ppo-LunarLander-v2 / config.json
MateoSP's picture
Upload du PPO Lunar Lander V2
948ddef verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ce1b37dfb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ce1b37dfbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ce1b37dfc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ce1b37dfd00>", "_build": "<function ActorCriticPolicy._build at 0x7ce1b37dfd90>", "forward": "<function ActorCriticPolicy.forward at 0x7ce1b37dfe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ce1b37dfeb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ce1b37dff40>", "_predict": "<function ActorCriticPolicy._predict at 0x7ce1b37e8040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ce1b37e80d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ce1b37e8160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ce1b37e81f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ce1b376b200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735911557987307818, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbhKz1xvW252zQ2O7WvjTZd7Pw6W2hWugAAgD8AAIA/5m0AvcEYwrxNZJQ9exmPvbG/hTxlsKU9AACAPwAAgD9aIbq9KTh4uphhZzokFFA1ZP5Lu2t0h7kAAIA/AACAPw1uWj6okew+o8IqvmCwkb5+jpk9gFjAvQAAAAAAAAAADb9QPrQGYz5c56e+M1VNvvDZNbyucu+7AAAAAAAAAADQ1IU+9FcCPv9yrb52hVm+dBzDOQDR970AAAAAAAAAAGYelDz2kBu6NpAXuIkzi7Hvx3a7/jcvNwAAgD8AAIA/mn0OPI/GarpVd1k61TY7NambK7nOAH25AACAPwAAgD8ztQU8SNOAui40u7spkYI2Vv4LOtOv8LUAAIA/AACAP7MPA72uE4u6ZttRO56OFDgyBv062QwLugAAgD8AAIA/zYxSPFznRbqlEly81MKtuy7nBLs34Jc8AACAPwAAAACa/SW9w4l7upfCvbngxYM1x0oJunsY2DgAAIA/AACAP2YbXr32zBW6o3SyODexgjPZs9w6WOHNtwAAgD8AAIA/TXWOPa79lLplLJe86sSANWmj+zkAQOq0AACAPwAAgD+AKXK9PeeoPwZDp74c5ee+nRrXvfrVjL4AAAAAAAAAAAASoDwpJF+62krmOrxqSbV1TqG7YLcEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGAj3jlxOtaMAWyUTegDjAF0lEdAkVmk2Hck+3V9lChoBkdAW0k9vCMxXWgHTegDaAhHQJFdHu0CzTp1fZQoaAZHQGHsFO45Lh9oB03oA2gIR0CRXoHavicYdX2UKGgGR0BndmqDK5kLaAdN6ANoCEdAkWLLRrrPdHV9lChoBkdAYtMKOT7l72gHTegDaAhHQJFmMrVe8f51fZQoaAZHQGQ48BuGbkRoB03oA2gIR0CRaWDYh+vydX2UKGgGR0BnURJmNBGAaAdN6ANoCEdAkXUw+2VmjHV9lChoBkdAYqENy5qdpmgHTegDaAhHQJF6Y6dUbUB1fZQoaAZHQGE7xbbDdgxoB03oA2gIR0CRfhCu2Zy/dX2UKGgGR0BjqR0hePaMaAdN6ANoCEdAkX63Ty8SPHV9lChoBkdAYNNtfoicG2gHTegDaAhHQJGKV1W8yvd1fZQoaAZHQGIUA7PppvhoB03oA2gIR0CRi9r+o99udX2UKGgGR0BiN3ai9IwuaAdN6ANoCEdAkY0Ej9n9N3V9lChoBkdAZWhk92X9i2gHTegDaAhHQJGOviLl3hZ1fZQoaAZHQGdCujIq9XdoB03oA2gIR0CRj7d2Pkq+dX2UKGgGR0BjA1CZ4Oc2aAdN6ANoCEdAkaGfJmuklHV9lChoBkdAZ0/iLEUCaWgHTegDaAhHQJGjYotthux1fZQoaAZHQGAokWZZ0S1oB03oA2gIR0CRpmy6+WWydX2UKGgGR0BjsfEXLvCuaAdN6ANoCEdAkaerEP1+RnV9lChoBkdAZmBKSxJNCmgHTegDaAhHQJGr7S8an751fZQoaAZHQGbBJ2t+1BtoB03oA2gIR0CRr2dtVJcxdX2UKGgGR0BklLobGWD6aAdN6ANoCEdAkbMgIUrTY3V9lChoBkdASKX36AOJ+GgHS9xoCEdAkbnc9KVY6nV9lChoBkdAY0tHe7+T/2gHTegDaAhHQJHBWzmfXf91fZQoaAZHQGUImgi/wiJoB03oA2gIR0CRxeoxpL26dX2UKGgGR0Bk9BWaMJhOaAdN6ANoCEdAkckn49HMEHV9lChoBkdAZLawco6S1WgHTegDaAhHQJHJu0zCUHJ1fZQoaAZHQGdKyNOuaF5oB03oA2gIR0CR0af1HvtudX2UKGgGR0BlCHBciW3SaAdN6ANoCEdAkdMdGRV6vHV9lChoBkdAYOAJTER8MWgHTegDaAhHQJHUOq4pc5d1fZQoaAZHQGKNLkbPyCpoB03oA2gIR0CR1fan752ydX2UKGgGR0BjGfTNMXabaAdN6ANoCEdAkdbmRRuTA3V9lChoBkdAZqL2A5JbuGgHTegDaAhHQJHXqHKwIMV1fZQoaAZHQGg8UwztTk1oB03oA2gIR0CR7D9WZJCjdX2UKGgGR0BiEUEzO5avaAdN6ANoCEdAkfDNKIznBHV9lChoBkdAZtXFz+3pfWgHTegDaAhHQJHysicG1QZ1fZQoaAZHQGkLKNAC4jNoB03oA2gIR0CR+ucNpdrwdX2UKGgGR0BgK/tQbdadaAdN6ANoCEdAkf5sbiqABnV9lChoBkdAZxRU70WdmWgHTegDaAhHQJID3w1BMSN1fZQoaAZHQGSGxb0OEuhoB03oA2gIR0CSCpmtyPuHdX2UKGgGR0BkbTqyGBWgaAdN6ANoCEdAkg+Dcdo373V9lChoBkdAY6ocG1QZXWgHTegDaAhHQJITABfa6Bl1fZQoaAZHQGI+eFtbcGloB03oA2gIR0CSE6NsFdLQdX2UKGgGR0BiVIEwFkhBaAdN6ANoCEdAkh0tZeRgZ3V9lChoBkdAaIcs189fTmgHTegDaAhHQJIfWlsP8Q91fZQoaAZHQGJxj7hvR7ZoB03oA2gIR0CSITgCfYjCdX2UKGgGR0BgnQ20iQkpaAdN6ANoCEdAkiP8iGFi8XV9lChoBkdAYgUNp/PPcGgHTegDaAhHQJIlbepGWld1fZQoaAZHQGIrMLF4s3BoB03oA2gIR0CSJqVbiZOSdX2UKGgGR0Bjk6Wom5UcaAdN6ANoCEdAkjoKf8MuvnV9lChoBkdAZQ92KVII4WgHTegDaAhHQJI9yqR2bG51fZQoaAZHQF4GFefI0ZZoB03oA2gIR0CSP04lhPTHdX2UKGgGR0BOSiHymQ8waAdL6mgIR0CSRq8CxNZedX2UKGgGR0Bh22I9C/oJaAdN6ANoCEdAkkgq4hEBsHV9lChoBkdAYw6+iaiKzmgHTegDaAhHQJJLwEpy6tl1fZQoaAZHQGcTB3A2ycFoB03oA2gIR0CSUbUSqU/wdX2UKGgGR0BfhKqOtGNJaAdN6ANoCEdAkloRnFo+OnV9lChoBkdAYoaTfR/mT2gHTegDaAhHQJJehuTA31l1fZQoaAZHQGMAeMQ2/BZoB03oA2gIR0CSYc2B8QZodX2UKGgGR0BkDtQ0oBq9aAdN6ANoCEdAkmJj5wfhdnV9lChoBkdAaGvLi++M62gHTegDaAhHQJJqwiosI3R1fZQoaAZHQFwjRsMy8BdoB03oA2gIR0CSbDO3UhFFdX2UKGgGR0BhwECcPOIJaAdN6ANoCEdAkm1ORLbpNnV9lChoBkdAYwUIk7fYSWgHTegDaAhHQJJu+ePJaJR1fZQoaAZHQGDNPzWf9P1oB03oA2gIR0CSb+TV2A5JdX2UKGgGR0BkJzzkIX0oaAdN6ANoCEdAknCn4Glhw3V9lChoBkdAYiGs7uDzy2gHTegDaAhHQJKI7Ooo/iZ1fZQoaAZHQGP9BeHBUJhoB03oA2gIR0CSisoOQQtjdX2UKGgGR0BlZEpqh11XaAdN6ANoCEdAkpJNyxRl6XV9lChoBkdAY/3JIUahpWgHTegDaAhHQJKTooDxLCh1fZQoaAZHQGeZWuxKQJZoB03oA2gIR0CSluHc1wYMdX2UKGgGR0BjcZtaY/mlaAdN6ANoCEdAkpvKeGwiaHV9lChoBkdAYdLrZ8KG+WgHTegDaAhHQJKhsuSOinJ1fZQoaAZHQGeMaoVEd/9oB03oA2gIR0CSph2R7qptdX2UKGgGR0BjKvWz4UN8aAdN6ANoCEdAkqlSWiUPhHV9lChoBkdAYbS4EwFkhGgHTegDaAhHQJKp5UBGQS11fZQoaAZHQGeyesHSncdoB03oA2gIR0CSshwGnn+ydX2UKGgGR0Bg0L+tKZlWaAdN6ANoCEdAkrOjK1XvIHV9lChoBkdAZe2L2pQ1rWgHTegDaAhHQJK05QCSzPd1fZQoaAZHQE2XX6InBtVoB0vaaAhHQJK1gw22oeh1fZQoaAZHQGcBOTA31jBoB03oA2gIR0CStsmrsByTdX2UKGgGR0Bk69X3g1m8aAdN6ANoCEdAkrgVFMIu5HV9lChoBkdAZN3rxiG34WgHTegDaAhHQJK5DbXYlIF1fZQoaAZHQGkEs9r433poB03oA2gIR0CS0XSiM5wPdX2UKGgGR0BoVZbUwztUaAdN6ANoCEdAktLB5gPVeHV9lChoBkdAUCtmEoOQQ2gHS+doCEdAktPY3zcynHV9lChoBkdAZQxvoePq92gHTegDaAhHQJLYwI/qxC91fZQoaAZHQGa1PBi1AqxoB03oA2gIR0CS2flD4QBgdX2UKGgGR0BoGjU/fO2RaAdN6ANoCEdAkt0CDIzWPXV9lChoBkdAai2SQHRkVmgHTegDaAhHQJLhnU4JeE91fZQoaAZHQGVaK/ub7TFoB03oA2gIR0CS531Z1V5sdX2UKGgGR0BhmdeyAxzraAdN6ANoCEdAku05Grjo6nV9lChoBkdAYqJ3dsSCe2gHTegDaAhHQJLxyp2ll9V1fZQoaAZHQGN7xvegte5oB03oA2gIR0CS+38neBQOdX2UKGgGR0BiVaKpDNQkaAdN6ANoCEdAkv0Fm4Ajp3V9lChoBkdAaCeODJ2dNGgHTegDaAhHQJL+PFn7Hhl1fZQoaAZHQGT1R5TqB3BoB03oA2gIR0CTAAW+49X+dX2UKGgGR0BgJOXXyy2QaAdN6ANoCEdAkwD9OqNp/XV9lChoBkdAZd+PCEYfn2gHTegDaAhHQJMBwWqLjxV1fZQoaAZHQFA+xHG0eEJoB0vVaAhHQJMF0ipvP1N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.985, "ent_coef": 0.012, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}