Minata commited on
Commit
be41077
·
1 Parent(s): eaeb912

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: plbart-base_finetuned_ut_generator_70000_method2test
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # plbart-base_finetuned_ut_generator_70000_method2test
13
+
14
+ This model is a fine-tuned version of [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.2887
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 5e-06
36
+ - train_batch_size: 8
37
+ - eval_batch_size: 8
38
+ - seed: 42
39
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
+ - lr_scheduler_type: linear
41
+ - num_epochs: 2
42
+ - mixed_precision_training: Native AMP
43
+
44
+ ### Training results
45
+
46
+ | Training Loss | Epoch | Step | Validation Loss |
47
+ |:-------------:|:-----:|:-----:|:---------------:|
48
+ | 0.489 | 0.13 | 1000 | 0.3544 |
49
+ | 0.37 | 0.25 | 2000 | 0.3377 |
50
+ | 0.3531 | 0.38 | 3000 | 0.3265 |
51
+ | 0.3537 | 0.51 | 4000 | 0.3188 |
52
+ | 0.336 | 0.63 | 5000 | 0.3123 |
53
+ | 0.3333 | 0.76 | 6000 | 0.3073 |
54
+ | 0.3233 | 0.89 | 7000 | 0.3033 |
55
+ | 0.3172 | 1.02 | 8000 | 0.2993 |
56
+ | 0.3059 | 1.14 | 9000 | 0.2968 |
57
+ | 0.3084 | 1.27 | 10000 | 0.2947 |
58
+ | 0.3024 | 1.4 | 11000 | 0.2931 |
59
+ | 0.313 | 1.52 | 12000 | 0.2910 |
60
+ | 0.3042 | 1.65 | 13000 | 0.2900 |
61
+ | 0.3125 | 1.78 | 14000 | 0.2893 |
62
+ | 0.306 | 1.9 | 15000 | 0.2887 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.26.1
68
+ - Pytorch 1.13.1+cu116
69
+ - Datasets 2.10.0
70
+ - Tokenizers 0.13.2