Upload folder using huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- finetuned
|
| 5 |
+
- quantized
|
| 6 |
+
- 4-bit
|
| 7 |
+
model_name: Mistral-7B-Instruct-v0.1-GPTQ
|
| 8 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
| 9 |
+
inference: false
|
| 10 |
+
model_creator: Mistral AI
|
| 11 |
+
model_type: mistral
|
| 12 |
+
pipeline_tag: text-generation
|
| 13 |
+
quantized_by: MaziyarPanahi
|
| 14 |
+
---
|
| 15 |
+
# Description
|
| 16 |
+
Quantized (GPTQ) version of (mistralai/Mistral-7B-Instruct-v0.1)[https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1]
|
| 17 |
+
|
| 18 |
+
## How to use
|
| 19 |
+
### Install the necessary packages
|
| 20 |
+
|
| 21 |
+
```
|
| 22 |
+
pip install --upgrade accelerate auto-gptq transformers
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
### Example Python code
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
from transformers import AutoTokenizer, pipeline
|
| 30 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 31 |
+
import torch
|
| 32 |
+
|
| 33 |
+
model_id = "MaziyarPanahi/Mistral-7B-Instruct-v0.1-GPTQ"
|
| 34 |
+
|
| 35 |
+
quantize_config = BaseQuantizeConfig(
|
| 36 |
+
bits=4,
|
| 37 |
+
group_size=128,
|
| 38 |
+
desc_act=False
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
| 42 |
+
model_id,
|
| 43 |
+
use_safetensors=True,
|
| 44 |
+
device="cuda:0",
|
| 45 |
+
quantize_config=quantize_config)
|
| 46 |
+
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 48 |
+
|
| 49 |
+
pipe = pipeline(
|
| 50 |
+
"text-generation",
|
| 51 |
+
model=model,
|
| 52 |
+
tokenizer=tokenizer,
|
| 53 |
+
max_new_tokens=512,
|
| 54 |
+
temperature=0.7,
|
| 55 |
+
top_p=0.95,
|
| 56 |
+
repetition_penalty=1.1
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
outputs = pipe("What is a large language model?")
|
| 60 |
+
print(outputs[0]["generated_text"])
|
| 61 |
+
```
|
| 62 |
+
|