--- library_name: transformers license: apache-2.0 base_model: Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_6 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-lateral_flow_ivalidation_train_test_7 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8754578754578755 --- # vit-msn-small-lateral_flow_ivalidation_train_test_7 This model is a fine-tuned version of [Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_6](https://huggingface.co/Melo1512/vit-msn-small-lateral_flow_ivalidation_train_test_6) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4368 - Accuracy: 0.8755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: reduce_lr_on_plateau - lr_scheduler_warmup_ratio: 0.5 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.6154 | 1 | 0.4368 | 0.8755 | | No log | 1.8462 | 3 | 0.4440 | 0.8681 | | No log | 2.4615 | 4 | 0.4470 | 0.8645 | | No log | 3.6923 | 6 | 0.4443 | 0.8645 | | No log | 4.9231 | 8 | 0.4393 | 0.8645 | | No log | 5.5385 | 9 | 0.4372 | 0.8681 | | 0.3118 | 6.7692 | 11 | 0.4340 | 0.8645 | | 0.3118 | 8.0 | 13 | 0.4319 | 0.8608 | | 0.3118 | 8.6154 | 14 | 0.4313 | 0.8608 | | 0.3118 | 9.8462 | 16 | 0.4312 | 0.8681 | | 0.3118 | 10.4615 | 17 | 0.4314 | 0.8718 | | 0.3118 | 11.6923 | 19 | 0.4306 | 0.8718 | | 0.3019 | 12.9231 | 21 | 0.4294 | 0.8718 | | 0.3019 | 13.5385 | 22 | 0.4290 | 0.8718 | | 0.3019 | 14.7692 | 24 | 0.4262 | 0.8718 | | 0.3019 | 16.0 | 26 | 0.4223 | 0.8718 | | 0.3019 | 16.6154 | 27 | 0.4204 | 0.8718 | | 0.3019 | 17.8462 | 29 | 0.4170 | 0.8718 | | 0.2922 | 18.4615 | 30 | 0.4160 | 0.8718 | | 0.2922 | 19.6923 | 32 | 0.4161 | 0.8718 | | 0.2922 | 20.9231 | 34 | 0.4161 | 0.8718 | | 0.2922 | 21.5385 | 35 | 0.4162 | 0.8718 | | 0.2922 | 22.7692 | 37 | 0.4164 | 0.8718 | | 0.2922 | 24.0 | 39 | 0.4166 | 0.8718 | | 0.2993 | 24.6154 | 40 | 0.4168 | 0.8718 | | 0.2993 | 25.8462 | 42 | 0.4170 | 0.8718 | | 0.2993 | 26.4615 | 43 | 0.4171 | 0.8718 | | 0.2993 | 27.6923 | 45 | 0.4176 | 0.8718 | | 0.2993 | 28.9231 | 47 | 0.4179 | 0.8718 | | 0.2993 | 29.5385 | 48 | 0.4179 | 0.8718 | | 0.298 | 30.7692 | 50 | 0.4179 | 0.8718 | | 0.298 | 32.0 | 52 | 0.4179 | 0.8718 | | 0.298 | 32.6154 | 53 | 0.4179 | 0.8718 | | 0.298 | 33.8462 | 55 | 0.4179 | 0.8718 | | 0.298 | 34.4615 | 56 | 0.4179 | 0.8718 | | 0.298 | 35.6923 | 58 | 0.4179 | 0.8718 | | 0.2936 | 36.9231 | 60 | 0.4178 | 0.8718 | | 0.2936 | 37.5385 | 61 | 0.4178 | 0.8718 | | 0.2936 | 38.7692 | 63 | 0.4178 | 0.8718 | | 0.2936 | 40.0 | 65 | 0.4178 | 0.8718 | | 0.2936 | 40.6154 | 66 | 0.4178 | 0.8718 | | 0.2936 | 41.8462 | 68 | 0.4178 | 0.8718 | | 0.2936 | 42.4615 | 69 | 0.4177 | 0.8718 | | 0.2948 | 43.6923 | 71 | 0.4177 | 0.8718 | | 0.2948 | 44.9231 | 73 | 0.4177 | 0.8718 | | 0.2948 | 45.5385 | 74 | 0.4176 | 0.8718 | | 0.2948 | 46.7692 | 76 | 0.4176 | 0.8718 | | 0.2948 | 48.0 | 78 | 0.4176 | 0.8718 | | 0.2948 | 48.6154 | 79 | 0.4176 | 0.8718 | | 0.2965 | 49.8462 | 81 | 0.4176 | 0.8718 | | 0.2965 | 50.4615 | 82 | 0.4175 | 0.8718 | | 0.2965 | 51.6923 | 84 | 0.4175 | 0.8718 | | 0.2965 | 52.9231 | 86 | 0.4175 | 0.8718 | | 0.2965 | 53.5385 | 87 | 0.4175 | 0.8718 | | 0.2965 | 54.7692 | 89 | 0.4174 | 0.8718 | | 0.292 | 56.0 | 91 | 0.4174 | 0.8718 | | 0.292 | 56.6154 | 92 | 0.4174 | 0.8718 | | 0.292 | 57.8462 | 94 | 0.4174 | 0.8718 | | 0.292 | 58.4615 | 95 | 0.4173 | 0.8718 | | 0.292 | 59.6923 | 97 | 0.4173 | 0.8718 | | 0.292 | 60.9231 | 99 | 0.4173 | 0.8718 | | 0.2962 | 61.5385 | 100 | 0.4173 | 0.8718 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1