File size: 7,764 Bytes
0d2aee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from typing import Optional
from dataclasses import dataclass

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel

from .configuration_fcn4flare import FCN4FlareConfig


class MaskDiceLoss(nn.Module):
    r"""
    Computes the Mask Dice Loss between the predicted and target tensors.
    $$
    \text{loss} = 1 - \frac{2 \times \text{intersection} + \epsilon}{\text{predicted} + \text{target} + \epsilon}
    $$

    Args:
        maskdice_threshold (float): Threshold value for the predicted tensor.

    Returns:
        loss (float): Computed Mask Dice Loss.
    """
    def __init__(self, maskdice_threshold):
        super().__init__()
        self.maskdice_threshold = maskdice_threshold

    def forward(self, inputs, targets):
        """
        Computes the forward pass of the Mask Dice Loss.

        Args:
            inputs (torch.Tensor): Predicted tensor.
            targets (torch.Tensor): Target tensor.

        Returns:
            loss (float): Computed Mask Dice Loss.
        """
        n = targets.size(0)
        smooth = 1e-8
        
        # Apply thresholding to inputs
        inputs_act = torch.gt(inputs, self.maskdice_threshold)
        inputs_act = inputs_act.long()
        inputs = inputs * inputs_act
        
        intersection = inputs * targets
        dice_diff = (2 * intersection.sum(1) + smooth) / (inputs.sum(1) + targets.sum(1) + smooth * n)
        loss = 1 - dice_diff.mean()
        return loss


class NaNMask(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, inputs):
        # Create a mask where NaNs are marked as 1
        nan_mask = torch.isnan(inputs).float()
        # Replace NaNs with 0 in the input tensor
        inputs = torch.nan_to_num(inputs, nan=0.0)
        # Concatenate the input tensor with the NaN mask
        return torch.cat([inputs, nan_mask], dim=-1)


class SamePadConv(nn.Module):
    def __init__(self, input_dim, output_dim, kernel_size, dilation=1):
        super().__init__()
        self.receptive_field = (kernel_size - 1) * dilation + 1
        padding = self.receptive_field // 2
        self.conv = nn.Conv1d(
            input_dim, output_dim, kernel_size,
            padding=padding,
            dilation=dilation
        )
        self.batchnorm = nn.BatchNorm1d(output_dim)
        self.remove = 1 if self.receptive_field % 2 == 0 else 0
        
    def forward(self, x):
        x = self.conv(x)
        x = self.batchnorm(x)
        x = F.gelu(x)
        if self.remove > 0:
            x = x[:, :, : -self.remove]
        return x


class ConvBlock(nn.Module):
    def __init__(self, input_dim, output_dim, kernel_size, dilation):
        super().__init__()
        self.conv1 = SamePadConv(input_dim, output_dim, kernel_size, dilation=dilation)
        self.conv2 = SamePadConv(output_dim, output_dim, kernel_size, dilation=dilation)
    
    def forward(self, x):
        residual = x
        x = self.conv1(x)
        x = self.conv2(x)
        return x + residual


class Backbone(nn.Module):
    def __init__(self, input_dim, dim_list, dilation, kernel_size):
        super().__init__()
        self.net = nn.Sequential(*[
            ConvBlock(
                dim_list[i-1] if i > 0 else input_dim,
                dim_list[i],
                kernel_size=kernel_size,
                dilation=dilation[i]
            )
            for i in range(len(dim_list))
        ])
        
    def forward(self, x):
        return self.net(x)


class LightCurveEncoder(nn.Module):
    def __init__(self, input_dim, output_dim, depth, dilation):
        super().__init__()
        self.mapping = nn.Conv1d(input_dim + 1, output_dim, 1)  # +1 for NaN mask
        self.backbone = Backbone(
            output_dim,
            [output_dim] * depth,
            dilation,
            kernel_size=3
        )
        self.repr_dropout = nn.Dropout(p=0.1)
    
    def forward(self, x):
        x = x.transpose(1, 2)   # B x Ci x T
        x = self.mapping(x)     # B x Ch x T
        x = self.backbone(x)    # B x Co x T
        x = self.repr_dropout(x)
        return x


class SegHead(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        self.conv = SamePadConv(input_dim, input_dim, 3)
        self.projector = nn.Conv1d(input_dim, output_dim, 1)

    def forward(self, x):
        # x: B x Ci x T
        x = self.conv(x)       # B x Ci x T
        x = self.projector(x)  # B x Co x T
        x = x.transpose(1, 2)  # B x T x Co
        return x
    

class FCN4FlarePreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
    """
    config_class = FCN4FlareConfig
    base_model_prefix = "fcn4flare"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        if isinstance(module, nn.Conv1d):
            nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
        elif isinstance(module, nn.BatchNorm1d):
            nn.init.constant_(module.weight, 1)
            nn.init.constant_(module.bias, 0)


@dataclass
class FCN4FlareOutput(ModelOutput):
    """
    Output type of FCN4Flare.

    Args:
        loss (`Optional[torch.FloatTensor]` of shape `(1,)`, *optional*):
            Mask Dice loss if labels provided, None otherwise.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, output_dim)`):
            Prediction scores of the model.
        hidden_states (`torch.FloatTensor` of shape `(batch_size, hidden_dim, sequence_length)`):
            Hidden states from the encoder.
    """
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: torch.FloatTensor = None


class FCN4FlareModel(FCN4FlarePreTrainedModel):
    def __init__(self, config: FCN4FlareConfig):
        super().__init__(config)
        
        self.nan_mask = NaNMask()
        self.encoder = LightCurveEncoder(
            config.input_dim,
            config.hidden_dim,
            config.depth,
            config.dilation
        )
        self.seghead = SegHead(config.hidden_dim, config.output_dim)
        
        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_features,
        sequence_mask=None,
        labels=None,
        return_dict=True,
    ):
        # Apply NaN masking
        inputs_with_mask = self.nan_mask(input_features)

        # Encoder and segmentation head
        outputs = self.encoder(inputs_with_mask)
        logits = self.seghead(outputs)
        
        # Loss calculation
        loss = None
        if labels is not None:
            loss_fct = MaskDiceLoss(self.config.maskdice_threshold)
            logits_sigmoid = torch.sigmoid(logits).squeeze(-1)
            
            if sequence_mask is not None:
                # Copy labels and replace padding positions with zeros
                labels_for_loss = labels.clone()
                labels_for_loss = torch.nan_to_num(labels_for_loss, nan=0.0)
                labels_for_loss = labels_for_loss * sequence_mask
                logits_sigmoid = logits_sigmoid * sequence_mask
                loss = loss_fct(logits_sigmoid, labels_for_loss)
            else:
                loss = loss_fct(logits_sigmoid, labels)

        if not return_dict:
            output = (logits,)
            return ((loss,) + output) if loss is not None else output

        return FCN4FlareOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs
        )