--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: not_overfited_vc results: [] --- # not_overfited_vc This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.7032 | 0.4002 | 100 | 0.5819 | | 0.6216 | 0.8004 | 200 | 0.5350 | | 0.5847 | 1.2041 | 300 | 0.5165 | | 0.5625 | 1.6043 | 400 | 0.5083 | | 0.5647 | 2.0080 | 500 | 0.5047 | | 0.5529 | 2.4082 | 600 | 0.4992 | | 0.5524 | 2.8084 | 700 | 0.4944 | | 0.54 | 3.2121 | 800 | 0.4924 | | 0.5296 | 3.6123 | 900 | 0.4879 | | 0.5418 | 4.0160 | 1000 | 0.4858 | | 0.5345 | 4.4162 | 1100 | 0.4862 | | 0.5186 | 4.8164 | 1200 | 0.4817 | | 0.5232 | 5.2201 | 1300 | 0.4819 | | 0.5309 | 5.6203 | 1400 | 0.4820 | | 0.5315 | 6.0240 | 1500 | 0.4793 | | 0.5238 | 6.4242 | 1600 | 0.4771 | | 0.5121 | 6.8244 | 1700 | 0.4769 | | 0.5252 | 7.2281 | 1800 | 0.4755 | | 0.5251 | 7.6283 | 1900 | 0.4758 | | 0.5136 | 8.0320 | 2000 | 0.4721 | | 0.5176 | 8.4322 | 2100 | 0.4729 | | 0.5096 | 8.8324 | 2200 | 0.4746 | | 0.5155 | 9.2361 | 2300 | 0.4729 | | 0.5091 | 9.6363 | 2400 | 0.4699 | | 0.5223 | 10.0400 | 2500 | 0.4707 | | 0.5105 | 10.4402 | 2600 | 0.4695 | | 0.5148 | 10.8404 | 2700 | 0.4689 | | 0.5101 | 11.2441 | 2800 | 0.4694 | | 0.5125 | 11.6443 | 2900 | 0.4690 | | 0.5093 | 12.0480 | 3000 | 0.4686 | | 0.5057 | 12.4482 | 3100 | 0.4671 | | 0.5063 | 12.8484 | 3200 | 0.4693 | | 0.5071 | 13.2521 | 3300 | 0.4669 | | 0.5051 | 13.6523 | 3400 | 0.4685 | | 0.5049 | 14.0560 | 3500 | 0.4660 | | 0.5015 | 14.4562 | 3600 | 0.4679 | | 0.5041 | 14.8564 | 3700 | 0.4663 | | 0.5108 | 15.2601 | 3800 | 0.4678 | | 0.5048 | 15.6603 | 3900 | 0.4680 | | 0.508 | 16.0640 | 4000 | 0.4675 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0