Commit
·
519fa2c
1
Parent(s):
6942ea1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- break_data
|
7 |
+
metrics:
|
8 |
+
- bleu
|
9 |
+
model-index:
|
10 |
+
- name: t5-large-finetuned-break-qdmr-decomposition
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: break_data
|
17 |
+
type: break_data
|
18 |
+
config: QDMR
|
19 |
+
split: validation
|
20 |
+
args: QDMR
|
21 |
+
metrics:
|
22 |
+
- name: Bleu
|
23 |
+
type: bleu
|
24 |
+
value: 0.22169382457557757
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# t5-large-finetuned-break-qdmr-decomposition
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the break_data dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1729
|
35 |
+
- Bleu: 0.2217
|
36 |
+
- Precisions: [0.928997558602713, 0.8089017135403285, 0.702859772673759, 0.6237525532535746]
|
37 |
+
- Brevity Penalty: 0.2926
|
38 |
+
- Length Ratio: 0.4487
|
39 |
+
- Translation Length: 108954
|
40 |
+
- Reference Length: 242845
|
41 |
+
|
42 |
+
## Model description
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Intended uses & limitations
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training and evaluation data
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training procedure
|
55 |
+
|
56 |
+
### Training hyperparameters
|
57 |
+
|
58 |
+
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 0.0001
|
60 |
+
- train_batch_size: 2
|
61 |
+
- eval_batch_size: 2
|
62 |
+
- seed: 42
|
63 |
+
- gradient_accumulation_steps: 64
|
64 |
+
- total_train_batch_size: 128
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- num_epochs: 10
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|
|
73 |
+
| No log | 1.0 | 346 | 0.2217 | 0.2190 | [0.9212396799650076, 0.7929651493459373, 0.6788405612515656, 0.5938190356122556] | 0.2973 | 0.4519 | 109738 | 242845 |
|
74 |
+
| 0.3597 | 2.0 | 692 | 0.1898 | 0.2213 | [0.9278319373884388, 0.8053505444154309, 0.6955454787943451, 0.6142312076867599] | 0.2944 | 0.4499 | 109245 | 242845 |
|
75 |
+
| 0.1943 | 3.0 | 1038 | 0.1780 | 0.2213 | [0.9274868270332188, 0.805860010851872, 0.6987019924149351, 0.6179670572886331] | 0.2936 | 0.4494 | 109125 | 242845 |
|
76 |
+
| 0.1943 | 4.0 | 1385 | 0.1722 | 0.2209 | [0.9296421064226247, 0.8077246177717601, 0.6996456975263051, 0.618521199103474] | 0.2926 | 0.4486 | 108943 | 242845 |
|
77 |
+
| 0.1588 | 5.0 | 1731 | 0.1708 | 0.2221 | [0.9263551333376084, 0.8062900028599888, 0.7016414100962206, 0.6226711690731253] | 0.2938 | 0.4495 | 109159 | 242845 |
|
78 |
+
| 0.1395 | 6.0 | 2077 | 0.1699 | 0.2209 | [0.9307313480922355, 0.8116381660470879, 0.7052247221178113, 0.6255682084446319] | 0.2907 | 0.4473 | 108635 | 242845 |
|
79 |
+
| 0.1395 | 7.0 | 2423 | 0.1699 | 0.2219 | [0.9294629418890643, 0.8099284613256393, 0.7035550704165061, 0.623971523603898] | 0.2927 | 0.4487 | 108964 | 242845 |
|
80 |
+
| 0.1245 | 8.0 | 2770 | 0.1717 | 0.2215 | [0.9293905921457364, 0.8091923795588686, 0.7026416387368962, 0.6239635641714353] | 0.2924 | 0.4485 | 108909 | 242845 |
|
81 |
+
| 0.1152 | 9.0 | 3116 | 0.1724 | 0.2215 | [0.9294489230034706, 0.8091424956007671, 0.7027003876051995, 0.6234366789280084] | 0.2924 | 0.4485 | 108914 | 242845 |
|
82 |
+
| 0.1152 | 9.99 | 3460 | 0.1729 | 0.2217 | [0.928997558602713, 0.8089017135403285, 0.702859772673759, 0.6237525532535746] | 0.2926 | 0.4487 | 108954 | 242845 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.30.2
|
88 |
+
- Pytorch 2.0.1+cu118
|
89 |
+
- Datasets 2.13.1
|
90 |
+
- Tokenizers 0.13.3
|