Model save
Browse files- README.md +4 -5
- all_results.json +4 -4
- model.safetensors +1 -1
- train_results.json +4 -4
- trainer_state.json +83 -83
- training_args.bin +1 -1
README.md
CHANGED
@@ -7,8 +7,6 @@ tags:
|
|
7 |
- trl
|
8 |
- sft
|
9 |
licence: license
|
10 |
-
datasets:
|
11 |
-
- bespokelabs/Bespoke-Stratos-17k
|
12 |
---
|
13 |
|
14 |
# Model Card for Qwen2.5-1.5B-Open-R1-Distill
|
@@ -20,15 +18,16 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
20 |
|
21 |
```python
|
22 |
from transformers import pipeline
|
|
|
|
|
23 |
generator = pipeline("text-generation", model="Mingsmilet/Qwen2.5-1.5B-Open-R1-Distill", device="cuda")
|
24 |
-
|
25 |
-
output = generator([{"role": "system", "content":"Your role as an assistant involves thoroughly exploring questions through a systematic long thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution. In the Thought section, detail your reasoning process using the specified format: <|begin_of_thought|> {thought with steps separated with '\n\n'} <|end_of_thought|> Each step should include detailed considerations such as analisying questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The solution should remain a logical, accurate, concise expression style and detail necessary step needed to reach the conclusion, formatted as follows: <|begin_of_solution|> {final formatted, precise, and clear solution} <|end_of_solution|> Now, try to solve the following question through the above guidelines:"},{"role": "user", "content": question}], max_new_tokens=2048, return_full_text=False)[0]
|
26 |
print(output["generated_text"])
|
27 |
```
|
28 |
|
29 |
## Training procedure
|
30 |
|
31 |
-
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/1653401183-mingmingai/huggingface/runs/
|
32 |
|
33 |
|
34 |
This model was trained with SFT.
|
|
|
7 |
- trl
|
8 |
- sft
|
9 |
licence: license
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# Model Card for Qwen2.5-1.5B-Open-R1-Distill
|
|
|
18 |
|
19 |
```python
|
20 |
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
generator = pipeline("text-generation", model="Mingsmilet/Qwen2.5-1.5B-Open-R1-Distill", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
|
|
25 |
print(output["generated_text"])
|
26 |
```
|
27 |
|
28 |
## Training procedure
|
29 |
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/1653401183-mingmingai/huggingface/runs/2nzizgw4)
|
31 |
|
32 |
|
33 |
This model was trained with SFT.
|
all_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"total_flos": 76973799899136.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 16610,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
"total_flos": 76973799899136.0,
|
3 |
+
"train_loss": 0.802504962717993,
|
4 |
+
"train_runtime": 695.5303,
|
5 |
"train_samples": 16610,
|
6 |
+
"train_samples_per_second": 31.089,
|
7 |
+
"train_steps_per_second": 0.243
|
8 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3087467144
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdde57df3dbf087870df00e8e1ec680c6c90cd70e09da0bfc89de0dc63069fa2
|
3 |
size 3087467144
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"total_flos": 76973799899136.0,
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 16610,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
"total_flos": 76973799899136.0,
|
3 |
+
"train_loss": 0.802504962717993,
|
4 |
+
"train_runtime": 695.5303,
|
5 |
"train_samples": 16610,
|
6 |
+
"train_samples_per_second": 31.089,
|
7 |
+
"train_steps_per_second": 0.243
|
8 |
}
|
trainer_state.json
CHANGED
@@ -10,286 +10,286 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.029585798816568046,
|
13 |
-
"grad_norm": 2.
|
14 |
"learning_rate": 5.882352941176471e-06,
|
15 |
"loss": 1.1002,
|
16 |
-
"mean_token_accuracy": 0.
|
17 |
"step": 5
|
18 |
},
|
19 |
{
|
20 |
"epoch": 0.05917159763313609,
|
21 |
-
"grad_norm": 1.
|
22 |
"learning_rate": 1.1764705882352942e-05,
|
23 |
"loss": 1.0327,
|
24 |
-
"mean_token_accuracy": 0.
|
25 |
"step": 10
|
26 |
},
|
27 |
{
|
28 |
"epoch": 0.08875739644970414,
|
29 |
-
"grad_norm": 0.
|
30 |
"learning_rate": 1.7647058823529414e-05,
|
31 |
"loss": 0.9517,
|
32 |
-
"mean_token_accuracy": 0.
|
33 |
"step": 15
|
34 |
},
|
35 |
{
|
36 |
"epoch": 0.11834319526627218,
|
37 |
-
"grad_norm": 0.
|
38 |
"learning_rate": 1.9980782984658682e-05,
|
39 |
"loss": 0.8804,
|
40 |
-
"mean_token_accuracy": 0.
|
41 |
"step": 20
|
42 |
},
|
43 |
{
|
44 |
"epoch": 0.14792899408284024,
|
45 |
-
"grad_norm": 0.
|
46 |
"learning_rate": 1.9863613034027224e-05,
|
47 |
"loss": 0.8536,
|
48 |
-
"mean_token_accuracy": 0.
|
49 |
"step": 25
|
50 |
},
|
51 |
{
|
52 |
"epoch": 0.17751479289940827,
|
53 |
-
"grad_norm": 0.
|
54 |
"learning_rate": 1.9641197940012136e-05,
|
55 |
"loss": 0.8404,
|
56 |
-
"mean_token_accuracy": 0.
|
57 |
"step": 30
|
58 |
},
|
59 |
{
|
60 |
"epoch": 0.20710059171597633,
|
61 |
-
"grad_norm": 0.
|
62 |
"learning_rate": 1.9315910880512792e-05,
|
63 |
"loss": 0.8212,
|
64 |
-
"mean_token_accuracy": 0.
|
65 |
"step": 35
|
66 |
},
|
67 |
{
|
68 |
"epoch": 0.23668639053254437,
|
69 |
-
"grad_norm": 0.
|
70 |
"learning_rate": 1.8891222681391853e-05,
|
71 |
"loss": 0.805,
|
72 |
-
"mean_token_accuracy": 0.
|
73 |
"step": 40
|
74 |
},
|
75 |
{
|
76 |
"epoch": 0.26627218934911245,
|
77 |
-
"grad_norm": 0.
|
78 |
"learning_rate": 1.8371664782625287e-05,
|
79 |
"loss": 0.7984,
|
80 |
-
"mean_token_accuracy": 0.
|
81 |
"step": 45
|
82 |
},
|
83 |
{
|
84 |
"epoch": 0.2958579881656805,
|
85 |
-
"grad_norm": 0.
|
86 |
"learning_rate": 1.7762780887657576e-05,
|
87 |
-
"loss": 0.
|
88 |
-
"mean_token_accuracy": 0.
|
89 |
"step": 50
|
90 |
},
|
91 |
{
|
92 |
"epoch": 0.3254437869822485,
|
93 |
-
"grad_norm": 0.
|
94 |
"learning_rate": 1.7071067811865477e-05,
|
95 |
"loss": 0.7894,
|
96 |
-
"mean_token_accuracy": 0.
|
97 |
"step": 55
|
98 |
},
|
99 |
{
|
100 |
"epoch": 0.35502958579881655,
|
101 |
-
"grad_norm": 0.
|
102 |
"learning_rate": 1.6303906161279554e-05,
|
103 |
"loss": 0.7999,
|
104 |
-
"mean_token_accuracy": 0.
|
105 |
"step": 60
|
106 |
},
|
107 |
{
|
108 |
"epoch": 0.38461538461538464,
|
109 |
-
"grad_norm": 0.
|
110 |
"learning_rate": 1.5469481581224274e-05,
|
111 |
-
"loss": 0.
|
112 |
-
"mean_token_accuracy": 0.
|
113 |
"step": 65
|
114 |
},
|
115 |
{
|
116 |
"epoch": 0.41420118343195267,
|
117 |
-
"grad_norm": 0.
|
118 |
"learning_rate": 1.4576697415156818e-05,
|
119 |
"loss": 0.7782,
|
120 |
-
"mean_token_accuracy": 0.
|
121 |
"step": 70
|
122 |
},
|
123 |
{
|
124 |
"epoch": 0.4437869822485207,
|
125 |
-
"grad_norm": 0.
|
126 |
"learning_rate": 1.3635079705638298e-05,
|
127 |
"loss": 0.777,
|
128 |
-
"mean_token_accuracy": 0.
|
129 |
"step": 75
|
130 |
},
|
131 |
{
|
132 |
"epoch": 0.47337278106508873,
|
133 |
-
"grad_norm": 0.
|
134 |
"learning_rate": 1.2654675551080724e-05,
|
135 |
"loss": 0.7783,
|
136 |
-
"mean_token_accuracy": 0.
|
137 |
"step": 80
|
138 |
},
|
139 |
{
|
140 |
"epoch": 0.5029585798816568,
|
141 |
-
"grad_norm": 0.
|
142 |
"learning_rate": 1.164594590280734e-05,
|
143 |
"loss": 0.7785,
|
144 |
-
"mean_token_accuracy": 0.
|
145 |
"step": 85
|
146 |
},
|
147 |
{
|
148 |
"epoch": 0.5325443786982249,
|
149 |
-
"grad_norm": 0.
|
150 |
"learning_rate": 1.0619653946285948e-05,
|
151 |
"loss": 0.7723,
|
152 |
-
"mean_token_accuracy": 0.
|
153 |
"step": 90
|
154 |
},
|
155 |
{
|
156 |
"epoch": 0.5621301775147929,
|
157 |
-
"grad_norm": 0.
|
158 |
"learning_rate": 9.586750257511868e-06,
|
159 |
"loss": 0.7668,
|
160 |
-
"mean_token_accuracy": 0.
|
161 |
"step": 95
|
162 |
},
|
163 |
{
|
164 |
"epoch": 0.591715976331361,
|
165 |
-
"grad_norm": 0.
|
166 |
"learning_rate": 8.558255959926533e-06,
|
167 |
"loss": 0.7582,
|
168 |
-
"mean_token_accuracy": 0.
|
169 |
"step": 100
|
170 |
},
|
171 |
{
|
172 |
"epoch": 0.591715976331361,
|
173 |
-
"eval_loss": 0.
|
174 |
-
"eval_mean_token_accuracy": 0.
|
175 |
-
"eval_runtime": 2.
|
176 |
-
"eval_samples_per_second":
|
177 |
-
"eval_steps_per_second": 2.
|
178 |
"step": 100
|
179 |
},
|
180 |
{
|
181 |
"epoch": 0.621301775147929,
|
182 |
-
"grad_norm": 0.
|
183 |
"learning_rate": 7.545145128592009e-06,
|
184 |
"loss": 0.759,
|
185 |
-
"mean_token_accuracy": 0.
|
186 |
"step": 105
|
187 |
},
|
188 |
{
|
189 |
"epoch": 0.650887573964497,
|
190 |
-
"grad_norm": 0.
|
191 |
"learning_rate": 6.558227696373617e-06,
|
192 |
-
"loss": 0.
|
193 |
-
"mean_token_accuracy": 0.
|
194 |
"step": 110
|
195 |
},
|
196 |
{
|
197 |
"epoch": 0.6804733727810651,
|
198 |
-
"grad_norm": 0.
|
199 |
"learning_rate": 5.608034111526298e-06,
|
200 |
"loss": 0.7636,
|
201 |
-
"mean_token_accuracy": 0.
|
202 |
"step": 115
|
203 |
},
|
204 |
{
|
205 |
"epoch": 0.7100591715976331,
|
206 |
-
"grad_norm": 0.
|
207 |
"learning_rate": 4.704702977392914e-06,
|
208 |
"loss": 0.7511,
|
209 |
-
"mean_token_accuracy": 0.
|
210 |
"step": 120
|
211 |
},
|
212 |
{
|
213 |
"epoch": 0.7396449704142012,
|
214 |
-
"grad_norm": 0.
|
215 |
"learning_rate": 3.857872873103322e-06,
|
216 |
-
"loss": 0.
|
217 |
-
"mean_token_accuracy": 0.
|
218 |
"step": 125
|
219 |
},
|
220 |
{
|
221 |
"epoch": 0.7692307692307693,
|
222 |
-
"grad_norm": 0.
|
223 |
"learning_rate": 3.0765795095517026e-06,
|
224 |
-
"loss": 0.
|
225 |
-
"mean_token_accuracy": 0.
|
226 |
"step": 130
|
227 |
},
|
228 |
{
|
229 |
"epoch": 0.7988165680473372,
|
230 |
-
"grad_norm": 0.
|
231 |
"learning_rate": 2.369159318001937e-06,
|
232 |
"loss": 0.7684,
|
233 |
-
"mean_token_accuracy": 0.
|
234 |
"step": 135
|
235 |
},
|
236 |
{
|
237 |
"epoch": 0.8284023668639053,
|
238 |
-
"grad_norm": 0.
|
239 |
"learning_rate": 1.743160500034443e-06,
|
240 |
"loss": 0.7597,
|
241 |
-
"mean_token_accuracy": 0.
|
242 |
"step": 140
|
243 |
},
|
244 |
{
|
245 |
"epoch": 0.8579881656804734,
|
246 |
-
"grad_norm": 0.
|
247 |
"learning_rate": 1.2052624879351105e-06,
|
248 |
-
"loss": 0.
|
249 |
-
"mean_token_accuracy": 0.
|
250 |
"step": 145
|
251 |
},
|
252 |
{
|
253 |
"epoch": 0.8875739644970414,
|
254 |
-
"grad_norm": 0.
|
255 |
"learning_rate": 7.612046748871327e-07,
|
256 |
"loss": 0.7505,
|
257 |
-
"mean_token_accuracy": 0.
|
258 |
"step": 150
|
259 |
},
|
260 |
{
|
261 |
"epoch": 0.9171597633136095,
|
262 |
-
"grad_norm": 0.
|
263 |
"learning_rate": 4.1572517541747294e-07,
|
264 |
"loss": 0.741,
|
265 |
-
"mean_token_accuracy": 0.
|
266 |
"step": 155
|
267 |
},
|
268 |
{
|
269 |
"epoch": 0.9467455621301775,
|
270 |
-
"grad_norm": 0.
|
271 |
"learning_rate": 1.7251026952640583e-07,
|
272 |
"loss": 0.754,
|
273 |
-
"mean_token_accuracy": 0.
|
274 |
"step": 160
|
275 |
},
|
276 |
{
|
277 |
"epoch": 0.9763313609467456,
|
278 |
-
"grad_norm": 0.
|
279 |
"learning_rate": 3.4155069933301535e-08,
|
280 |
-
"loss": 0.
|
281 |
-
"mean_token_accuracy": 0.
|
282 |
"step": 165
|
283 |
},
|
284 |
{
|
285 |
"epoch": 1.0,
|
286 |
-
"mean_token_accuracy": 0.
|
287 |
"step": 169,
|
288 |
"total_flos": 76973799899136.0,
|
289 |
-
"train_loss": 0.
|
290 |
-
"train_runtime":
|
291 |
-
"train_samples_per_second":
|
292 |
-
"train_steps_per_second": 0.
|
293 |
}
|
294 |
],
|
295 |
"logging_steps": 5,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.029585798816568046,
|
13 |
+
"grad_norm": 2.297573765324108,
|
14 |
"learning_rate": 5.882352941176471e-06,
|
15 |
"loss": 1.1002,
|
16 |
+
"mean_token_accuracy": 0.7100953695790506,
|
17 |
"step": 5
|
18 |
},
|
19 |
{
|
20 |
"epoch": 0.05917159763313609,
|
21 |
+
"grad_norm": 1.5969597101948139,
|
22 |
"learning_rate": 1.1764705882352942e-05,
|
23 |
"loss": 1.0327,
|
24 |
+
"mean_token_accuracy": 0.7202142927855761,
|
25 |
"step": 10
|
26 |
},
|
27 |
{
|
28 |
"epoch": 0.08875739644970414,
|
29 |
+
"grad_norm": 0.8485756643128731,
|
30 |
"learning_rate": 1.7647058823529414e-05,
|
31 |
"loss": 0.9517,
|
32 |
+
"mean_token_accuracy": 0.7326373095769856,
|
33 |
"step": 15
|
34 |
},
|
35 |
{
|
36 |
"epoch": 0.11834319526627218,
|
37 |
+
"grad_norm": 0.6438282504171126,
|
38 |
"learning_rate": 1.9980782984658682e-05,
|
39 |
"loss": 0.8804,
|
40 |
+
"mean_token_accuracy": 0.7473626526463326,
|
41 |
"step": 20
|
42 |
},
|
43 |
{
|
44 |
"epoch": 0.14792899408284024,
|
45 |
+
"grad_norm": 0.5518035399856269,
|
46 |
"learning_rate": 1.9863613034027224e-05,
|
47 |
"loss": 0.8536,
|
48 |
+
"mean_token_accuracy": 0.7518618707778764,
|
49 |
"step": 25
|
50 |
},
|
51 |
{
|
52 |
"epoch": 0.17751479289940827,
|
53 |
+
"grad_norm": 0.4402012573426451,
|
54 |
"learning_rate": 1.9641197940012136e-05,
|
55 |
"loss": 0.8404,
|
56 |
+
"mean_token_accuracy": 0.7545927971969407,
|
57 |
"step": 30
|
58 |
},
|
59 |
{
|
60 |
"epoch": 0.20710059171597633,
|
61 |
+
"grad_norm": 0.3943698562073155,
|
62 |
"learning_rate": 1.9315910880512792e-05,
|
63 |
"loss": 0.8212,
|
64 |
+
"mean_token_accuracy": 0.7580720047648368,
|
65 |
"step": 35
|
66 |
},
|
67 |
{
|
68 |
"epoch": 0.23668639053254437,
|
69 |
+
"grad_norm": 0.38684017157532,
|
70 |
"learning_rate": 1.8891222681391853e-05,
|
71 |
"loss": 0.805,
|
72 |
+
"mean_token_accuracy": 0.7620874011199529,
|
73 |
"step": 40
|
74 |
},
|
75 |
{
|
76 |
"epoch": 0.26627218934911245,
|
77 |
+
"grad_norm": 0.4262882071831819,
|
78 |
"learning_rate": 1.8371664782625287e-05,
|
79 |
"loss": 0.7984,
|
80 |
+
"mean_token_accuracy": 0.7635187814772423,
|
81 |
"step": 45
|
82 |
},
|
83 |
{
|
84 |
"epoch": 0.2958579881656805,
|
85 |
+
"grad_norm": 0.3931013124021272,
|
86 |
"learning_rate": 1.7762780887657576e-05,
|
87 |
+
"loss": 0.7937,
|
88 |
+
"mean_token_accuracy": 0.7642257038779341,
|
89 |
"step": 50
|
90 |
},
|
91 |
{
|
92 |
"epoch": 0.3254437869822485,
|
93 |
+
"grad_norm": 0.3739445931259617,
|
94 |
"learning_rate": 1.7071067811865477e-05,
|
95 |
"loss": 0.7894,
|
96 |
+
"mean_token_accuracy": 0.7648935589559052,
|
97 |
"step": 55
|
98 |
},
|
99 |
{
|
100 |
"epoch": 0.35502958579881655,
|
101 |
+
"grad_norm": 0.3711114588864771,
|
102 |
"learning_rate": 1.6303906161279554e-05,
|
103 |
"loss": 0.7999,
|
104 |
+
"mean_token_accuracy": 0.7619695483759025,
|
105 |
"step": 60
|
106 |
},
|
107 |
{
|
108 |
"epoch": 0.38461538461538464,
|
109 |
+
"grad_norm": 0.3949481992103986,
|
110 |
"learning_rate": 1.5469481581224274e-05,
|
111 |
+
"loss": 0.7868,
|
112 |
+
"mean_token_accuracy": 0.7646586436181606,
|
113 |
"step": 65
|
114 |
},
|
115 |
{
|
116 |
"epoch": 0.41420118343195267,
|
117 |
+
"grad_norm": 0.3710782910651557,
|
118 |
"learning_rate": 1.4576697415156818e-05,
|
119 |
"loss": 0.7782,
|
120 |
+
"mean_token_accuracy": 0.7674472564108428,
|
121 |
"step": 70
|
122 |
},
|
123 |
{
|
124 |
"epoch": 0.4437869822485207,
|
125 |
+
"grad_norm": 0.34005674173322326,
|
126 |
"learning_rate": 1.3635079705638298e-05,
|
127 |
"loss": 0.777,
|
128 |
+
"mean_token_accuracy": 0.7675319726128873,
|
129 |
"step": 75
|
130 |
},
|
131 |
{
|
132 |
"epoch": 0.47337278106508873,
|
133 |
+
"grad_norm": 0.3468353725329877,
|
134 |
"learning_rate": 1.2654675551080724e-05,
|
135 |
"loss": 0.7783,
|
136 |
+
"mean_token_accuracy": 0.7666067092453227,
|
137 |
"step": 80
|
138 |
},
|
139 |
{
|
140 |
"epoch": 0.5029585798816568,
|
141 |
+
"grad_norm": 0.33465976050856655,
|
142 |
"learning_rate": 1.164594590280734e-05,
|
143 |
"loss": 0.7785,
|
144 |
+
"mean_token_accuracy": 0.7669678075017483,
|
145 |
"step": 85
|
146 |
},
|
147 |
{
|
148 |
"epoch": 0.5325443786982249,
|
149 |
+
"grad_norm": 0.3498974122332,
|
150 |
"learning_rate": 1.0619653946285948e-05,
|
151 |
"loss": 0.7723,
|
152 |
+
"mean_token_accuracy": 0.7681925898394718,
|
153 |
"step": 90
|
154 |
},
|
155 |
{
|
156 |
"epoch": 0.5621301775147929,
|
157 |
+
"grad_norm": 0.34393653080794817,
|
158 |
"learning_rate": 9.586750257511868e-06,
|
159 |
"loss": 0.7668,
|
160 |
+
"mean_token_accuracy": 0.7697901380963259,
|
161 |
"step": 95
|
162 |
},
|
163 |
{
|
164 |
"epoch": 0.591715976331361,
|
165 |
+
"grad_norm": 0.33899820007825987,
|
166 |
"learning_rate": 8.558255959926533e-06,
|
167 |
"loss": 0.7582,
|
168 |
+
"mean_token_accuracy": 0.7714266195965762,
|
169 |
"step": 100
|
170 |
},
|
171 |
{
|
172 |
"epoch": 0.591715976331361,
|
173 |
+
"eval_loss": 0.788552463054657,
|
174 |
+
"eval_mean_token_accuracy": 0.7482402433575445,
|
175 |
+
"eval_runtime": 2.2045,
|
176 |
+
"eval_samples_per_second": 58.517,
|
177 |
+
"eval_steps_per_second": 2.268,
|
178 |
"step": 100
|
179 |
},
|
180 |
{
|
181 |
"epoch": 0.621301775147929,
|
182 |
+
"grad_norm": 0.353900421817561,
|
183 |
"learning_rate": 7.545145128592009e-06,
|
184 |
"loss": 0.759,
|
185 |
+
"mean_token_accuracy": 0.7714586673704755,
|
186 |
"step": 105
|
187 |
},
|
188 |
{
|
189 |
"epoch": 0.650887573964497,
|
190 |
+
"grad_norm": 0.3166511156569925,
|
191 |
"learning_rate": 6.558227696373617e-06,
|
192 |
+
"loss": 0.7776,
|
193 |
+
"mean_token_accuracy": 0.7664817000327632,
|
194 |
"step": 110
|
195 |
},
|
196 |
{
|
197 |
"epoch": 0.6804733727810651,
|
198 |
+
"grad_norm": 0.3074350676983976,
|
199 |
"learning_rate": 5.608034111526298e-06,
|
200 |
"loss": 0.7636,
|
201 |
+
"mean_token_accuracy": 0.7703227561153221,
|
202 |
"step": 115
|
203 |
},
|
204 |
{
|
205 |
"epoch": 0.7100591715976331,
|
206 |
+
"grad_norm": 0.299274177260631,
|
207 |
"learning_rate": 4.704702977392914e-06,
|
208 |
"loss": 0.7511,
|
209 |
+
"mean_token_accuracy": 0.7742873168311635,
|
210 |
"step": 120
|
211 |
},
|
212 |
{
|
213 |
"epoch": 0.7396449704142012,
|
214 |
+
"grad_norm": 0.31617489086098977,
|
215 |
"learning_rate": 3.857872873103322e-06,
|
216 |
+
"loss": 0.7594,
|
217 |
+
"mean_token_accuracy": 0.7717538547987106,
|
218 |
"step": 125
|
219 |
},
|
220 |
{
|
221 |
"epoch": 0.7692307692307693,
|
222 |
+
"grad_norm": 0.32025277899891924,
|
223 |
"learning_rate": 3.0765795095517026e-06,
|
224 |
+
"loss": 0.7623,
|
225 |
+
"mean_token_accuracy": 0.7706147324391592,
|
226 |
"step": 130
|
227 |
},
|
228 |
{
|
229 |
"epoch": 0.7988165680473372,
|
230 |
+
"grad_norm": 0.30317891871785263,
|
231 |
"learning_rate": 2.369159318001937e-06,
|
232 |
"loss": 0.7684,
|
233 |
+
"mean_token_accuracy": 0.7688305448428647,
|
234 |
"step": 135
|
235 |
},
|
236 |
{
|
237 |
"epoch": 0.8284023668639053,
|
238 |
+
"grad_norm": 0.29377898935847374,
|
239 |
"learning_rate": 1.743160500034443e-06,
|
240 |
"loss": 0.7597,
|
241 |
+
"mean_token_accuracy": 0.771730188624508,
|
242 |
"step": 140
|
243 |
},
|
244 |
{
|
245 |
"epoch": 0.8579881656804734,
|
246 |
+
"grad_norm": 0.3122803287793864,
|
247 |
"learning_rate": 1.2052624879351105e-06,
|
248 |
+
"loss": 0.7594,
|
249 |
+
"mean_token_accuracy": 0.7715123408941931,
|
250 |
"step": 145
|
251 |
},
|
252 |
{
|
253 |
"epoch": 0.8875739644970414,
|
254 |
+
"grad_norm": 0.289656138067616,
|
255 |
"learning_rate": 7.612046748871327e-07,
|
256 |
"loss": 0.7505,
|
257 |
+
"mean_token_accuracy": 0.7739841847801008,
|
258 |
"step": 150
|
259 |
},
|
260 |
{
|
261 |
"epoch": 0.9171597633136095,
|
262 |
+
"grad_norm": 0.27970392255541077,
|
263 |
"learning_rate": 4.1572517541747294e-07,
|
264 |
"loss": 0.741,
|
265 |
+
"mean_token_accuracy": 0.7767522035827779,
|
266 |
"step": 155
|
267 |
},
|
268 |
{
|
269 |
"epoch": 0.9467455621301775,
|
270 |
+
"grad_norm": 0.2966574688397028,
|
271 |
"learning_rate": 1.7251026952640583e-07,
|
272 |
"loss": 0.754,
|
273 |
+
"mean_token_accuracy": 0.7732214833563628,
|
274 |
"step": 160
|
275 |
},
|
276 |
{
|
277 |
"epoch": 0.9763313609467456,
|
278 |
+
"grad_norm": 0.276771819219271,
|
279 |
"learning_rate": 3.4155069933301535e-08,
|
280 |
+
"loss": 0.7468,
|
281 |
+
"mean_token_accuracy": 0.774979807844946,
|
282 |
"step": 165
|
283 |
},
|
284 |
{
|
285 |
"epoch": 1.0,
|
286 |
+
"mean_token_accuracy": 0.7703761237331678,
|
287 |
"step": 169,
|
288 |
"total_flos": 76973799899136.0,
|
289 |
+
"train_loss": 0.802504962717993,
|
290 |
+
"train_runtime": 695.5303,
|
291 |
+
"train_samples_per_second": 31.089,
|
292 |
+
"train_steps_per_second": 0.243
|
293 |
}
|
294 |
],
|
295 |
"logging_steps": 5,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 7416
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5e6be9345e2f96cd68e61867c69873588bdbf3fae2f77193ddc524b45a7ad6a
|
3 |
size 7416
|