Maxwell-Jia commited on
Commit
9ec9b81
·
verified ·
1 Parent(s): e98689a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -194
README.md CHANGED
@@ -1,199 +1,115 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - Maxwell-Jia/kepler_flare
6
+ language:
7
+ - en
8
+ metrics:
9
+ - precision
10
+ - recall
11
  ---
12
 
13
+ # FCN4Flare
14
+
15
+ FCN4Flare is a fully convolutional neural network designed for precise point-to-point detection of stellar flares in photometric time-series data. Stellar flares provide valuable insights into stellar magnetic activity and space weather environments, but detecting these flares is challenging due to missing data, imbalanced classes, and diverse flare morphologies. FCN4Flare addresses these challenges with:
16
+
17
+ - **NaN Mask**: A mechanism to handle missing data points effectively during training.
18
+ - **Mask Dice Loss**: A loss function tailored to mitigate class imbalance by optimizing the overlap between predicted and true flares.
19
+
20
+ FCN4Flare achieves state-of-the-art performance on the Kepler flare dataset, significantly surpassing previous methods such as Flatwrm2 and Stella. Key performance metrics are summarized in the table below:
21
+
22
+ | Metric | FCN4Flare | Flatwrm2 | Stella |
23
+ |----------------------|-----------|----------|--------|
24
+ | Recall | **0.67** | 0.26 | 0.50 |
25
+ | Precision | **0.69** | 0.08 | 0.09 |
26
+ | F1 Score | **0.64** | 0.13 | 0.16 |
27
+ | Average Precision | **0.55** | 0.12 | 0.14 |
28
+ | Dice Coefficient | **0.64** | 0.12 | 0.15 |
29
+ | Intersection over Union (IoU) | **0.54** | 0.10 | 0.13 |
30
+
31
+
32
+
33
+ ## Inference with AutoModel API
34
+
35
+ ```python
36
+ from transformers import AutoModel
37
+ import torch
38
+
39
+ model = AutoModel.from_pretrained("Maxwell-Jia/fcn4flare")
40
+
41
+ # Load your data and create required tensors
42
+ # You need to implement your own data loading logic that returns:
43
+ # 1. input_features: tensor of flux values, shape [batch_size, sequence_length, 1]
44
+ # - Contains the actual flux measurements and padded values
45
+ # 2. sequence_mask: binary tensor, shape [batch_size, sequence_length]
46
+ # - 1 indicates real flux values
47
+ # - 0 indicates padded positions
48
+ input_features, sequence_mask = load_data()
49
+
50
+ # Example of expected tensor shapes and values:
51
+ # input_features = torch.tensor([
52
+ # [1.2, 1.5, 1.1, nan, nan], # nan are padded values
53
+ # [1.3, 1.4, 1.6, 1.2, 1.1] # all real values
54
+ # ])
55
+ # sequence_mask = torch.tensor([
56
+ # [1, 1, 1, 0, 0], # last 2 positions are padded
57
+ # [1, 1, 1, 1, 1] # no padding
58
+ # ])
59
+
60
+ logits = model(input_features, sequence_mask)
61
+
62
+ # Apply a threshold to get binary predictions
63
+ threshold = 0.5
64
+ predictions = (logits > threshold).float()
65
+
66
+ # Implement your own post-processing logic to reduce false positives
67
+ # The post-processing step is crucial for:
68
+ # 1. Filtering out noise and spurious detections
69
+ # 2. Merging nearby detections
70
+ # 3. Applying additional threshold or rule-based filtering
71
+ #
72
+ # Example post-processing strategies:
73
+ # - Apply minimum duration threshold
74
+ # - Merge events that are too close in time
75
+ # - Consider the amplitude of the detected events
76
+ # - Use domain knowledge to validate detections
77
+ final_results = post_process_predictions(predictions)
78
+
79
+ # Example implementation:
80
+ # def post_process_predictions(predictions):
81
+ # # Apply minimum duration filter
82
+ # # Remove detections shorter than X minutes
83
+ # # Merge events within Y minutes of each other
84
+ # # Apply additional validation rules
85
+ # return processed_results
86
+ ```
87
+
88
+ ## Inference with pipeline API
89
+
90
+ ```python
91
+ from transformers import pipeline
92
+
93
+ flare_detector = pipeline("flare-detection", model="Maxwell-Jia/fcn4flare")
94
+ # Only surport for Kepler/K2 light curves now.
95
+ results = flare_detector([
96
+ "Path/to/your/lightcurve.fits",
97
+ "Path/to/your/lightcurve.fits",
98
+ ...
99
+ ])
100
+
101
+ print(results)
102
+ ```
103
+
104
+ ## **Citation**
105
+
106
+ If you find this work useful, please cite our paper:
107
+ ```bibtex
108
+ @article{jia2024fcn4flare,
109
+ title={FCN4Flare: Fully Convolution Neural Networks for Flare Detection},
110
+ author={Minghui Jia, A-Li Luo, Bo Qiu},
111
+ journal={arXiv preprint arXiv:2407.21240},
112
+ year={2024}
113
+ }
114
+ ```
115