MayBashendy commited on
Commit
f481c03
·
verified ·
1 Parent(s): 82f92aa

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task7_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task7_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.4163
19
+ - Qwk: 0.5267
20
+ - Mse: 0.4163
21
+ - Rmse: 0.6452
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.2857 | 2 | 2.5847 | -0.0545 | 2.5847 | 1.6077 |
53
+ | No log | 0.5714 | 4 | 1.1679 | 0.0993 | 1.1679 | 1.0807 |
54
+ | No log | 0.8571 | 6 | 0.7084 | 0.0893 | 0.7084 | 0.8417 |
55
+ | No log | 1.1429 | 8 | 0.8818 | 0.2651 | 0.8818 | 0.9391 |
56
+ | No log | 1.4286 | 10 | 0.8770 | 0.2552 | 0.8770 | 0.9365 |
57
+ | No log | 1.7143 | 12 | 0.7326 | 0.2871 | 0.7326 | 0.8559 |
58
+ | No log | 2.0 | 14 | 0.6137 | 0.3197 | 0.6137 | 0.7834 |
59
+ | No log | 2.2857 | 16 | 0.5657 | 0.4161 | 0.5657 | 0.7521 |
60
+ | No log | 2.5714 | 18 | 0.5944 | 0.3416 | 0.5944 | 0.7710 |
61
+ | No log | 2.8571 | 20 | 0.5174 | 0.4561 | 0.5174 | 0.7193 |
62
+ | No log | 3.1429 | 22 | 0.5026 | 0.4354 | 0.5026 | 0.7090 |
63
+ | No log | 3.4286 | 24 | 0.4933 | 0.4444 | 0.4933 | 0.7023 |
64
+ | No log | 3.7143 | 26 | 0.5254 | 0.4370 | 0.5254 | 0.7249 |
65
+ | No log | 4.0 | 28 | 0.5601 | 0.4330 | 0.5601 | 0.7484 |
66
+ | No log | 4.2857 | 30 | 0.4951 | 0.5466 | 0.4951 | 0.7037 |
67
+ | No log | 4.5714 | 32 | 0.4624 | 0.5373 | 0.4624 | 0.6800 |
68
+ | No log | 4.8571 | 34 | 0.4230 | 0.6295 | 0.4230 | 0.6504 |
69
+ | No log | 5.1429 | 36 | 0.4533 | 0.5868 | 0.4533 | 0.6733 |
70
+ | No log | 5.4286 | 38 | 0.3891 | 0.6458 | 0.3891 | 0.6238 |
71
+ | No log | 5.7143 | 40 | 0.4106 | 0.6184 | 0.4106 | 0.6408 |
72
+ | No log | 6.0 | 42 | 0.5541 | 0.6587 | 0.5541 | 0.7444 |
73
+ | No log | 6.2857 | 44 | 0.5450 | 0.6263 | 0.5450 | 0.7383 |
74
+ | No log | 6.5714 | 46 | 0.4511 | 0.5798 | 0.4511 | 0.6717 |
75
+ | No log | 6.8571 | 48 | 0.5396 | 0.6765 | 0.5396 | 0.7346 |
76
+ | No log | 7.1429 | 50 | 0.3981 | 0.7123 | 0.3981 | 0.6309 |
77
+ | No log | 7.4286 | 52 | 0.5540 | 0.5657 | 0.5540 | 0.7443 |
78
+ | No log | 7.7143 | 54 | 1.0452 | 0.2990 | 1.0452 | 1.0223 |
79
+ | No log | 8.0 | 56 | 1.0185 | 0.3290 | 1.0185 | 1.0092 |
80
+ | No log | 8.2857 | 58 | 0.5688 | 0.5017 | 0.5688 | 0.7542 |
81
+ | No log | 8.5714 | 60 | 0.4385 | 0.6313 | 0.4385 | 0.6622 |
82
+ | No log | 8.8571 | 62 | 0.5364 | 0.5722 | 0.5364 | 0.7324 |
83
+ | No log | 9.1429 | 64 | 0.4873 | 0.6670 | 0.4873 | 0.6981 |
84
+ | No log | 9.4286 | 66 | 0.4862 | 0.5339 | 0.4862 | 0.6972 |
85
+ | No log | 9.7143 | 68 | 0.6790 | 0.4921 | 0.6790 | 0.8240 |
86
+ | No log | 10.0 | 70 | 0.6722 | 0.5160 | 0.6722 | 0.8199 |
87
+ | No log | 10.2857 | 72 | 0.5552 | 0.5498 | 0.5552 | 0.7451 |
88
+ | No log | 10.5714 | 74 | 0.4779 | 0.6010 | 0.4779 | 0.6913 |
89
+ | No log | 10.8571 | 76 | 0.4970 | 0.5817 | 0.4970 | 0.7050 |
90
+ | No log | 11.1429 | 78 | 0.4601 | 0.6076 | 0.4601 | 0.6783 |
91
+ | No log | 11.4286 | 80 | 0.5461 | 0.5672 | 0.5461 | 0.7390 |
92
+ | No log | 11.7143 | 82 | 0.6890 | 0.4667 | 0.6890 | 0.8301 |
93
+ | No log | 12.0 | 84 | 0.5512 | 0.5315 | 0.5512 | 0.7424 |
94
+ | No log | 12.2857 | 86 | 0.4524 | 0.5633 | 0.4524 | 0.6726 |
95
+ | No log | 12.5714 | 88 | 0.5360 | 0.5481 | 0.5360 | 0.7321 |
96
+ | No log | 12.8571 | 90 | 0.6668 | 0.5243 | 0.6668 | 0.8166 |
97
+ | No log | 13.1429 | 92 | 0.4830 | 0.5570 | 0.4830 | 0.6950 |
98
+ | No log | 13.4286 | 94 | 0.4624 | 0.5339 | 0.4624 | 0.6800 |
99
+ | No log | 13.7143 | 96 | 0.5056 | 0.5470 | 0.5056 | 0.7110 |
100
+ | No log | 14.0 | 98 | 0.4221 | 0.5475 | 0.4221 | 0.6497 |
101
+ | No log | 14.2857 | 100 | 0.4074 | 0.6596 | 0.4074 | 0.6383 |
102
+ | No log | 14.5714 | 102 | 0.4089 | 0.6596 | 0.4089 | 0.6395 |
103
+ | No log | 14.8571 | 104 | 0.4013 | 0.6060 | 0.4013 | 0.6335 |
104
+ | No log | 15.1429 | 106 | 0.4072 | 0.5722 | 0.4072 | 0.6381 |
105
+ | No log | 15.4286 | 108 | 0.4069 | 0.5479 | 0.4069 | 0.6379 |
106
+ | No log | 15.7143 | 110 | 0.3896 | 0.6201 | 0.3896 | 0.6242 |
107
+ | No log | 16.0 | 112 | 0.4330 | 0.6388 | 0.4330 | 0.6580 |
108
+ | No log | 16.2857 | 114 | 0.4085 | 0.6490 | 0.4085 | 0.6392 |
109
+ | No log | 16.5714 | 116 | 0.4058 | 0.6278 | 0.4058 | 0.6370 |
110
+ | No log | 16.8571 | 118 | 0.4000 | 0.6490 | 0.4000 | 0.6325 |
111
+ | No log | 17.1429 | 120 | 0.3925 | 0.5539 | 0.3925 | 0.6265 |
112
+ | No log | 17.4286 | 122 | 0.3918 | 0.5782 | 0.3918 | 0.6259 |
113
+ | No log | 17.7143 | 124 | 0.3939 | 0.6503 | 0.3939 | 0.6276 |
114
+ | No log | 18.0 | 126 | 0.4008 | 0.5853 | 0.4008 | 0.6331 |
115
+ | No log | 18.2857 | 128 | 0.4045 | 0.6701 | 0.4045 | 0.6360 |
116
+ | No log | 18.5714 | 130 | 0.4060 | 0.6142 | 0.4060 | 0.6371 |
117
+ | No log | 18.8571 | 132 | 0.4484 | 0.6169 | 0.4484 | 0.6696 |
118
+ | No log | 19.1429 | 134 | 0.4426 | 0.6169 | 0.4426 | 0.6653 |
119
+ | No log | 19.4286 | 136 | 0.4139 | 0.6678 | 0.4139 | 0.6433 |
120
+ | No log | 19.7143 | 138 | 0.3923 | 0.6643 | 0.3923 | 0.6263 |
121
+ | No log | 20.0 | 140 | 0.3947 | 0.6747 | 0.3947 | 0.6283 |
122
+ | No log | 20.2857 | 142 | 0.4032 | 0.6854 | 0.4032 | 0.6349 |
123
+ | No log | 20.5714 | 144 | 0.3916 | 0.6542 | 0.3916 | 0.6258 |
124
+ | No log | 20.8571 | 146 | 0.3908 | 0.6627 | 0.3908 | 0.6252 |
125
+ | No log | 21.1429 | 148 | 0.4166 | 0.7052 | 0.4166 | 0.6455 |
126
+ | No log | 21.4286 | 150 | 0.4734 | 0.5567 | 0.4734 | 0.6880 |
127
+ | No log | 21.7143 | 152 | 0.5077 | 0.6088 | 0.5077 | 0.7126 |
128
+ | No log | 22.0 | 154 | 0.4498 | 0.6287 | 0.4498 | 0.6707 |
129
+ | No log | 22.2857 | 156 | 0.4239 | 0.6968 | 0.4239 | 0.6511 |
130
+ | No log | 22.5714 | 158 | 0.4240 | 0.6975 | 0.4240 | 0.6511 |
131
+ | No log | 22.8571 | 160 | 0.4161 | 0.6643 | 0.4161 | 0.6451 |
132
+ | No log | 23.1429 | 162 | 0.4205 | 0.5698 | 0.4205 | 0.6485 |
133
+ | No log | 23.4286 | 164 | 0.4184 | 0.6229 | 0.4184 | 0.6468 |
134
+ | No log | 23.7143 | 166 | 0.4235 | 0.5698 | 0.4235 | 0.6508 |
135
+ | No log | 24.0 | 168 | 0.4586 | 0.5124 | 0.4586 | 0.6772 |
136
+ | No log | 24.2857 | 170 | 0.4622 | 0.4881 | 0.4622 | 0.6799 |
137
+ | No log | 24.5714 | 172 | 0.4639 | 0.5527 | 0.4639 | 0.6811 |
138
+ | No log | 24.8571 | 174 | 0.4502 | 0.5649 | 0.4502 | 0.6709 |
139
+ | No log | 25.1429 | 176 | 0.4411 | 0.5974 | 0.4411 | 0.6641 |
140
+ | No log | 25.4286 | 178 | 0.4654 | 0.6305 | 0.4654 | 0.6822 |
141
+ | No log | 25.7143 | 180 | 0.4581 | 0.6296 | 0.4581 | 0.6769 |
142
+ | No log | 26.0 | 182 | 0.4324 | 0.5926 | 0.4324 | 0.6576 |
143
+ | No log | 26.2857 | 184 | 0.4312 | 0.5656 | 0.4312 | 0.6567 |
144
+ | No log | 26.5714 | 186 | 0.4436 | 0.5831 | 0.4436 | 0.6660 |
145
+ | No log | 26.8571 | 188 | 0.4371 | 0.5731 | 0.4371 | 0.6611 |
146
+ | No log | 27.1429 | 190 | 0.4254 | 0.5860 | 0.4254 | 0.6522 |
147
+ | No log | 27.4286 | 192 | 0.4413 | 0.6201 | 0.4413 | 0.6643 |
148
+ | No log | 27.7143 | 194 | 0.4523 | 0.6495 | 0.4523 | 0.6725 |
149
+ | No log | 28.0 | 196 | 0.4151 | 0.6983 | 0.4151 | 0.6443 |
150
+ | No log | 28.2857 | 198 | 0.3907 | 0.6828 | 0.3907 | 0.6251 |
151
+ | No log | 28.5714 | 200 | 0.4017 | 0.6183 | 0.4017 | 0.6338 |
152
+ | No log | 28.8571 | 202 | 0.3992 | 0.6183 | 0.3992 | 0.6319 |
153
+ | No log | 29.1429 | 204 | 0.3900 | 0.7095 | 0.3900 | 0.6245 |
154
+ | No log | 29.4286 | 206 | 0.3955 | 0.7073 | 0.3955 | 0.6289 |
155
+ | No log | 29.7143 | 208 | 0.3990 | 0.6479 | 0.3990 | 0.6317 |
156
+ | No log | 30.0 | 210 | 0.4296 | 0.6127 | 0.4296 | 0.6555 |
157
+ | No log | 30.2857 | 212 | 0.4053 | 0.6292 | 0.4053 | 0.6366 |
158
+ | No log | 30.5714 | 214 | 0.3996 | 0.7073 | 0.3996 | 0.6322 |
159
+ | No log | 30.8571 | 216 | 0.4009 | 0.7073 | 0.4009 | 0.6331 |
160
+ | No log | 31.1429 | 218 | 0.3906 | 0.7003 | 0.3906 | 0.6250 |
161
+ | No log | 31.4286 | 220 | 0.4075 | 0.6402 | 0.4075 | 0.6384 |
162
+ | No log | 31.7143 | 222 | 0.4055 | 0.6407 | 0.4055 | 0.6368 |
163
+ | No log | 32.0 | 224 | 0.3925 | 0.6750 | 0.3925 | 0.6265 |
164
+ | No log | 32.2857 | 226 | 0.4021 | 0.6720 | 0.4021 | 0.6341 |
165
+ | No log | 32.5714 | 228 | 0.4088 | 0.6890 | 0.4088 | 0.6394 |
166
+ | No log | 32.8571 | 230 | 0.4200 | 0.6371 | 0.4200 | 0.6481 |
167
+ | No log | 33.1429 | 232 | 0.4313 | 0.6046 | 0.4313 | 0.6568 |
168
+ | No log | 33.4286 | 234 | 0.4369 | 0.6145 | 0.4369 | 0.6610 |
169
+ | No log | 33.7143 | 236 | 0.4467 | 0.6687 | 0.4467 | 0.6684 |
170
+ | No log | 34.0 | 238 | 0.4332 | 0.6973 | 0.4332 | 0.6582 |
171
+ | No log | 34.2857 | 240 | 0.4293 | 0.5649 | 0.4293 | 0.6552 |
172
+ | No log | 34.5714 | 242 | 0.4686 | 0.5528 | 0.4686 | 0.6845 |
173
+ | No log | 34.8571 | 244 | 0.4966 | 0.5808 | 0.4966 | 0.7047 |
174
+ | No log | 35.1429 | 246 | 0.4907 | 0.5883 | 0.4907 | 0.7005 |
175
+ | No log | 35.4286 | 248 | 0.4640 | 0.5672 | 0.4640 | 0.6812 |
176
+ | No log | 35.7143 | 250 | 0.4102 | 0.6395 | 0.4102 | 0.6405 |
177
+ | No log | 36.0 | 252 | 0.3968 | 0.6645 | 0.3968 | 0.6299 |
178
+ | No log | 36.2857 | 254 | 0.3963 | 0.6464 | 0.3963 | 0.6296 |
179
+ | No log | 36.5714 | 256 | 0.4017 | 0.6282 | 0.4017 | 0.6338 |
180
+ | No log | 36.8571 | 258 | 0.3942 | 0.6154 | 0.3942 | 0.6279 |
181
+ | No log | 37.1429 | 260 | 0.3802 | 0.7227 | 0.3802 | 0.6166 |
182
+ | No log | 37.4286 | 262 | 0.3829 | 0.7085 | 0.3829 | 0.6188 |
183
+ | No log | 37.7143 | 264 | 0.3833 | 0.7238 | 0.3833 | 0.6191 |
184
+ | No log | 38.0 | 266 | 0.3820 | 0.7588 | 0.3820 | 0.6180 |
185
+ | No log | 38.2857 | 268 | 0.4355 | 0.5908 | 0.4355 | 0.6600 |
186
+ | No log | 38.5714 | 270 | 0.4503 | 0.5908 | 0.4503 | 0.6710 |
187
+ | No log | 38.8571 | 272 | 0.4037 | 0.6771 | 0.4037 | 0.6354 |
188
+ | No log | 39.1429 | 274 | 0.3847 | 0.6542 | 0.3847 | 0.6202 |
189
+ | No log | 39.4286 | 276 | 0.4026 | 0.6264 | 0.4026 | 0.6345 |
190
+ | No log | 39.7143 | 278 | 0.4247 | 0.6156 | 0.4247 | 0.6517 |
191
+ | No log | 40.0 | 280 | 0.4182 | 0.6264 | 0.4182 | 0.6467 |
192
+ | No log | 40.2857 | 282 | 0.4135 | 0.6374 | 0.4135 | 0.6430 |
193
+ | No log | 40.5714 | 284 | 0.4195 | 0.5305 | 0.4195 | 0.6477 |
194
+ | No log | 40.8571 | 286 | 0.4320 | 0.5065 | 0.4320 | 0.6573 |
195
+ | No log | 41.1429 | 288 | 0.4285 | 0.5065 | 0.4285 | 0.6546 |
196
+ | No log | 41.4286 | 290 | 0.4202 | 0.5539 | 0.4202 | 0.6482 |
197
+ | No log | 41.7143 | 292 | 0.4184 | 0.5846 | 0.4184 | 0.6469 |
198
+ | No log | 42.0 | 294 | 0.4239 | 0.5580 | 0.4239 | 0.6511 |
199
+ | No log | 42.2857 | 296 | 0.4373 | 0.5266 | 0.4373 | 0.6613 |
200
+ | No log | 42.5714 | 298 | 0.4366 | 0.5195 | 0.4366 | 0.6608 |
201
+ | No log | 42.8571 | 300 | 0.4208 | 0.6184 | 0.4208 | 0.6487 |
202
+ | No log | 43.1429 | 302 | 0.4088 | 0.6634 | 0.4088 | 0.6394 |
203
+ | No log | 43.4286 | 304 | 0.4047 | 0.6344 | 0.4047 | 0.6362 |
204
+ | No log | 43.7143 | 306 | 0.4030 | 0.6555 | 0.4030 | 0.6348 |
205
+ | No log | 44.0 | 308 | 0.4029 | 0.7266 | 0.4029 | 0.6348 |
206
+ | No log | 44.2857 | 310 | 0.4053 | 0.7154 | 0.4053 | 0.6366 |
207
+ | No log | 44.5714 | 312 | 0.3944 | 0.6724 | 0.3944 | 0.6280 |
208
+ | No log | 44.8571 | 314 | 0.3886 | 0.6555 | 0.3886 | 0.6234 |
209
+ | No log | 45.1429 | 316 | 0.4266 | 0.5569 | 0.4266 | 0.6531 |
210
+ | No log | 45.4286 | 318 | 0.4584 | 0.5983 | 0.4584 | 0.6771 |
211
+ | No log | 45.7143 | 320 | 0.4464 | 0.5779 | 0.4464 | 0.6681 |
212
+ | No log | 46.0 | 322 | 0.4085 | 0.6282 | 0.4085 | 0.6392 |
213
+ | No log | 46.2857 | 324 | 0.3959 | 0.6648 | 0.3959 | 0.6292 |
214
+ | No log | 46.5714 | 326 | 0.3991 | 0.6648 | 0.3991 | 0.6317 |
215
+ | No log | 46.8571 | 328 | 0.4040 | 0.5930 | 0.4040 | 0.6356 |
216
+ | No log | 47.1429 | 330 | 0.4067 | 0.5915 | 0.4067 | 0.6377 |
217
+ | No log | 47.4286 | 332 | 0.4121 | 0.6046 | 0.4121 | 0.6420 |
218
+ | No log | 47.7143 | 334 | 0.4187 | 0.6530 | 0.4187 | 0.6471 |
219
+ | No log | 48.0 | 336 | 0.4140 | 0.6530 | 0.4140 | 0.6434 |
220
+ | No log | 48.2857 | 338 | 0.4044 | 0.6460 | 0.4044 | 0.6359 |
221
+ | No log | 48.5714 | 340 | 0.4065 | 0.5904 | 0.4065 | 0.6376 |
222
+ | No log | 48.8571 | 342 | 0.4200 | 0.5495 | 0.4200 | 0.6481 |
223
+ | No log | 49.1429 | 344 | 0.4343 | 0.5811 | 0.4343 | 0.6590 |
224
+ | No log | 49.4286 | 346 | 0.4375 | 0.5811 | 0.4375 | 0.6614 |
225
+ | No log | 49.7143 | 348 | 0.4254 | 0.5495 | 0.4254 | 0.6522 |
226
+ | No log | 50.0 | 350 | 0.4047 | 0.5714 | 0.4047 | 0.6361 |
227
+ | No log | 50.2857 | 352 | 0.4078 | 0.6820 | 0.4078 | 0.6386 |
228
+ | No log | 50.5714 | 354 | 0.4147 | 0.6506 | 0.4147 | 0.6440 |
229
+ | No log | 50.8571 | 356 | 0.4058 | 0.6712 | 0.4058 | 0.6370 |
230
+ | No log | 51.1429 | 358 | 0.3941 | 0.6942 | 0.3941 | 0.6278 |
231
+ | No log | 51.4286 | 360 | 0.3999 | 0.5985 | 0.3999 | 0.6324 |
232
+ | No log | 51.7143 | 362 | 0.4155 | 0.5841 | 0.4155 | 0.6446 |
233
+ | No log | 52.0 | 364 | 0.4258 | 0.5970 | 0.4258 | 0.6526 |
234
+ | No log | 52.2857 | 366 | 0.4243 | 0.6434 | 0.4243 | 0.6514 |
235
+ | No log | 52.5714 | 368 | 0.4150 | 0.6333 | 0.4150 | 0.6442 |
236
+ | No log | 52.8571 | 370 | 0.4219 | 0.6257 | 0.4219 | 0.6495 |
237
+ | No log | 53.1429 | 372 | 0.4235 | 0.6257 | 0.4235 | 0.6508 |
238
+ | No log | 53.4286 | 374 | 0.4163 | 0.6405 | 0.4163 | 0.6452 |
239
+ | No log | 53.7143 | 376 | 0.4130 | 0.6298 | 0.4130 | 0.6426 |
240
+ | No log | 54.0 | 378 | 0.4086 | 0.6452 | 0.4086 | 0.6392 |
241
+ | No log | 54.2857 | 380 | 0.4088 | 0.5714 | 0.4088 | 0.6394 |
242
+ | No log | 54.5714 | 382 | 0.4092 | 0.5227 | 0.4092 | 0.6397 |
243
+ | No log | 54.8571 | 384 | 0.4098 | 0.5440 | 0.4098 | 0.6401 |
244
+ | No log | 55.1429 | 386 | 0.4150 | 0.6096 | 0.4150 | 0.6442 |
245
+ | No log | 55.4286 | 388 | 0.4142 | 0.6096 | 0.4142 | 0.6436 |
246
+ | No log | 55.7143 | 390 | 0.4094 | 0.6326 | 0.4094 | 0.6398 |
247
+ | No log | 56.0 | 392 | 0.4043 | 0.6919 | 0.4043 | 0.6359 |
248
+ | No log | 56.2857 | 394 | 0.4043 | 0.6395 | 0.4043 | 0.6358 |
249
+ | No log | 56.5714 | 396 | 0.4169 | 0.6143 | 0.4169 | 0.6457 |
250
+ | No log | 56.8571 | 398 | 0.4338 | 0.5498 | 0.4338 | 0.6586 |
251
+ | No log | 57.1429 | 400 | 0.4236 | 0.5692 | 0.4236 | 0.6508 |
252
+ | No log | 57.4286 | 402 | 0.4065 | 0.6034 | 0.4065 | 0.6375 |
253
+ | No log | 57.7143 | 404 | 0.4081 | 0.5956 | 0.4081 | 0.6388 |
254
+ | No log | 58.0 | 406 | 0.4104 | 0.5956 | 0.4104 | 0.6406 |
255
+ | No log | 58.2857 | 408 | 0.3976 | 0.6860 | 0.3976 | 0.6305 |
256
+ | No log | 58.5714 | 410 | 0.3950 | 0.6672 | 0.3950 | 0.6285 |
257
+ | No log | 58.8571 | 412 | 0.3986 | 0.6389 | 0.3986 | 0.6314 |
258
+ | No log | 59.1429 | 414 | 0.4163 | 0.5841 | 0.4163 | 0.6452 |
259
+ | No log | 59.4286 | 416 | 0.4267 | 0.5569 | 0.4267 | 0.6532 |
260
+ | No log | 59.7143 | 418 | 0.4411 | 0.5569 | 0.4411 | 0.6641 |
261
+ | No log | 60.0 | 420 | 0.4347 | 0.5718 | 0.4347 | 0.6593 |
262
+ | No log | 60.2857 | 422 | 0.4149 | 0.5702 | 0.4149 | 0.6442 |
263
+ | No log | 60.5714 | 424 | 0.4089 | 0.5152 | 0.4089 | 0.6395 |
264
+ | No log | 60.8571 | 426 | 0.4099 | 0.5584 | 0.4099 | 0.6403 |
265
+ | No log | 61.1429 | 428 | 0.4133 | 0.5800 | 0.4133 | 0.6429 |
266
+ | No log | 61.4286 | 430 | 0.4166 | 0.5361 | 0.4166 | 0.6454 |
267
+ | No log | 61.7143 | 432 | 0.4188 | 0.5600 | 0.4188 | 0.6472 |
268
+ | No log | 62.0 | 434 | 0.4237 | 0.5152 | 0.4237 | 0.6509 |
269
+ | No log | 62.2857 | 436 | 0.4338 | 0.5098 | 0.4338 | 0.6586 |
270
+ | No log | 62.5714 | 438 | 0.4377 | 0.5495 | 0.4377 | 0.6616 |
271
+ | No log | 62.8571 | 440 | 0.4284 | 0.5028 | 0.4284 | 0.6545 |
272
+ | No log | 63.1429 | 442 | 0.4143 | 0.5152 | 0.4143 | 0.6437 |
273
+ | No log | 63.4286 | 444 | 0.4088 | 0.5600 | 0.4088 | 0.6393 |
274
+ | No log | 63.7143 | 446 | 0.4074 | 0.6076 | 0.4074 | 0.6383 |
275
+ | No log | 64.0 | 448 | 0.4074 | 0.6076 | 0.4074 | 0.6383 |
276
+ | No log | 64.2857 | 450 | 0.4071 | 0.6389 | 0.4071 | 0.6381 |
277
+ | No log | 64.5714 | 452 | 0.4040 | 0.6076 | 0.4040 | 0.6356 |
278
+ | No log | 64.8571 | 454 | 0.4029 | 0.5379 | 0.4029 | 0.6347 |
279
+ | No log | 65.1429 | 456 | 0.4061 | 0.5397 | 0.4061 | 0.6372 |
280
+ | No log | 65.4286 | 458 | 0.4078 | 0.6156 | 0.4078 | 0.6386 |
281
+ | No log | 65.7143 | 460 | 0.4095 | 0.6156 | 0.4095 | 0.6399 |
282
+ | No log | 66.0 | 462 | 0.4103 | 0.6156 | 0.4103 | 0.6405 |
283
+ | No log | 66.2857 | 464 | 0.4119 | 0.5941 | 0.4119 | 0.6418 |
284
+ | No log | 66.5714 | 466 | 0.4150 | 0.5522 | 0.4150 | 0.6442 |
285
+ | No log | 66.8571 | 468 | 0.4204 | 0.4703 | 0.4204 | 0.6484 |
286
+ | No log | 67.1429 | 470 | 0.4262 | 0.4703 | 0.4262 | 0.6529 |
287
+ | No log | 67.4286 | 472 | 0.4298 | 0.4774 | 0.4298 | 0.6556 |
288
+ | No log | 67.7143 | 474 | 0.4327 | 0.4774 | 0.4327 | 0.6578 |
289
+ | No log | 68.0 | 476 | 0.4353 | 0.5267 | 0.4353 | 0.6598 |
290
+ | No log | 68.2857 | 478 | 0.4361 | 0.5267 | 0.4361 | 0.6603 |
291
+ | No log | 68.5714 | 480 | 0.4356 | 0.5267 | 0.4356 | 0.6600 |
292
+ | No log | 68.8571 | 482 | 0.4320 | 0.5267 | 0.4320 | 0.6573 |
293
+ | No log | 69.1429 | 484 | 0.4276 | 0.5267 | 0.4276 | 0.6539 |
294
+ | No log | 69.4286 | 486 | 0.4218 | 0.5267 | 0.4218 | 0.6495 |
295
+ | No log | 69.7143 | 488 | 0.4213 | 0.5044 | 0.4213 | 0.6491 |
296
+ | No log | 70.0 | 490 | 0.4227 | 0.4970 | 0.4227 | 0.6502 |
297
+ | No log | 70.2857 | 492 | 0.4278 | 0.5227 | 0.4278 | 0.6541 |
298
+ | No log | 70.5714 | 494 | 0.4262 | 0.5475 | 0.4262 | 0.6528 |
299
+ | No log | 70.8571 | 496 | 0.4192 | 0.5227 | 0.4192 | 0.6475 |
300
+ | No log | 71.1429 | 498 | 0.4127 | 0.4970 | 0.4127 | 0.6424 |
301
+ | 0.1864 | 71.4286 | 500 | 0.4169 | 0.5397 | 0.4169 | 0.6457 |
302
+ | 0.1864 | 71.7143 | 502 | 0.4216 | 0.5397 | 0.4216 | 0.6493 |
303
+ | 0.1864 | 72.0 | 504 | 0.4212 | 0.5397 | 0.4212 | 0.6490 |
304
+ | 0.1864 | 72.2857 | 506 | 0.4146 | 0.5208 | 0.4146 | 0.6439 |
305
+ | 0.1864 | 72.5714 | 508 | 0.4128 | 0.5024 | 0.4128 | 0.6425 |
306
+ | 0.1864 | 72.8571 | 510 | 0.4163 | 0.5267 | 0.4163 | 0.6452 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1125031c8a54cb1a6ef270936c5d87664fd14b531537cfa1663c095aaae8538
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:333cf43d1045b895b1909ffd59d4786825f945075417ff9a7c4b9671d57645d6
3
+ size 5304