File size: 1,793 Bytes
5b741a8
 
eca6fdd
 
5b741a8
eca6fdd
5b741a8
 
eca6fdd
5b741a8
 
eca6fdd
5b741a8
eca6fdd
 
5b741a8
eca6fdd
5b741a8
eca6fdd
 
5b741a8
eca6fdd
 
 
 
 
5b741a8
eca6fdd
5b741a8
eca6fdd
5b741a8
 
eca6fdd
5b741a8
eca6fdd
5b741a8
eca6fdd
 
 
 
 
5b741a8
eca6fdd
5b741a8
 
 
eca6fdd
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
library_name: transformers
model_name: llama381binstruct_summarize_short
tags:
- generated_from_trainer
- trl
- sft
licence: license
---

# Model Card for llama381binstruct_summarize_short

This model is a fine-tuned version of [NousResearch/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3.1-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Mdean77/llama381binstruct_summarize_short", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/miketraindoc-university-of-utah/huggingface/runs/letgphjl) 


This model was trained with SFT.

### Framework versions

- TRL: 0.16.0
- Transformers: 4.50.1
- Pytorch: 2.6.0+cu124
- Datasets: 3.4.1
- Tokenizers: 0.21.1

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```