File size: 3,492 Bytes
b73c337
68cfd3f
 
 
 
 
 
b73c337
68cfd3f
 
 
 
 
 
b73c337
 
68cfd3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73c337
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: mit
language:
- en
base_model:
- codellama/CodeLlama-7b-hf
- codellama/CodeLlama-7b-Python-hf
library_name: transformers
tags:
- mergekit
- merged-model
- codellama
- programming
- language-model
---

# πŸš€ CodeLlama-Hybrid-7B: Optimized for Code Generation

## πŸ“Œ Overview
**CodeLlama-Hybrid-7B** is an **experimental hybrid language model** that merges the capabilities of two CodeLlama variants. Built using **MergeKit**, this model is optimized for programming-related tasks, balancing efficiency and performance in code generation and understanding.

πŸ”— **Created by**: Matteo Khan  
πŸŽ“ **Affiliation**: Apprentice at TW3 Partners (Generative AI Research)  
πŸ“ **License**: MIT  

πŸ”— [Connect with me on LinkedIn](https://www.linkedin.com/in/matteo-khan-a10309263/)  
πŸ” [Model on Hugging Face](https://huggingface.co/MatteoKhan/CodeLlama-Hybrid-7B)  

## 🧠 Model Details
- **Model Type**: Hybrid Language Model (Merged for Code Generation)
- **Parent Models**:
  - [CodeLlama-7B](https://huggingface.co/codellama/CodeLlama-7b-hf)
  - [CodeLlama-7B-Python](https://huggingface.co/codellama/CodeLlama-7b-Python-hf)
- **Merging Technique**: Linear Merge (MergeKit)
- **Tokenizer Source**: `codellama/CodeLlama-7b-hf`

## 🎯 Intended Use
This model is designed for **code-related tasks** and experimentation in hybrid model optimization. Possible applications include:
- βœ… Code Generation
- βœ… Code Completion & Assistance
- βœ… Code Understanding & Refactoring
- βœ… Exploration of Model Merging Effects on Programming Tasks

## ⚠️ Limitations & Considerations
While **CodeLlama-Hybrid-7B** provides enhanced code generation capabilities, it inherits some limitations from its parent models:
- ❌ May produce **incorrect or insecure** code
- ⚠️ Can generate **biased, offensive, or inappropriate** content
- πŸ”„ Merging may introduce **unpredictable behaviors**
- πŸ“‰ Performance may **vary depending on the programming language and context**

## πŸ”¬ Merging Process & Configuration
This is **not a newly trained model**, but rather a merge of existing models using the following configuration:

```yaml
merge_method: linear
dtype: float16
allow_crimes: true
models:
  - model: "codellama/CodeLlama-7b-hf"
    parameters:
      t: 1.0
      weight: 0.5
  - model: "codellama/CodeLlama-7b-Python-hf"
    parameters:
      t: 1.0
      weight: 0.5
parameters:
  normalize: true
  int8_mask: false
  ignore_mismatched_sizes: true
layers:
  - pattern: "model.*"
tokenizer_source: "codellama/CodeLlama-7b-hf"
```

πŸ“Š **No formal evaluation** has been conducted yet. Users are encouraged to **benchmark and share feedback**!

## 🌍 Environmental Impact
By utilizing **model merging** instead of training from scratch, **CodeLlama-Hybrid-7B** significantly reduces computational and environmental costs.

## πŸš€ How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "MatteoKhan/CodeLlama-Hybrid-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Example usage
prompt = "Write a Python function to calculate Fibonacci numbers."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
πŸ“© **Feedback & Contact**: Reach out via [Hugging Face](https://huggingface.co/MatteoKhan).

πŸŽ‰ **Happy Coding!** πŸš€