--- library_name: transformers base_model: Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-beta-fia-manually-enhanced-HSV_test_3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8661971830985915 --- # vit-msn-small-beta-fia-manually-enhanced-HSV_test_3 This model is a fine-tuned version of [Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2](https://huggingface.co/Melo1512/vit-msn-small-beta-fia-manually-enhanced-HSV_test_2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5321 - Accuracy: 0.8662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.33 - num_epochs: 50 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.5714 | 1 | 0.5167 | 0.8803 | | No log | 1.7143 | 3 | 0.5197 | 0.8803 | | No log | 2.8571 | 5 | 0.5266 | 0.8803 | | No log | 4.0 | 7 | 0.5391 | 0.8803 | | No log | 4.5714 | 8 | 0.5425 | 0.8803 | | 0.4435 | 5.7143 | 10 | 0.5403 | 0.8803 | | 0.4435 | 6.8571 | 12 | 0.5251 | 0.8803 | | 0.4435 | 8.0 | 14 | 0.5160 | 0.8732 | | 0.4435 | 8.5714 | 15 | 0.5123 | 0.8873 | | 0.4435 | 9.7143 | 17 | 0.5292 | 0.8803 | | 0.4435 | 10.8571 | 19 | 0.5686 | 0.8732 | | 0.4418 | 12.0 | 21 | 0.5460 | 0.8732 | | 0.4418 | 12.5714 | 22 | 0.5333 | 0.8873 | | 0.4418 | 13.7143 | 24 | 0.5152 | 0.8803 | | 0.4418 | 14.8571 | 26 | 0.5236 | 0.8732 | | 0.4418 | 16.0 | 28 | 0.5372 | 0.8592 | | 0.4418 | 16.5714 | 29 | 0.5472 | 0.8592 | | 0.4363 | 17.7143 | 31 | 0.5422 | 0.8592 | | 0.4363 | 18.8571 | 33 | 0.5293 | 0.8803 | | 0.4363 | 20.0 | 35 | 0.5235 | 0.8803 | | 0.4363 | 20.5714 | 36 | 0.5240 | 0.8803 | | 0.4363 | 21.7143 | 38 | 0.5302 | 0.8803 | | 0.4371 | 22.8571 | 40 | 0.5324 | 0.8803 | | 0.4371 | 24.0 | 42 | 0.5349 | 0.8803 | | 0.4371 | 24.5714 | 43 | 0.5363 | 0.8732 | | 0.4371 | 25.7143 | 45 | 0.5342 | 0.8732 | | 0.4371 | 26.8571 | 47 | 0.5315 | 0.8732 | | 0.4371 | 28.0 | 49 | 0.5319 | 0.8732 | | 0.4298 | 28.5714 | 50 | 0.5321 | 0.8662 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1