Misha24-10 commited on
Commit
ea48db6
·
1 Parent(s): 0a5b0cb

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 205.90 +/- 72.21
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79786f64d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79786f6560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79786f65f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79786f6680>", "_build": "<function ActorCriticPolicy._build at 0x7f79786f6710>", "forward": "<function ActorCriticPolicy.forward at 0x7f79786f67a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79786f6830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f79786f68c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79786f6950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79786f69e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79786f6a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f79787409c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653764770.0455005, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5/1/nDD2bUCUhpRSlIwBbJRN9AGMAXSUR0CSMM9/SYw7dX2UKGgGaAloD0MIdY9srhqvakCUhpRSlGgVTSoCaBZHQJI34CcPOIJ1fZQoaAZoCWgPQwjdCfZfZ7drQJSGlFKUaBVN9gFoFkdAkj4yR0U473V9lChoBmgJaA9DCLPviuB/nGlAlIaUUpRoFU3pAWgWR0CSQdp97WupdX2UKGgGaAloD0MIOdGuQkpWbUCUhpRSlGgVTRoCaBZHQJJIRqagElp1fZQoaAZoCWgPQwjlub4PB1ZvQJSGlFKUaBVNvgFoFkdAkktG5DqnnHV9lChoBmgJaA9DCG7A54eRJWlAlIaUUpRoFU3WAWgWR0CSTqTot+TedX2UKGgGaAloD0MIj2yumudHb0CUhpRSlGgVTfkBaBZHQJJUv1PFefJ1fZQoaAZoCWgPQwiOklfnGFhuQJSGlFKUaBVNzgFoFkdAklffw/gR9XV9lChoBmgJaA9DCLCuCtTiA2tAlIaUUpRoFU0BAmgWR0CSXfcaOxSpdX2UKGgGaAloD0MIApoIGx6ZakCUhpRSlGgVTdIBaBZHQJJhNvvSc9Z1fZQoaAZoCWgPQwiwO9154qRsQJSGlFKUaBVNzwFoFkdAkmc67iADrHV9lChoBmgJaA9DCBOB6h9ELm1AlIaUUpRoFU3HAWgWR0CSalqPfbbldX2UKGgGaAloD0MIp7OTwVFObkCUhpRSlGgVTfIBaBZHQJJwlqbjLjh1fZQoaAZoCWgPQwjeWbvtQgJpQJSGlFKUaBVN7gFoFkdAknRrUoa1kXV9lChoBmgJaA9DCHkgskiTi2xAlIaUUpRoFU3FAWgWR0CSeq3C9AX3dX2UKGgGaAloD0MI2ubG9ITccECUhpRSlGgVTdwBaBZHQJJ90dZJTVF1fZQoaAZoCWgPQwhtWFNZFEloQJSGlFKUaBVN2AFoFkdAkoQlGG21D3V9lChoBmgJaA9DCNl78UV7MmRAlIaUUpRoFU1zAmgWR0CSiJYEGJN1dX2UKGgGaAloD0MIwD3PnzbIaECUhpRSlGgVTasBaBZHQJKOd1wHZ9N1fZQoaAZoCWgPQwhBLQYP08ZqQJSGlFKUaBVN5AFoFkdAkpHQGjbi63V9lChoBmgJaA9DCMgG0sVmG3FAlIaUUpRoFU2ZAWgWR0CSlHvBrN4adX2UKGgGaAloD0MIs7J9yFuBakCUhpRSlGgVTcYBaBZHQJKbARbr1NB1fZQoaAZoCWgPQwgxQKIJFJ5oQJSGlFKUaBVNxAFoFkdAkp5aXKKYRnV9lChoBmgJaA9DCFyRmKAGWXBAlIaUUpRoFU3WAWgWR0CSpHaYu01JdX2UKGgGaAloD0MIB0KygImCcECUhpRSlGgVTbMBaBZHQJKnXfzjFQ51fZQoaAZoCWgPQwin6bMDrk9tQJSGlFKUaBVNsQFoFkdAkq0SzcAR03V9lChoBmgJaA9DCK37x0J0xGlAlIaUUpRoFU3aAWgWR0CSsLNpudf+dX2UKGgGaAloD0MIAwe0dAXJbECUhpRSlGgVTb8BaBZHQJK2zFm4Ajp1fZQoaAZoCWgPQwhe1y/YDb5rQJSGlFKUaBVN0wFoFkdAkrmrC79Q43V9lChoBmgJaA9DCGVSQxsADG1AlIaUUpRoFU3GAWgWR0CSvH7oSteVdX2UKGgGaAloD0MIG7luSvkfa0CUhpRSlGgVTbcBaBZHQJLC0rCm/Fl1fZQoaAZoCWgPQwh2G9R+65ZuQJSGlFKUaBVN8gFoFkdAksYLGWD6FnV9lChoBmgJaA9DCJceTfVkCW1AlIaUUpRoFU3PAWgWR0CSzH8s+V1PdX2UKGgGaAloD0MID2Q9tfr6bkCUhpRSlGgVTZ8BaBZHQJLPdwLmZE51fZQoaAZoCWgPQwj1LXO6rLlvQJSGlFKUaBVNqQFoFkdAktTmJSBK+XV9lChoBmgJaA9DCMfw2M/id3FAlIaUUpRoFU2bAWgWR0CS183yI55rdX2UKGgGaAloD0MIbkxPWGL1bUCUhpRSlGgVTeABaBZHQJLa11aGHpN1fZQoaAZoCWgPQwiVY7K4/1NaQJSGlFKUaBVNrgJoFkdAkuNG/JvHcXV9lChoBmgJaA9DCMvbEU4LfW1AlIaUUpRoFU3gAWgWR0CS6WYoiLVGdX2UKGgGaAloD0MIqDY4EX2TZ0CUhpRSlGgVTbwBaBZHQJLseNdZ7ol1fZQoaAZoCWgPQwgRGVbxRu1nQJSGlFKUaBVNEgJoFkdAkvNqQV9F4XV9lChoBmgJaA9DCML2kzE++m5AlIaUUpRoFU32AWgWR0CS9ppTMqz7dX2UKGgGaAloD0MIv2N47OeXbECUhpRSlGgVTeQBaBZHQJL8xZHNHH51fZQoaAZoCWgPQwhiLNMvkXhrQJSGlFKUaBVNqQFoFkdAkv+PkWAPNHV9lChoBmgJaA9DCCiBzTl4W2pAlIaUUpRoFU3QAWgWR0CTArAEMb3odX2UKGgGaAloD0MINh/XhgqsZ0CUhpRSlGgVTc0BaBZHQJMIxVPva111fZQoaAZoCWgPQwgLCK2HryVvQJSGlFKUaBVNsgFoFkdAkwuoigTRIHV9lChoBmgJaA9DCHizBu+rVm5AlIaUUpRoFU3FAWgWR0CTEZ6ClJpWdX2UKGgGaAloD0MIoOBiRQ1+LMCUhpRSlGgVTdsBaBZHQJMUvAJswcp1fZQoaAZoCWgPQwhHdxA700hnQJSGlFKUaBVNFwJoFkdAkxu/KZDzAnV9lChoBmgJaA9DCO54k9+iWGxAlIaUUpRoFU2/AWgWR0CTH1nOB19wdX2UKGgGaAloD0MI+rX1079NcECUhpRSlGgVTewBaBZHQJMlcF+uvEF1fZQoaAZoCWgPQwgc0xOWeDZrQJSGlFKUaBVNwAFoFkdAkyjsWoFV1nV9lChoBmgJaA9DCNFXkGZsUXBAlIaUUpRoFU2eAWgWR0CTK5a24NI9dX2UKGgGaAloD0MIVtP1RBdTcECUhpRSlGgVTZIBaBZHQJMw/nU2DQJ1fZQoaAZoCWgPQwhfuHNhpPFtQJSGlFKUaBVNpAFoFkdAkzSY3Ns3ynV9lChoBmgJaA9DCNy93CeHKHBAlIaUUpRoFU3IAWgWR0CTOqtvXK8tdX2UKGgGaAloD0MIs0KR7icQcECUhpRSlGgVTeoBaBZHQJM+ENrj5sV1fZQoaAZoCWgPQwhF8SprG69uQJSGlFKUaBVN0wFoFkdAk0QVme18cHV9lChoBmgJaA9DCMkh4ubUyG1AlIaUUpRoFU2+AWgWR0CTRxMNMGordX2UKGgGaAloD0MIzGPNyKBYcUCUhpRSlGgVTawBaBZHQJNMw2R7qpt1fZQoaAZoCWgPQwgKD5pd9zpwQJSGlFKUaBVN1gFoFkdAk0+qe9SMtXV9lChoBmgJaA9DCLml1ZA4nHBAlIaUUpRoFU22AWgWR0CTUlhzeXRgdX2UKGgGaAloD0MIBMb6BqZob0CUhpRSlGgVTc0BaBZHQJNYpQtSQ5p1fZQoaAZoCWgPQwhpOjsZnEVuQJSGlFKUaBVN7QFoFkdAk1xJZr56+nV9lChoBmgJaA9DCFqEYivocmlAlIaUUpRoFU27AWgWR0CTYqQBPsRhdX2UKGgGaAloD0MIbeNPVDaqaUCUhpRSlGgVTeoBaBZHQJNmSfGuLaV1fZQoaAZoCWgPQwgKStHKvTRwQJSGlFKUaBVN3gFoFkdAk2wlVktmMHV9lChoBmgJaA9DCAJjfQMTQG5AlIaUUpRoFU3TAWgWR0CTb2ofCAMEdX2UKGgGaAloD0MITrnCu1w/bUCUhpRSlGgVTbwBaBZHQJN1I2YOUdJ1fZQoaAZoCWgPQwgSMpBnlwVpQJSGlFKUaBVN2QFoFkdAk3iv2PDHfnV9lChoBmgJaA9DCPG3PUHip2dAlIaUUpRoFU24AWgWR0CTe8dTo+wDdX2UKGgGaAloD0MITG9/LhonZ0CUhpRSlGgVTd8BaBZHQJOBydmQKa51fZQoaAZoCWgPQwgRGsHG9WltQJSGlFKUaBVN2gFoFkdAk4UltoBaLXV9lChoBmgJaA9DCLIS86wkx3BAlIaUUpRoFU2uAWgWR0CTiqPd2xIKdX2UKGgGaAloD0MIZqGd0yytcECUhpRSlGgVTekBaBZHQJONrgBLf1p1fZQoaAZoCWgPQwhm3T8WokhsQJSGlFKUaBVNwAFoFkdAk5Oqs6q82HV9lChoBmgJaA9DCL8n1qnyB2tAlIaUUpRoFU3bAWgWR0CTlu+ee4CqdX2UKGgGaAloD0MISFD8GPOQbECUhpRSlGgVTcwBaBZHQJOcxZ7ojfN1fZQoaAZoCWgPQwiqCg3EsoNvQJSGlFKUaBVN8AFoFkdAk6AGBJ7LMnV9lChoBmgJaA9DCLt+wW7YpFxAlIaUUpRoFU0MA2gWR0CTqPhPCVKPdX2UKGgGaAloD0MIM25qoPnYbUCUhpRSlGgVTQQCaBZHQJOsbtVrAQB1fZQoaAZoCWgPQwjs3LQZJ7hsQJSGlFKUaBVN5QFoFkdAk7Mbm2b5M3V9lChoBmgJaA9DCEBQbtv3AW5AlIaUUpRoFU0bAmgWR0CTtt2alUIcdX2UKGgGaAloD0MIBW9IowJYa0CUhpRSlGgVTcEBaBZHQJO8zCm/Fit1fZQoaAZoCWgPQwiPjUC8LoxmQJSGlFKUaBVN5QFoFkdAk8BMbzbvgHV9lChoBmgJaA9DCJ5+UBepRmpAlIaUUpRoFU2vAWgWR0CTxiW6bvw3dX2UKGgGaAloD0MIOEnzx7REbUCUhpRSlGgVTb4BaBZHQJPJYOOKfnR1fZQoaAZoCWgPQwiwcmiR7bprQJSGlFKUaBVNrgFoFkdAk88/iT+vQnV9lChoBmgJaA9DCOvkDMUdM21AlIaUUpRoFU3yAWgWR0CT0pqeK8+SdX2UKGgGaAloD0MIJA9EFmnycECUhpRSlGgVTWYBaBZHQJPU9xuKoAJ1fZQoaAZoCWgPQwh16PS8m8FhQJSGlFKUaBVNfwJoFkdAk9xEuYhManV9lChoBmgJaA9DCA677xie1WRAlIaUUpRoFU1YAmgWR0CT45DE3sHCdX2UKGgGaAloD0MIaqLPR5niakCUhpRSlGgVTb4BaBZHQJPnBI/Z/Td1fZQoaAZoCWgPQwicwd8v5mdsQJSGlFKUaBVNmgFoFkdAk+noMa0hNnV9lChoBmgJaA9DCGuad5wirm5AlIaUUpRoFU3JAWgWR0CT791KXfIkdX2UKGgGaAloD0MIE5oklhQ7cUCUhpRSlGgVTd8BaBZHQJPy3SThYNl1fZQoaAZoCWgPQwh5ILJIE6hvQJSGlFKUaBVNhwFoFkdAk/geObRWtHV9lChoBmgJaA9DCJLn+j4ck25AlIaUUpRoFU11AWgWR0CT+rpvxYq5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2445, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6cb08febf5c955a1645471ac772164cbc9308deef4386ce2a29c76f3cc0d473
3
+ size 143237
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f79786f64d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f79786f6560>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f79786f65f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f79786f6680>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f79786f6710>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f79786f67a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f79786f6830>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f79786f68c0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f79786f6950>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f79786f69e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f79786f6a70>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f79787409c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 500736,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1653764770.0455005,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.0014719999999999178,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5/1/nDD2bUCUhpRSlIwBbJRN9AGMAXSUR0CSMM9/SYw7dX2UKGgGaAloD0MIdY9srhqvakCUhpRSlGgVTSoCaBZHQJI34CcPOIJ1fZQoaAZoCWgPQwjdCfZfZ7drQJSGlFKUaBVN9gFoFkdAkj4yR0U473V9lChoBmgJaA9DCLPviuB/nGlAlIaUUpRoFU3pAWgWR0CSQdp97WupdX2UKGgGaAloD0MIOdGuQkpWbUCUhpRSlGgVTRoCaBZHQJJIRqagElp1fZQoaAZoCWgPQwjlub4PB1ZvQJSGlFKUaBVNvgFoFkdAkktG5DqnnHV9lChoBmgJaA9DCG7A54eRJWlAlIaUUpRoFU3WAWgWR0CSTqTot+TedX2UKGgGaAloD0MIj2yumudHb0CUhpRSlGgVTfkBaBZHQJJUv1PFefJ1fZQoaAZoCWgPQwiOklfnGFhuQJSGlFKUaBVNzgFoFkdAklffw/gR9XV9lChoBmgJaA9DCLCuCtTiA2tAlIaUUpRoFU0BAmgWR0CSXfcaOxSpdX2UKGgGaAloD0MIApoIGx6ZakCUhpRSlGgVTdIBaBZHQJJhNvvSc9Z1fZQoaAZoCWgPQwiwO9154qRsQJSGlFKUaBVNzwFoFkdAkmc67iADrHV9lChoBmgJaA9DCBOB6h9ELm1AlIaUUpRoFU3HAWgWR0CSalqPfbbldX2UKGgGaAloD0MIp7OTwVFObkCUhpRSlGgVTfIBaBZHQJJwlqbjLjh1fZQoaAZoCWgPQwjeWbvtQgJpQJSGlFKUaBVN7gFoFkdAknRrUoa1kXV9lChoBmgJaA9DCHkgskiTi2xAlIaUUpRoFU3FAWgWR0CSeq3C9AX3dX2UKGgGaAloD0MI2ubG9ITccECUhpRSlGgVTdwBaBZHQJJ90dZJTVF1fZQoaAZoCWgPQwhtWFNZFEloQJSGlFKUaBVN2AFoFkdAkoQlGG21D3V9lChoBmgJaA9DCNl78UV7MmRAlIaUUpRoFU1zAmgWR0CSiJYEGJN1dX2UKGgGaAloD0MIwD3PnzbIaECUhpRSlGgVTasBaBZHQJKOd1wHZ9N1fZQoaAZoCWgPQwhBLQYP08ZqQJSGlFKUaBVN5AFoFkdAkpHQGjbi63V9lChoBmgJaA9DCMgG0sVmG3FAlIaUUpRoFU2ZAWgWR0CSlHvBrN4adX2UKGgGaAloD0MIs7J9yFuBakCUhpRSlGgVTcYBaBZHQJKbARbr1NB1fZQoaAZoCWgPQwgxQKIJFJ5oQJSGlFKUaBVNxAFoFkdAkp5aXKKYRnV9lChoBmgJaA9DCFyRmKAGWXBAlIaUUpRoFU3WAWgWR0CSpHaYu01JdX2UKGgGaAloD0MIB0KygImCcECUhpRSlGgVTbMBaBZHQJKnXfzjFQ51fZQoaAZoCWgPQwin6bMDrk9tQJSGlFKUaBVNsQFoFkdAkq0SzcAR03V9lChoBmgJaA9DCK37x0J0xGlAlIaUUpRoFU3aAWgWR0CSsLNpudf+dX2UKGgGaAloD0MIAwe0dAXJbECUhpRSlGgVTb8BaBZHQJK2zFm4Ajp1fZQoaAZoCWgPQwhe1y/YDb5rQJSGlFKUaBVN0wFoFkdAkrmrC79Q43V9lChoBmgJaA9DCGVSQxsADG1AlIaUUpRoFU3GAWgWR0CSvH7oSteVdX2UKGgGaAloD0MIG7luSvkfa0CUhpRSlGgVTbcBaBZHQJLC0rCm/Fl1fZQoaAZoCWgPQwh2G9R+65ZuQJSGlFKUaBVN8gFoFkdAksYLGWD6FnV9lChoBmgJaA9DCJceTfVkCW1AlIaUUpRoFU3PAWgWR0CSzH8s+V1PdX2UKGgGaAloD0MID2Q9tfr6bkCUhpRSlGgVTZ8BaBZHQJLPdwLmZE51fZQoaAZoCWgPQwj1LXO6rLlvQJSGlFKUaBVNqQFoFkdAktTmJSBK+XV9lChoBmgJaA9DCMfw2M/id3FAlIaUUpRoFU2bAWgWR0CS183yI55rdX2UKGgGaAloD0MIbkxPWGL1bUCUhpRSlGgVTeABaBZHQJLa11aGHpN1fZQoaAZoCWgPQwiVY7K4/1NaQJSGlFKUaBVNrgJoFkdAkuNG/JvHcXV9lChoBmgJaA9DCMvbEU4LfW1AlIaUUpRoFU3gAWgWR0CS6WYoiLVGdX2UKGgGaAloD0MIqDY4EX2TZ0CUhpRSlGgVTbwBaBZHQJLseNdZ7ol1fZQoaAZoCWgPQwgRGVbxRu1nQJSGlFKUaBVNEgJoFkdAkvNqQV9F4XV9lChoBmgJaA9DCML2kzE++m5AlIaUUpRoFU32AWgWR0CS9ppTMqz7dX2UKGgGaAloD0MIv2N47OeXbECUhpRSlGgVTeQBaBZHQJL8xZHNHH51fZQoaAZoCWgPQwhiLNMvkXhrQJSGlFKUaBVNqQFoFkdAkv+PkWAPNHV9lChoBmgJaA9DCCiBzTl4W2pAlIaUUpRoFU3QAWgWR0CTArAEMb3odX2UKGgGaAloD0MINh/XhgqsZ0CUhpRSlGgVTc0BaBZHQJMIxVPva111fZQoaAZoCWgPQwgLCK2HryVvQJSGlFKUaBVNsgFoFkdAkwuoigTRIHV9lChoBmgJaA9DCHizBu+rVm5AlIaUUpRoFU3FAWgWR0CTEZ6ClJpWdX2UKGgGaAloD0MIoOBiRQ1+LMCUhpRSlGgVTdsBaBZHQJMUvAJswcp1fZQoaAZoCWgPQwhHdxA700hnQJSGlFKUaBVNFwJoFkdAkxu/KZDzAnV9lChoBmgJaA9DCO54k9+iWGxAlIaUUpRoFU2/AWgWR0CTH1nOB19wdX2UKGgGaAloD0MI+rX1079NcECUhpRSlGgVTewBaBZHQJMlcF+uvEF1fZQoaAZoCWgPQwgc0xOWeDZrQJSGlFKUaBVNwAFoFkdAkyjsWoFV1nV9lChoBmgJaA9DCNFXkGZsUXBAlIaUUpRoFU2eAWgWR0CTK5a24NI9dX2UKGgGaAloD0MIVtP1RBdTcECUhpRSlGgVTZIBaBZHQJMw/nU2DQJ1fZQoaAZoCWgPQwhfuHNhpPFtQJSGlFKUaBVNpAFoFkdAkzSY3Ns3ynV9lChoBmgJaA9DCNy93CeHKHBAlIaUUpRoFU3IAWgWR0CTOqtvXK8tdX2UKGgGaAloD0MIs0KR7icQcECUhpRSlGgVTeoBaBZHQJM+ENrj5sV1fZQoaAZoCWgPQwhF8SprG69uQJSGlFKUaBVN0wFoFkdAk0QVme18cHV9lChoBmgJaA9DCMkh4ubUyG1AlIaUUpRoFU2+AWgWR0CTRxMNMGordX2UKGgGaAloD0MIzGPNyKBYcUCUhpRSlGgVTawBaBZHQJNMw2R7qpt1fZQoaAZoCWgPQwgKD5pd9zpwQJSGlFKUaBVN1gFoFkdAk0+qe9SMtXV9lChoBmgJaA9DCLml1ZA4nHBAlIaUUpRoFU22AWgWR0CTUlhzeXRgdX2UKGgGaAloD0MIBMb6BqZob0CUhpRSlGgVTc0BaBZHQJNYpQtSQ5p1fZQoaAZoCWgPQwhpOjsZnEVuQJSGlFKUaBVN7QFoFkdAk1xJZr56+nV9lChoBmgJaA9DCFqEYivocmlAlIaUUpRoFU27AWgWR0CTYqQBPsRhdX2UKGgGaAloD0MIbeNPVDaqaUCUhpRSlGgVTeoBaBZHQJNmSfGuLaV1fZQoaAZoCWgPQwgKStHKvTRwQJSGlFKUaBVN3gFoFkdAk2wlVktmMHV9lChoBmgJaA9DCAJjfQMTQG5AlIaUUpRoFU3TAWgWR0CTb2ofCAMEdX2UKGgGaAloD0MITrnCu1w/bUCUhpRSlGgVTbwBaBZHQJN1I2YOUdJ1fZQoaAZoCWgPQwgSMpBnlwVpQJSGlFKUaBVN2QFoFkdAk3iv2PDHfnV9lChoBmgJaA9DCPG3PUHip2dAlIaUUpRoFU24AWgWR0CTe8dTo+wDdX2UKGgGaAloD0MITG9/LhonZ0CUhpRSlGgVTd8BaBZHQJOBydmQKa51fZQoaAZoCWgPQwgRGsHG9WltQJSGlFKUaBVN2gFoFkdAk4UltoBaLXV9lChoBmgJaA9DCLIS86wkx3BAlIaUUpRoFU2uAWgWR0CTiqPd2xIKdX2UKGgGaAloD0MIZqGd0yytcECUhpRSlGgVTekBaBZHQJONrgBLf1p1fZQoaAZoCWgPQwhm3T8WokhsQJSGlFKUaBVNwAFoFkdAk5Oqs6q82HV9lChoBmgJaA9DCL8n1qnyB2tAlIaUUpRoFU3bAWgWR0CTlu+ee4CqdX2UKGgGaAloD0MISFD8GPOQbECUhpRSlGgVTcwBaBZHQJOcxZ7ojfN1fZQoaAZoCWgPQwiqCg3EsoNvQJSGlFKUaBVN8AFoFkdAk6AGBJ7LMnV9lChoBmgJaA9DCLt+wW7YpFxAlIaUUpRoFU0MA2gWR0CTqPhPCVKPdX2UKGgGaAloD0MIM25qoPnYbUCUhpRSlGgVTQQCaBZHQJOsbtVrAQB1fZQoaAZoCWgPQwjs3LQZJ7hsQJSGlFKUaBVN5QFoFkdAk7Mbm2b5M3V9lChoBmgJaA9DCEBQbtv3AW5AlIaUUpRoFU0bAmgWR0CTtt2alUIcdX2UKGgGaAloD0MIBW9IowJYa0CUhpRSlGgVTcEBaBZHQJO8zCm/Fit1fZQoaAZoCWgPQwiPjUC8LoxmQJSGlFKUaBVN5QFoFkdAk8BMbzbvgHV9lChoBmgJaA9DCJ5+UBepRmpAlIaUUpRoFU2vAWgWR0CTxiW6bvw3dX2UKGgGaAloD0MIOEnzx7REbUCUhpRSlGgVTb4BaBZHQJPJYOOKfnR1fZQoaAZoCWgPQwiwcmiR7bprQJSGlFKUaBVNrgFoFkdAk88/iT+vQnV9lChoBmgJaA9DCOvkDMUdM21AlIaUUpRoFU3yAWgWR0CT0pqeK8+SdX2UKGgGaAloD0MIJA9EFmnycECUhpRSlGgVTWYBaBZHQJPU9xuKoAJ1fZQoaAZoCWgPQwh16PS8m8FhQJSGlFKUaBVNfwJoFkdAk9xEuYhManV9lChoBmgJaA9DCA677xie1WRAlIaUUpRoFU1YAmgWR0CT45DE3sHCdX2UKGgGaAloD0MIaqLPR5niakCUhpRSlGgVTb4BaBZHQJPnBI/Z/Td1fZQoaAZoCWgPQwicwd8v5mdsQJSGlFKUaBVNmgFoFkdAk+noMa0hNnV9lChoBmgJaA9DCGuad5wirm5AlIaUUpRoFU3JAWgWR0CT791KXfIkdX2UKGgGaAloD0MIE5oklhQ7cUCUhpRSlGgVTd8BaBZHQJPy3SThYNl1fZQoaAZoCWgPQwh5ILJIE6hvQJSGlFKUaBVNhwFoFkdAk/geObRWtHV9lChoBmgJaA9DCJLn+j4ck25AlIaUUpRoFU11AWgWR0CT+rpvxYq5dWUu"
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 2445,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.95,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 32,
83
+ "n_epochs": 5,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3116fdd66ff849aae463afe25d1ef8064cd03e17a74a7d2b7b3124df39c7bbf
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edfc825a0146de0af0808f6006ee6fa4799f38aa641dc71a875165ad01cef61d
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d6401551d5647a725e239cdef19ad5d16d9c8398bc91db255a3ca9eeab7850d
3
+ size 210530
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 205.90071056598003, "std_reward": 72.20870971439564, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-28T20:37:06.862713"}