUUpRoFUt+aBZHQK+AG1lXiit1fZQoaAZoCWgPQwhHkiBcAQxzQJSGlFKUaBVL2mgWR0CvgG8ZDRdAdX2UKGgGaAloD0MIIHwo0dIPcUCUhpRSlGgVS9VoFkdAr4CcRBeHBXV9lChoBmgJaA9DCIP6ljmdmHNAlIaUUpRoFU0DAWgWR0CvgLjSG8EndX2UKGgGaAloD0MIjswjf7B8c0CUhpRSlGgVS99oFkdAr4DBg7YChnV9lChoBmgJaA9DCLYSukui93NAlIaUUpRoFUvOaBZHQK+BBTZQHiZ1fZQoaAZoCWgPQwgZ5ZmXgyt0QJSGlFKUaBVL0GgWR0CvgXMdDIBBdX2UKGgGaAloD0MIMXpuoes9ckCUhpRSlGgVS65oFkdAr4GtlGwzL3V9lChoBmgJaA9DCBIvT+cKFHFAlIaUUpRoFUuraBZHQK+Btg/C66J1fZQoaAZoCWgPQwiLpx5pMERxQJSGlFKUaBVLxmgWR0CvggK7qY7adX2UKGgGaAloD0MItW0YBQERckCUhpRSlGgVTdQBaBZHQK+CExyn1nN1fZQoaAZoCWgPQwhTeqaX2BZwQJSGlFKUaBVL3WgWR0CvgjzF+/g0dX2UKGgGaAloD0MIEXNJ1TYDckCUhpRSlGgVS9ZoFkdAr4I8uez2OHV9lChoBmgJaA9DCOIEptN6GnNAlIaUUpRoFUu2aBZHQK+CXY6nzhB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "n_steps": 1024, "gamma": 0.9992, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5665c181c327ec13e132b3800655a0a3f91133607273aeb4fa0a075d69b484cf
|
3 |
+
size 147954
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb07b5314d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb07b531560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb07b5315f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb07b531680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb07b531710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb07b5317a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb07b531830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb07b5318c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb07b531950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb07b5319e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb07b531a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb07b57f840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAAAAAIDqrrG1NoIpckdrrB8bAfDg8D5T/A50B7U+S6eQLNWaNANXfyIAcqxl+Vj4/mB6x8iysoeIVygyRWkCbo2T4uFdWlHbwin2rSzUrlzlfxfFxYf5E7bI/9xBzbDwTkHCPUFzkKYm6WjeTKxc8zcLgFh+N4BrnvKrQeGhgvYjeGocskEFHljBbZer3nP5YltMQqCFY5+ihxcdH+DgUOwHGAolOtvF6Fc239uTskD5G0AqQX4qoQ5j/lZUIdtr3MLhyxX5ZUpntqlwbCXiWDDGrkm2FiqH9ZdlLKegEsUGZDekRSIIox5nF8BxphAZLx5PBzmNUIA58Qd9hrbKDuHkcOUkEGG0evARyGmtSwy7sTGOc4Lz0YC25H8E5qCiP6WQ7nJOdCgriC4Fm4ANOoVGMXbR0bDR2TWVRgNkfmK1SyvgcjnVIJSUOP3BHylLC7Z3SCNE5fHd073Ir9JqTBez0RiW0ER8sqBV/KEcbB2aFY52lzF9nl6x9lTLY0cctEOnjumVJVnp5gQUp4cKRiuxo4mZ1ZFjCj+BCRQWfJ2nFLDzEX2gnadqQJpZh+uMjg+xmX7RiZo++u0pQc/gHuQu4LZmkoP2MJUAiB51VHcn0dXPArA/v079/HHZqr/2ePpZKqxCRi327lycY0cOgWCar4DhmdoX9Ajj1hpSHbSELZKotP7ccUJ1s4MilYtFYKqMnm6MVB21gHUQbyPXPPR+3/pB62Hysb2KhMWH5PGODdcsGT4TNmTiSXl5K8JWlsN+PXwD9S7n9ZFsOa8fRgkyOOcqyT+bhXBS0ERlvpQhBtZCqQ+NH9RBaYrn0UxopgTZn0KS8d10+uZ07eAb6Ba4RMeayKceB/H6TOBAQuBAvjTi1Rt1a2aTgGIJicJfDSHvyqjMEsFcM9QJCzrh8xdeGsUAUdnyFNX6d25tqzti1k7aNgRyX2ZO6ziAEtZO4tVAU5QPKVLskQ2V4MlyTRfO8k8jU3uHuNFxXr3E/UlvvcWA4CE35CKO/MAbu+/3WzChuTWYApBhAagrRp07gXda2kRKbDq47kQNQGs3Q+xJyty1Sd0XOwC9qRzgHmLhbORFxUj/PcQqxF1nb2KMdKBfgj5kmN3B2PJAqfgmF3iF+WwIHYlPn2P0oyJtDsATv4GuTdxUOmp9zzM626ZP/PJi7O2LTvskpZpGsGyfk41Nk6Uy0B0gyXWUadvQbTtz0Go+3krZioITWUG/axhZrizuSRPg0JuV/jY6AeqA+Z4Mr7GIuFUdHZeydEPbl21U+yukDOvQ78w2McR/vbPkUTcFOQbOQWOsz5WtPz/YtJ+RG9+T/ZWpZJtBxC2uoFhnvgN01SwtzFdg9/TO1mJEqSMTG80m4ree1r+3/VaIqk7vlz1coZtIBQDqkA4rPLrq+sYSlrUKmvc1QBtyDmcPkGC129slGXNiGyA8Lq5q1PlAQ94RkAT4RNdqBzDm6ThJZ94+eekgfYh1mOUnnnnVOTIJVCEWLN/J/EII4FNHowag4Acvbcnd0jVMF5iaOWEIFJyhUsq/uOliG31X6fgNqbLqwFD4k/BF2hFUYmcS4RAjTNVJl2lEDYy53OpRhQr0Rwjzb8q+UGZa/4+j31uxgdrYifPZYNLQJ51k3VxG0DPJZPa51R1Sws4TVwjyriblFUdjyzkNhtuSqmGTMEQqVXGMT/Pc8SIy6+LK/cApCC5G4pzq614RsFoq+v4vmR3R0ALL0McmkgrEvcy1z6EJ9Ia9ALNEzxBUFAgddtHMwq2yeIhfWPmRmxd8i25SDJe/5/lROYdgM1V/S4OM7Ct8NT/Y7LAw32WsBDxH9k3Fv0QOj70F7PGMxjXBOEF66WQEpwxIJ1H/Cn6/nvvK7jJpp+wQmSUzgCdjgw7uhz9y8wHBZahDsignwCeO8FykykVnHgQfH4X6J0g2EYwvYeaURQk6BIBp7Zzsn5i1Vb9xbCxfXjDG5XRUGXVDs1qSqzOyAhocua9dvOKUKSinTS0O41hK+6IXg43vRTObMop5rgByRbH0jF+Bw0J8eae+BwiWlQR8hvDr/9J1Gp/5PWXrhGNMgIuF8jMgDOySevQCwYiUsZupZ+BKbRwsM367R5DjTRQqQbvAqdBlIheWMIyWVSAKQ1/me1SRRHSUM9qzutNeIaDVcZf6T51FRWe6LTsPM7dq+j8jXtEtXKrfHqoAGWFAuEVIGTxi87wtS5zR8nQuK3WFqtbbLjPkW3ck/QTkDkOFKxIeCXt7SEA2p3l/AKiOtQWoYGDpXKk1Jn8rwxd9RYXG11sKbfynWnl8qbp/D8LhSzKYt5VkLcq4Wh2HzdrxeYbSF97/whuBppvZ5Ro3xWBcRiySrgwCcjEzI2Uk4uGjH1TOzSAUw9/9S2ndtEKNGgDF5fzTr7PlD0+wud7/hBiAmvp6XHwzrSy1psrgCzP74OaHtn6M6iJwVZ++rh8uVkUuyEzOmSbPTZTHlH9jKQowbxbJejADo+rv/eWwPN4Rcg3yFLHDjijWa5aA5mdXYMFqGYYimXxAzROmOKjvsfBJnUyuvZ6SHO2nT/zLlTUCcrNP/Tl5+FwnI8pjWx5cBGlB4TIuo35nWsIXnNTORyGL+TCtpsnXn8wth3ZaTZ9MMU/VfqNS3YQawfkpRdPOhUT2lhOQh4SWddwbtqh1tCjRLqhsYY6ADG/j1DbSIMyh68O2wxYDgvnxiyC0nf7WlZYwffcvKyB0EGc5w/8chQioqqbiWKec60kcIf6gMhAnjdB/N9/PBtMWsThHreyfW5EthDsN2hHGNEE6hA8AywlzK6Rm7KD/Bu4Tz3Jie6vQ+UZ2UI6bepySAnrqaFG+d3p3OzXspWkRTU9VpVvM6Zj4SKf/31sPHrITWLy9LjP78nvmoQb7zMQgHTo67Vm9G/oft8zFE7lCVfbAtM5HJWR3iV9vWVqHBgi9eUdaciPQhrhQGcjsBSORO985G+bswTtVfalowA5r4vnIbKvHmhOjBaP+WBfedi9VV/2ckrZufEWyKpowWcwjPnLDuojT8nr2uGLTLaQlGTd199tncRXf1yeqYqRb/+u37O3jp3/NaGziIkdLP22KcZ2ZUarbZOe3mb8i+6r9x6PZ/6loxBKk7HJ6gNIwQZ0+KZQoVb3cvl5Xg/AnH7e4oDhBVlvc48l/hLOkS9m0KOP3SASA0gqxVtvGMG2p8k+33LoBOK+x1f7B4HX+SeSlLNUkB3lyYP5RjKOgHyUxCtIx3zw4CfzskI0t2fqyAnC3Eb2y1owO4nswyoe/VuyRgRivDIMIgnhNpzws6V0xZohG6Qpql02ZgX2n50xndwYHhgNBWJR0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 20,
|
45 |
+
"num_timesteps": 512000,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": 42,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653904476.5107265,
|
51 |
+
"learning_rate": 1e-06,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz6wxvegte2NhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVDQMAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxRLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKAAgAAg5lRvo90oT6KXg8/fkzRviBfOzvTFVA+AAAAAAAAAACaQXq8KZAyuqYPLjP+HfKu5bkFOk2w0bMAAIA/AACAP3jA0b6E/0M/kccEPqASF78P0AS/coUXPgAAAAAAAAAAM5aWvFzleryqKMM90ZebvchqNzvVEE89AACAPwAAgD8AKDK7ZEa3P4HbE74ZTec+596uO80BnD0AAAAAAAAAAO2HQr4JFlM/9VVTvorYD7/gGZW+0figvQAAAAAAAAAAjYCrPVWXiT+id6c+pGYxvykgKD6MGyM+AAAAAAAAAAAaiXc9Qt6nP756Dj+t4w+/GD2OPJ1xYD4AAAAAAAAAADNDYL69sik/ojWOvU0RBL/S8Z2+vUP8ugAAAAAAAAAAZsGyvI8SELq4aps29I4MMrrqCDsLz7m1AACAPwAAgD8NSdk99l1fP2L2LT7muh2/oTxgPlNuAjwAAAAAAAAAAACCQD2200W8P7SyO2ATGzzGCam9VBEFPQAAgD8AAIA/M7WaPTE7dz71eJS+U6PlvnxmVLsG8IW+AAAAAAAAAACa4Im8Ps20P74jKL5CuuW9DFFWPLu8hzsAAAAAAAAAAAAWnrzSoLA/TkymvXpon77BNb48Ytp/vQAAAAAAAAAAzT8mPt3wsT425YO+y6TjvjRYvD0RvQe+AAAAAAAAAADNpLg84RixuhqlEDxwi4w8PvJ8ui2HdD0AAIA/AACAP5rU3r3Ea7M+cSeSPdaT5b6Ybfy9O8cMuwAAAAAAAAAATbc8vTtojbw5+CA+JZwZvUlepL07NLu9AACAPwAAgD+AKD090mXlu1D4jb1EHve4fZo0PYjfAbsAAIA/AACAP5R0lGIu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVnAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDFAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.02400000000000002,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDAdCsoDkckCUhpRSlIwBbJRLtowBdJRHQK9Ne/336AR1fZQoaAZoCWgPQwha12g50NdOQJSGlFKUaBVLj2gWR0CvTbMyzolldX2UKGgGaAloD0MIeLZHbziBc0CUhpRSlGgVS8doFkdAr3CnndO6/nV9lChoBmgJaA9DCOAu+3Wn+3BAlIaUUpRoFUvHaBZHQK9wpz+3pfR1fZQoaAZoCWgPQwgepn1zf9FSQJSGlFKUaBVLlmgWR0CvcKqv/zasdX2UKGgGaAloD0MIg1K0cm8wc0CUhpRSlGgVS8hoFkdAr3DqkCV8kXV9lChoBmgJaA9DCAW/DTFee29AlIaUUpRoFUu3aBZHQK9xapEQXhx1fZQoaAZoCWgPQwgk0jb+RKZxQJSGlFKUaBVLvGgWR0CvcXpBPbfxdX2UKGgGaAloD0MIWtb9Y6GbcUCUhpRSlGgVS9hoFkdAr3GNSsKb8XV9lChoBmgJaA9DCEsC1NRyfHFAlIaUUpRoFUvaaBZHQK9xxAX2ugZ1fZQoaAZoCWgPQwg9gbBTLCxyQJSGlFKUaBVLsmgWR0CvcdyZBsyjdX2UKGgGaAloD0MImyDqPoAxcUCUhpRSlGgVS8hoFkdAr3H/DJlrdnV9lChoBmgJaA9DCAcHexMDCXNAlIaUUpRoFUvOaBZHQK9x/kn1Fph1fZQoaAZoCWgPQwjaBBiWPzRzQJSGlFKUaBVLxGgWR0Cvcjau4gA7dX2UKGgGaAloD0MIz4QmiaWBcUCUhpRSlGgVS9doFkdAr3J/yAhB7nV9lChoBmgJaA9DCFg4SfOHhnBAlIaUUpRoFUvQaBZHQK9ys7p3X7N1fZQoaAZoCWgPQwiPVN/5BTJyQJSGlFKUaBVLsWgWR0CvcuMiSq2jdX2UKGgGaAloD0MIrwYoDXUUcECUhpRSlGgVS7loFkdAr3L617Y023V9lChoBmgJaA9DCGk7pu7K4nJAlIaUUpRoFUvZaBZHQK9zNl/Yrax1fZQoaAZoCWgPQwg9murJvN9wQJSGlFKUaBVLumgWR0Cvc0gieNDMdX2UKGgGaAloD0MIL4UHza6CcUCUhpRSlGgVS+RoFkdAr3NlCkXUIHV9lChoBmgJaA9DCKzhIvf0t3JAlIaUUpRoFUvDaBZHQK90agfU4Jh1fZQoaAZoCWgPQwhQNA9gkVhvQJSGlFKUaBVLxGgWR0CvdHBD5TIedX2UKGgGaAloD0MIcnDpmHMfcUCUhpRSlGgVS6hoFkdAr3SsS9M9KXV9lChoBmgJaA9DCFwBhXq6c3FAlIaUUpRoFUvfaBZHQK90/I065oZ1fZQoaAZoCWgPQwj6CWe3Fm1zQJSGlFKUaBVL3GgWR0CvdSz6rNnodX2UKGgGaAloD0MICHWRQlmncUCUhpRSlGgVS8BoFkdAr3U7/S6UaHV9lChoBmgJaA9DCBOc+kDyvnJAlIaUUpRoFUuyaBZHQK91RwazeGh1fZQoaAZoCWgPQwiHhsWoa8dvQJSGlFKUaBVLt2gWR0CvdUZRCQcQdX2UKGgGaAloD0MIMCsU6f7UbkCUhpRSlGgVS8xoFkdAr3VXkili0HV9lChoBmgJaA9DCIHLY81I4W5AlIaUUpRoFUuzaBZHQK91a7btZ3d1fZQoaAZoCWgPQwgi41EqYQRyQJSGlFKUaBVLzGgWR0Cvdd2r4nF6dX2UKGgGaAloD0MITzv8NVkMc0CUhpRSlGgVS9BoFkdAr3Yqynk1dnV9lChoBmgJaA9DCMKHEi35fW5AlIaUUpRoFUvRaBZHQK92su27Wd51fZQoaAZoCWgPQwgSvYxieVlxQJSGlFKUaBVLxmgWR0CvdsEhzNlidX2UKGgGaAloD0MIX0TbMXUAckCUhpRSlGgVS+JoFkdAr3bQvtdAxHV9lChoBmgJaA9DCGIx6lq7TnJAlIaUUpRoFUvQaBZHQK923b1yvLZ1fZQoaAZoCWgPQwgxC+2cpgdxQJSGlFKUaBVLymgWR0CvdxCHh0hedX2UKGgGaAloD0MI0qxsH/Kgc0CUhpRSlGgVS9hoFkdAr3diekHlfnV9lChoBmgJaA9DCLraiv1lSVNAlIaUUpRoFUt6aBZHQK93mhKUVzp1fZQoaAZoCWgPQwizt5TzxZNyQJSGlFKUaBVL5GgWR0Cvd7VmrbQDdX2UKGgGaAloD0MIWYrkK4GNc0CUhpRSlGgVS8loFkdAr3g/rhR64XV9lChoBmgJaA9DCJKWytuRA3RAlIaUUpRoFUvSaBZHQK94Z18stkF1fZQoaAZoCWgPQwjePqvMlOFvQJSGlFKUaBVLxmgWR0CveGuJcgQpdX2UKGgGaAloD0MIGqN1VPWncECUhpRSlGgVS8BoFkdAr3jgIv8IiXV9lChoBmgJaA9DCGnGouns/HJAlIaUUpRoFUvGaBZHQK945ps41gp1fZQoaAZoCWgPQwhWgVoMXn1xQJSGlFKUaBVLw2gWR0CvePE9+w1SdX2UKGgGaAloD0MIEW+df7vrcECUhpRSlGgVS69oFkdAr3kzXDm8unV9lChoBmgJaA9DCK+UZYjj1nJAlIaUUpRoFUvVaBZHQK95QVKPGQ11fZQoaAZoCWgPQwhxWYXNALRxQJSGlFKUaBVL5mgWR0CveVao/A0sdX2UKGgGaAloD0MIQuigSzhRcUCUhpRSlGgVS9NoFkdAr3loKSgXdnV9lChoBmgJaA9DCFm/mZjuunJAlIaUUpRoFUuqaBZHQK95/Ex7AtZ1fZQoaAZoCWgPQwhgdk8eViFyQJSGlFKUaBVLzmgWR0Cvehh3iaRZdX2UKGgGaAloD0MI/YUeMfqocECUhpRSlGgVS6loFkdAr3pI/RmbsnV9lChoBmgJaA9DCDBK0F9orGdAlIaUUpRoFU3oA2gWR0CveqVgpjMFdX2UKGgGaAloD0MIj1a1pGPDckCUhpRSlGgVS9toFkdAr3rbpu/DcnV9lChoBmgJaA9DCN+l1CUjl3JAlIaUUpRoFUvcaBZHQK97BZElVtJ1fZQoaAZoCWgPQwg6IAn7dmdyQJSGlFKUaBVL4GgWR0Cvew5iExqPdX2UKGgGaAloD0MIz0vFxvwPc0CUhpRSlGgVS7doFkdAr3sWrCFbmnV9lChoBmgJaA9DCH+kiAxrvHFAlIaUUpRoFUvDaBZHQK97XtxdY4h1fZQoaAZoCWgPQwiiz0cZcW9yQJSGlFKUaBVL4WgWR0Cve5GJN0vHdX2UKGgGaAloD0MICJRNuUIfcUCUhpRSlGgVS7doFkdAr3vBqO938nV9lChoBmgJaA9DCDz2s1hKCnJAlIaUUpRoFUvUaBZHQK98O4J/oaF1fZQoaAZoCWgPQwj8HYoC/VlvQJSGlFKUaBVLv2gWR0CvfFWDg62fdX2UKGgGaAloD0MI86rOaoEJckCUhpRSlGgVS8FoFkdAr3xUKZ2IPHV9lChoBmgJaA9DCMdJYd6jrHJAlIaUUpRoFUvnaBZHQK98aNsnAqN1fZQoaAZoCWgPQwgBh1ClpvRyQJSGlFKUaBVLymgWR0CvfHWGyon8dX2UKGgGaAloD0MIogip25nJcUCUhpRSlGgVS8poFkdAr3y6McZLqXV9lChoBmgJaA9DCKRyE7W0gHJAlIaUUpRoFUvKaBZHQK98w4Otnwp1fZQoaAZoCWgPQwhpGan3FDlzQJSGlFKUaBVLzWgWR0CvfPM6q815dX2UKGgGaAloD0MI8iN+xRqsckCUhpRSlGgVS9JoFkdAr3z7pzLfUHV9lChoBmgJaA9DCGh5HtwdH3BAlIaUUpRoFUvAaBZHQK99erJ8v251fZQoaAZoCWgPQwg3xeOiWrVxQJSGlFKUaBVL5mgWR0Cvfdw+UyHmdX2UKGgGaAloD0MIvMrapnjqb0CUhpRSlGgVS7xoFkdAr33uAPNFB3V9lChoBmgJaA9DCCs1e6AV23JAlIaUUpRoFUvLaBZHQK9+ZuivgWJ1fZQoaAZoCWgPQwheud42k+9zQJSGlFKUaBVL62gWR0Cvfodrwe/6dX2UKGgGaAloD0MI73TniSebcUCUhpRSlGgVS9loFkdAr36VwNsnA3V9lChoBmgJaA9DCBwKn62DHHNAlIaUUpRoFUvcaBZHQK9+q6IWP911fZQoaAZoCWgPQwjVk/lH3+BwQJSGlFKUaBVLwWgWR0CvfsAZjx0/dX2UKGgGaAloD0MIW3heKjacckCUhpRSlGgVS9loFkdAr37y00FbFHV9lChoBmgJaA9DCLcm3ZbIl3FAlIaUUpRoFUvQaBZHQK9/O7GvOhV1fZQoaAZoCWgPQwjVA+YhE7VxQJSGlFKUaBVLt2gWR0Cvf2xpDeCTdX2UKGgGaAloD0MIGD4ipkTiTUCUhpRSlGgVS6FoFkdAr3+BTyauwHV9lChoBmgJaA9DCNHLKJYbPHJAlIaUUpRoFUvKaBZHQK9/p9zfaYh1fZQoaAZoCWgPQwjpKAezCQ1yQJSGlFKUaBVLwWgWR0Cvf7stsenydX2UKGgGaAloD0MIAmVTrrAUckCUhpRSlGgVS9NoFkdAr3/6S9ugpXV9lChoBmgJaA9DCH/Bbti29E1AlIaUUpRoFUt+aBZHQK+AG1lXiit1fZQoaAZoCWgPQwhHkiBcAQxzQJSGlFKUaBVL2mgWR0CvgG8ZDRdAdX2UKGgGaAloD0MIIHwo0dIPcUCUhpRSlGgVS9VoFkdAr4CcRBeHBXV9lChoBmgJaA9DCIP6ljmdmHNAlIaUUpRoFU0DAWgWR0CvgLjSG8EndX2UKGgGaAloD0MIjswjf7B8c0CUhpRSlGgVS99oFkdAr4DBg7YChnV9lChoBmgJaA9DCLYSukui93NAlIaUUpRoFUvOaBZHQK+BBTZQHiZ1fZQoaAZoCWgPQwgZ5ZmXgyt0QJSGlFKUaBVL0GgWR0CvgXMdDIBBdX2UKGgGaAloD0MIMXpuoes9ckCUhpRSlGgVS65oFkdAr4GtlGwzL3V9lChoBmgJaA9DCBIvT+cKFHFAlIaUUpRoFUuraBZHQK+Btg/C66J1fZQoaAZoCWgPQwiLpx5pMERxQJSGlFKUaBVLxmgWR0CvggK7qY7adX2UKGgGaAloD0MItW0YBQERckCUhpRSlGgVTdQBaBZHQK+CExyn1nN1fZQoaAZoCWgPQwhTeqaX2BZwQJSGlFKUaBVL3WgWR0CvgjzF+/g0dX2UKGgGaAloD0MIEXNJ1TYDckCUhpRSlGgVS9ZoFkdAr4I8uez2OHV9lChoBmgJaA9DCOIEptN6GnNAlIaUUpRoFUu2aBZHQK+CXY6nzhB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 992,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.9992,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abbc5bac3a7f94ee4a223d120c5b8b664e7733d112ac197aa8beaef3cd361e61
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7719f0b3f6334dc2b997c4a85d16f72a86b27e1d158fe4a68c82ac3d026815d3
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0330eec52ae7faafcc847a85f639f822afe4bd9da1c243ca1029026afd64eb5b
|
3 |
+
size 209264
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 291.8178850628517, "std_reward": 17.98903920244939, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-30T10:10:09.862786"}
|