MatVet commited on
Commit
c05d33f
·
verified ·
1 Parent(s): 44b13c7

Initial model upload

Browse files
Files changed (45) hide show
  1. .ipynb_checkpoints/README-checkpoint.md +140 -0
  2. README.md +140 -0
  3. adapter_config.json +34 -0
  4. adapter_model.bin +3 -0
  5. added_tokens.json +5 -0
  6. checkpoint-416/README.md +202 -0
  7. checkpoint-416/adapter_config.json +34 -0
  8. checkpoint-416/adapter_model.safetensors +3 -0
  9. checkpoint-416/added_tokens.json +5 -0
  10. checkpoint-416/merges.txt +0 -0
  11. checkpoint-416/optimizer.pt +3 -0
  12. checkpoint-416/rng_state_0.pth +3 -0
  13. checkpoint-416/rng_state_1.pth +3 -0
  14. checkpoint-416/rng_state_2.pth +3 -0
  15. checkpoint-416/rng_state_3.pth +3 -0
  16. checkpoint-416/rng_state_4.pth +3 -0
  17. checkpoint-416/rng_state_5.pth +3 -0
  18. checkpoint-416/rng_state_6.pth +3 -0
  19. checkpoint-416/rng_state_7.pth +3 -0
  20. checkpoint-416/scheduler.pt +3 -0
  21. checkpoint-416/special_tokens_map.json +35 -0
  22. checkpoint-416/tokenizer.json +0 -0
  23. checkpoint-416/tokenizer_config.json +199 -0
  24. checkpoint-416/trainer_state.json +320 -0
  25. checkpoint-416/training_args.bin +3 -0
  26. checkpoint-416/vocab.json +0 -0
  27. config.json +49 -0
  28. merged/added_tokens.json +5 -0
  29. merged/config.json +33 -0
  30. merged/generation_config.json +8 -0
  31. merged/merges.txt +0 -0
  32. merged/pytorch_model-00001-of-00004.bin +3 -0
  33. merged/pytorch_model-00002-of-00004.bin +3 -0
  34. merged/pytorch_model-00003-of-00004.bin +3 -0
  35. merged/pytorch_model-00004-of-00004.bin +3 -0
  36. merged/pytorch_model.bin.index.json +370 -0
  37. merged/special_tokens_map.json +35 -0
  38. merged/tokenizer.json +0 -0
  39. merged/tokenizer_config.json +199 -0
  40. merged/vocab.json +0 -0
  41. merges.txt +0 -0
  42. special_tokens_map.json +35 -0
  43. tokenizer.json +0 -0
  44. tokenizer_config.json +199 -0
  45. vocab.json +0 -0
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: ibm-granite/granite-3.1-8b-instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: granite-bfcl-plans-3.1-8b-lora
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.5.2`
19
+ ```yaml
20
+ base_model: ibm-granite/granite-3.1-8b-instruct
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+
24
+ resize_token_embeddings_to_32x: true
25
+ load_in_8bit: true
26
+ load_in_4bit: false
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: bfcl_training_data.jsonl
31
+ type: chat_template
32
+ chat_template: tokenizer_default
33
+ field_messages: conversations
34
+ message_field_role: role
35
+ message_field_content: value
36
+ dataset_prepared_path: last_run_prepared_sft_bfcl
37
+
38
+ val_set_size: 0
39
+ sequence_len: 16384
40
+ sample_packing: false
41
+ pad_to_sequence_len: true
42
+ eval_sample_packing: false
43
+ output_dir: granite-bfcl-plans-3.1-8b-lora
44
+
45
+ wandb_project: null
46
+ wandb_entity: null
47
+ wandb_watch: null
48
+ wandb_name: null
49
+ wandb_log_model: null
50
+
51
+ adapter: lora
52
+ lora_model_dir:
53
+ lora_r: 32
54
+ lora_alpha: 16
55
+ lora_dropout: 0.05
56
+ lora_target_linear: true
57
+ lora_fan_in_fan_out:
58
+
59
+ gradient_accumulation_steps: 8
60
+ micro_batch_size: 1
61
+ eval_batch_size: 1
62
+ num_epochs: 8
63
+ optimizer: adamw_bnb_8bit
64
+ lr_scheduler: cosine
65
+ learning_rate: 1e-05
66
+
67
+ max_grad_norm: 1.0
68
+ logging_steps: 10
69
+
70
+ train_on_inputs: false
71
+ group_by_length: false
72
+
73
+ bf16: auto
74
+ fp16:
75
+ tf32: false
76
+
77
+ gradient_checkpointing: true
78
+ gradient_checkpointing_kwargs:
79
+ use_reentrant: false
80
+ early_stopping_patience:
81
+ resume_from_checkpoint:
82
+ local_rank:
83
+ xformers_attention:
84
+ flash_attention: true
85
+ warmup_ratio: 0.05
86
+ eval_steps:
87
+ save_strategy: epoch
88
+ eval_table_size:
89
+ num_processes: 8
90
+ deepspeed:
91
+ weight_decay: 0.0
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # home/ec2-user/SageMaker/task_decomposition/trained_models/granite-bfcl-plans-3.1-8b-lora
97
+
98
+ This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the bfcl_training_data.jsonl dataset.
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 1e-05
118
+ - train_batch_size: 1
119
+ - eval_batch_size: 1
120
+ - seed: 42
121
+ - distributed_type: multi-GPU
122
+ - gradient_accumulation_steps: 8
123
+ - total_train_batch_size: 64
124
+ - total_eval_batch_size: 8
125
+ - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
126
+ - lr_scheduler_type: cosine
127
+ - lr_scheduler_warmup_steps: 20
128
+ - num_epochs: 8
129
+
130
+ ### Training results
131
+
132
+
133
+
134
+ ### Framework versions
135
+
136
+ - PEFT 0.13.2
137
+ - Transformers 4.46.3
138
+ - Pytorch 2.3.1+cu121
139
+ - Datasets 3.1.0
140
+ - Tokenizers 0.20.3
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: ibm-granite/granite-3.1-8b-instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: granite-bfcl-plans-3.1-8b-lora
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.5.2`
19
+ ```yaml
20
+ base_model: ibm-granite/granite-3.1-8b-instruct
21
+ model_type: AutoModelForCausalLM
22
+ tokenizer_type: AutoTokenizer
23
+
24
+ resize_token_embeddings_to_32x: true
25
+ load_in_8bit: true
26
+ load_in_4bit: false
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: bfcl_training_data.jsonl
31
+ type: chat_template
32
+ chat_template: tokenizer_default
33
+ field_messages: conversations
34
+ message_field_role: role
35
+ message_field_content: value
36
+ dataset_prepared_path: last_run_prepared_sft_bfcl
37
+
38
+ val_set_size: 0
39
+ sequence_len: 16384
40
+ sample_packing: false
41
+ pad_to_sequence_len: true
42
+ eval_sample_packing: false
43
+ output_dir: granite-bfcl-plans-3.1-8b-lora
44
+
45
+ wandb_project: null
46
+ wandb_entity: null
47
+ wandb_watch: null
48
+ wandb_name: null
49
+ wandb_log_model: null
50
+
51
+ adapter: lora
52
+ lora_model_dir:
53
+ lora_r: 32
54
+ lora_alpha: 16
55
+ lora_dropout: 0.05
56
+ lora_target_linear: true
57
+ lora_fan_in_fan_out:
58
+
59
+ gradient_accumulation_steps: 8
60
+ micro_batch_size: 1
61
+ eval_batch_size: 1
62
+ num_epochs: 8
63
+ optimizer: adamw_bnb_8bit
64
+ lr_scheduler: cosine
65
+ learning_rate: 1e-05
66
+
67
+ max_grad_norm: 1.0
68
+ logging_steps: 10
69
+
70
+ train_on_inputs: false
71
+ group_by_length: false
72
+
73
+ bf16: auto
74
+ fp16:
75
+ tf32: false
76
+
77
+ gradient_checkpointing: true
78
+ gradient_checkpointing_kwargs:
79
+ use_reentrant: false
80
+ early_stopping_patience:
81
+ resume_from_checkpoint:
82
+ local_rank:
83
+ xformers_attention:
84
+ flash_attention: true
85
+ warmup_ratio: 0.05
86
+ eval_steps:
87
+ save_strategy: epoch
88
+ eval_table_size:
89
+ num_processes: 8
90
+ deepspeed:
91
+ weight_decay: 0.0
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # home/ec2-user/SageMaker/task_decomposition/trained_models/granite-bfcl-plans-3.1-8b-lora
97
+
98
+ This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the bfcl_training_data.jsonl dataset.
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 1e-05
118
+ - train_batch_size: 1
119
+ - eval_batch_size: 1
120
+ - seed: 42
121
+ - distributed_type: multi-GPU
122
+ - gradient_accumulation_steps: 8
123
+ - total_train_batch_size: 64
124
+ - total_eval_batch_size: 8
125
+ - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
126
+ - lr_scheduler_type: cosine
127
+ - lr_scheduler_warmup_steps: 20
128
+ - num_epochs: 8
129
+
130
+ ### Training results
131
+
132
+
133
+
134
+ ### Framework versions
135
+
136
+ - PEFT 0.13.2
137
+ - Transformers 4.46.3
138
+ - Pytorch 2.3.1+cu121
139
+ - Datasets 3.1.0
140
+ - Tokenizers 0.20.3
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "o_proj",
27
+ "up_proj",
28
+ "q_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2085a3f7070f437a7ba8249e7c199a29b3add1f71fffee7b30c68a81bed968ba
3
+ size 798955662
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_role|>": 49153,
3
+ "<|start_of_role|>": 49152,
4
+ "<|tool_call|>": 49154
5
+ }
checkpoint-416/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.1-8b-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-416/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "v_proj",
25
+ "k_proj",
26
+ "o_proj",
27
+ "up_proj",
28
+ "q_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-416/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4939b9ed4212f62289118eb40f4c934e1fdc7b908f285c168b77f5358eae771
3
+ size 1201743872
checkpoint-416/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_role|>": 49153,
3
+ "<|start_of_role|>": 49152,
4
+ "<|tool_call|>": 49154
5
+ }
checkpoint-416/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-416/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a80d678ed06f1ba9ba39cf7471ab8e6f6f26435f9cc5619ec44d9b950eb3145
3
+ size 201669716
checkpoint-416/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79620c210f69e2d0339453eefc46e03f333d52fcbfc19615379ff543b0b227d4
3
+ size 15984
checkpoint-416/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:546f2bc8aaca2f982f4854a91601a148756f6687a2da788b5fab83402ea68af4
3
+ size 15984
checkpoint-416/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42b050cc9e56f2d013e68c2c155ce4edc7bc6e4fdd4e6a8c2f17f7b8db997281
3
+ size 15984
checkpoint-416/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57a69446ce2cb1e243fec04bbe7b1056d14958a9ceb9abbf18b9f8bb3dc6fb70
3
+ size 15984
checkpoint-416/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eae091b4d409757e2868706306662e4c306add1ed1d2f571efefdbc5cd53c3a3
3
+ size 15984
checkpoint-416/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84af7790b5d50140c10c32bc65b33a489e12b5b378f5145a39d6a0d27c098161
3
+ size 15984
checkpoint-416/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8883c82ec09ffdffb4f816d739f5b3d7228985e3a59b51f9d71a4b0b99fb7ebe
3
+ size 15984
checkpoint-416/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d6bf5029d02c18d5763afcce9d045c7ff23a97388b183b5d8c7b3d67bfa58a
3
+ size 15984
checkpoint-416/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e1f4d55e1f4f1425143788b9762eea17f4ba7c21562da6477414c3ae9bdfc8
3
+ size 1064
checkpoint-416/special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|end_of_text|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<|end_of_text|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
checkpoint-416/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-416/tokenizer_config.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|start_of_role|>",
184
+ "<|end_of_role|>",
185
+ "<|tool_call|>"
186
+ ],
187
+ "bos_token": "<|end_of_text|>",
188
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
189
+ "clean_up_tokenization_spaces": true,
190
+ "eos_token": "<|end_of_text|>",
191
+ "errors": "replace",
192
+ "extra_special_tokens": {},
193
+ "model_max_length": 9223372036854775807,
194
+ "pad_token": "<|end_of_text|>",
195
+ "padding_side": "left",
196
+ "tokenizer_class": "GPT2Tokenizer",
197
+ "unk_token": "<|end_of_text|>",
198
+ "vocab_size": 49152
199
+ }
checkpoint-416/trainer_state.json ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.0,
5
+ "eval_steps": 500,
6
+ "global_step": 416,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.19230769230769232,
13
+ "grad_norm": 18.481584548950195,
14
+ "learning_rate": 5e-06,
15
+ "loss": 2.3883,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.38461538461538464,
20
+ "grad_norm": 19.580347061157227,
21
+ "learning_rate": 1e-05,
22
+ "loss": 2.3213,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.5769230769230769,
27
+ "grad_norm": 15.994805335998535,
28
+ "learning_rate": 9.984273879759713e-06,
29
+ "loss": 2.041,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.7692307692307693,
34
+ "grad_norm": 7.965670108795166,
35
+ "learning_rate": 9.937194443381972e-06,
36
+ "loss": 1.5074,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.9615384615384616,
41
+ "grad_norm": 7.664641380310059,
42
+ "learning_rate": 9.859057841617709e-06,
43
+ "loss": 1.2839,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 1.1538461538461537,
48
+ "grad_norm": 4.538412094116211,
49
+ "learning_rate": 9.750355588704728e-06,
50
+ "loss": 1.1003,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 1.3461538461538463,
55
+ "grad_norm": 3.505202293395996,
56
+ "learning_rate": 9.611771470522908e-06,
57
+ "loss": 0.9952,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 1.5384615384615383,
62
+ "grad_norm": 3.503310441970825,
63
+ "learning_rate": 9.444177243274619e-06,
64
+ "loss": 0.9066,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 1.7307692307692308,
69
+ "grad_norm": 8.761858940124512,
70
+ "learning_rate": 9.248627149747573e-06,
71
+ "loss": 0.8805,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 1.9230769230769231,
76
+ "grad_norm": 3.437913417816162,
77
+ "learning_rate": 9.026351287655294e-06,
78
+ "loss": 0.8365,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 2.1153846153846154,
83
+ "grad_norm": 4.105048656463623,
84
+ "learning_rate": 8.778747871771293e-06,
85
+ "loss": 0.8053,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 2.3076923076923075,
90
+ "grad_norm": 3.81002140045166,
91
+ "learning_rate": 8.507374438531606e-06,
92
+ "loss": 0.7823,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 2.5,
97
+ "grad_norm": 3.294114351272583,
98
+ "learning_rate": 8.213938048432697e-06,
99
+ "loss": 0.7625,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 2.6923076923076925,
104
+ "grad_norm": 6.447517395019531,
105
+ "learning_rate": 7.900284547855992e-06,
106
+ "loss": 0.7562,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 2.8846153846153846,
111
+ "grad_norm": 9.523582458496094,
112
+ "learning_rate": 7.568386957867033e-06,
113
+ "loss": 0.7262,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 3.076923076923077,
118
+ "grad_norm": 9.12429141998291,
119
+ "learning_rate": 7.2203330630288714e-06,
120
+ "loss": 0.7324,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 3.269230769230769,
125
+ "grad_norm": 9.097236633300781,
126
+ "learning_rate": 6.858312278301638e-06,
127
+ "loss": 0.7087,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 3.4615384615384617,
132
+ "grad_norm": 3.4165868759155273,
133
+ "learning_rate": 6.484601876641375e-06,
134
+ "loss": 0.6936,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 3.6538461538461537,
139
+ "grad_norm": 7.2428741455078125,
140
+ "learning_rate": 6.101552663932704e-06,
141
+ "loss": 0.6814,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 3.8461538461538463,
146
+ "grad_norm": 2.954061269760132,
147
+ "learning_rate": 5.711574191366427e-06,
148
+ "loss": 0.6859,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 4.038461538461538,
153
+ "grad_norm": 3.99127197265625,
154
+ "learning_rate": 5.317119598282823e-06,
155
+ "loss": 0.6545,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 4.230769230769231,
160
+ "grad_norm": 11.693526268005371,
161
+ "learning_rate": 4.9206701808259605e-06,
162
+ "loss": 0.6809,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 4.423076923076923,
167
+ "grad_norm": 3.3279478549957275,
168
+ "learning_rate": 4.524719783479088e-06,
169
+ "loss": 0.6467,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 4.615384615384615,
174
+ "grad_norm": 4.7100653648376465,
175
+ "learning_rate": 4.131759111665349e-06,
176
+ "loss": 0.6581,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 4.8076923076923075,
181
+ "grad_norm": 3.9555509090423584,
182
+ "learning_rate": 3.7442600640946045e-06,
183
+ "loss": 0.6292,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 5.0,
188
+ "grad_norm": 3.8766026496887207,
189
+ "learning_rate": 3.3646601834128924e-06,
190
+ "loss": 0.6699,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 5.1923076923076925,
195
+ "grad_norm": 3.9335460662841797,
196
+ "learning_rate": 2.995347322966933e-06,
197
+ "loss": 0.6512,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 5.384615384615385,
202
+ "grad_norm": 3.7817418575286865,
203
+ "learning_rate": 2.6386446261365874e-06,
204
+ "loss": 0.6154,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 5.576923076923077,
209
+ "grad_norm": 5.912929058074951,
210
+ "learning_rate": 2.296795912722014e-06,
211
+ "loss": 0.6366,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 5.769230769230769,
216
+ "grad_norm": 3.369823694229126,
217
+ "learning_rate": 1.971951564311668e-06,
218
+ "loss": 0.6247,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 5.961538461538462,
223
+ "grad_norm": 4.121553897857666,
224
+ "learning_rate": 1.6661549974185426e-06,
225
+ "loss": 0.6254,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 6.153846153846154,
230
+ "grad_norm": 3.645986318588257,
231
+ "learning_rate": 1.3813298094746491e-06,
232
+ "loss": 0.6152,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 6.346153846153846,
237
+ "grad_norm": 4.413705825805664,
238
+ "learning_rate": 1.1192676785412154e-06,
239
+ "loss": 0.6293,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 6.538461538461538,
244
+ "grad_norm": 3.640406847000122,
245
+ "learning_rate": 8.816170928508367e-07,
246
+ "loss": 0.6167,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 6.730769230769231,
251
+ "grad_norm": 3.553299903869629,
252
+ "learning_rate": 6.698729810778065e-07,
253
+ "loss": 0.6277,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 6.923076923076923,
258
+ "grad_norm": 3.4969024658203125,
259
+ "learning_rate": 4.853673085668947e-07,
260
+ "loss": 0.6129,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 7.115384615384615,
265
+ "grad_norm": 4.395870685577393,
266
+ "learning_rate": 3.2926069867446673e-07,
267
+ "loss": 0.6258,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 7.3076923076923075,
272
+ "grad_norm": 4.367610931396484,
273
+ "learning_rate": 2.0253513192751374e-07,
274
+ "loss": 0.6197,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 7.5,
279
+ "grad_norm": 4.083893775939941,
280
+ "learning_rate": 1.0598776892610685e-07,
281
+ "loss": 0.6052,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 7.6923076923076925,
286
+ "grad_norm": 3.643474578857422,
287
+ "learning_rate": 4.02259358460233e-08,
288
+ "loss": 0.6206,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 7.884615384615385,
293
+ "grad_norm": 3.4030489921569824,
294
+ "learning_rate": 5.6633040849601865e-09,
295
+ "loss": 0.6034,
296
+ "step": 410
297
+ }
298
+ ],
299
+ "logging_steps": 10,
300
+ "max_steps": 416,
301
+ "num_input_tokens_seen": 0,
302
+ "num_train_epochs": 8,
303
+ "save_steps": 500,
304
+ "stateful_callbacks": {
305
+ "TrainerControl": {
306
+ "args": {
307
+ "should_epoch_stop": false,
308
+ "should_evaluate": false,
309
+ "should_log": false,
310
+ "should_save": true,
311
+ "should_training_stop": true
312
+ },
313
+ "attributes": {}
314
+ }
315
+ },
316
+ "total_flos": 2.1117165605182505e+19,
317
+ "train_batch_size": 1,
318
+ "trial_name": null,
319
+ "trial_params": null
320
+ }
checkpoint-416/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8da9b11ccb725340556505114755f7ea50f4f8fb4928e723ce7eb7703cc44950
3
+ size 6456
checkpoint-416/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
4
+ "architectures": [
5
+ "GraniteForCausalLM"
6
+ ],
7
+ "attention_bias": false,
8
+ "attention_dropout": 0.1,
9
+ "attention_multiplier": 0.0078125,
10
+ "bos_token_id": 0,
11
+ "embedding_multiplier": 12.0,
12
+ "eos_token_id": 0,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 12800,
17
+ "logits_scaling": 16.0,
18
+ "max_position_embeddings": 131072,
19
+ "mlp_bias": false,
20
+ "model_type": "granite",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 40,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 0,
25
+ "quantization_config": {
26
+ "_load_in_4bit": false,
27
+ "_load_in_8bit": true,
28
+ "bnb_4bit_compute_dtype": "float32",
29
+ "bnb_4bit_quant_storage": "uint8",
30
+ "bnb_4bit_quant_type": "fp4",
31
+ "bnb_4bit_use_double_quant": false,
32
+ "llm_int8_enable_fp32_cpu_offload": false,
33
+ "llm_int8_has_fp16_weight": false,
34
+ "llm_int8_skip_modules": null,
35
+ "llm_int8_threshold": 6.0,
36
+ "load_in_4bit": false,
37
+ "load_in_8bit": true,
38
+ "quant_method": "bitsandbytes"
39
+ },
40
+ "residual_multiplier": 0.22,
41
+ "rms_norm_eps": 1e-05,
42
+ "rope_scaling": null,
43
+ "rope_theta": 10000000.0,
44
+ "tie_word_embeddings": true,
45
+ "torch_dtype": "bfloat16",
46
+ "transformers_version": "4.46.3",
47
+ "use_cache": false,
48
+ "vocab_size": 49184
49
+ }
merged/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|end_of_role|>": 49153,
3
+ "<|start_of_role|>": 49152,
4
+ "<|tool_call|>": 49154
5
+ }
merged/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ibm-granite/granite-3.1-8b-instruct",
3
+ "architectures": [
4
+ "GraniteForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.1,
8
+ "attention_multiplier": 0.0078125,
9
+ "bos_token_id": 0,
10
+ "embedding_multiplier": 12.0,
11
+ "eos_token_id": 0,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 12800,
16
+ "logits_scaling": 16.0,
17
+ "max_position_embeddings": 131072,
18
+ "mlp_bias": false,
19
+ "model_type": "granite",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 40,
22
+ "num_key_value_heads": 8,
23
+ "pad_token_id": 0,
24
+ "residual_multiplier": 0.22,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000000.0,
28
+ "tie_word_embeddings": true,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.46.3",
31
+ "use_cache": false,
32
+ "vocab_size": 49184
33
+ }
merged/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "do_sample": true,
5
+ "eos_token_id": 0,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.46.3"
8
+ }
merged/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
merged/pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91a419487d80c0e8422860da8deb25bebf4a320709d38dfd57520b6b8713408a
3
+ size 4974924377
merged/pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abf36f2c4892a17f7d5e456de5c4298ad2c2622f52a56c5690c2acfcfac9f2f1
3
+ size 4991474682
merged/pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96169ec40f821b5824b74043bef3a9a87143211ea84a3ff07bad6d8f0557df6a
3
+ size 4970487165
merged/pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a636255bfeb6add3d215b830df66467ce2504bfc58187b0ad36e5d38e798934
3
+ size 1405177130
merged/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16341934080
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00001-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
242
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
243
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
244
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
245
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
246
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
247
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
248
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
249
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
251
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
252
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
253
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
254
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
255
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
256
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
257
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
258
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
259
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
260
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
261
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
262
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
263
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
264
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
265
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
266
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
267
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
268
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
269
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
270
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
271
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
272
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
273
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
274
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
275
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
276
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
277
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
278
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
279
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
280
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
281
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
282
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
283
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
284
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
285
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
286
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
287
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
288
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
289
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
290
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
291
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
292
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
293
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
294
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
295
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
296
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
297
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
298
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
299
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
300
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
301
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
302
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
303
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
304
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
305
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00004.bin",
306
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00004.bin",
307
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00004.bin",
308
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00004.bin",
309
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00004.bin",
310
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00004.bin",
311
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00004.bin",
312
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00004.bin",
313
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00004.bin",
314
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
315
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
316
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
317
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
318
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
319
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
320
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
321
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
322
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
323
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
324
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
325
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
326
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
327
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
328
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
329
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
330
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
331
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
332
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
333
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
334
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
335
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
336
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
337
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
338
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
339
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
340
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
341
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
342
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
343
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
344
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
345
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
346
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
347
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
348
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
349
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
350
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
351
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
352
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
353
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
354
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
355
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
356
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
357
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
358
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
359
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
360
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
361
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
362
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
363
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
364
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
365
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
366
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
367
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
368
+ "model.norm.weight": "pytorch_model-00004-of-00004.bin"
369
+ }
370
+ }
merged/special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|end_of_text|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<|end_of_text|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
merged/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
merged/tokenizer_config.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|start_of_role|>",
184
+ "<|end_of_role|>",
185
+ "<|tool_call|>"
186
+ ],
187
+ "bos_token": "<|end_of_text|>",
188
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
189
+ "clean_up_tokenization_spaces": true,
190
+ "eos_token": "<|end_of_text|>",
191
+ "errors": "replace",
192
+ "extra_special_tokens": {},
193
+ "model_max_length": 9223372036854775807,
194
+ "pad_token": "<|end_of_text|>",
195
+ "padding_side": "left",
196
+ "tokenizer_class": "GPT2Tokenizer",
197
+ "unk_token": "<|end_of_text|>",
198
+ "vocab_size": 49152
199
+ }
merged/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|start_of_role|>",
4
+ "<|end_of_role|>",
5
+ "<|tool_call|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|end_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|end_of_text|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "unk_token": {
29
+ "content": "<|end_of_text|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|end_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<fim_prefix>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<fim_middle>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<fim_suffix>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<fim_pad>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "5": {
46
+ "content": "<filename>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "6": {
54
+ "content": "<gh_stars>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "7": {
62
+ "content": "<issue_start>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "8": {
70
+ "content": "<issue_comment>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "9": {
78
+ "content": "<issue_closed>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "10": {
86
+ "content": "<jupyter_start>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "11": {
94
+ "content": "<jupyter_text>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "12": {
102
+ "content": "<jupyter_code>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "13": {
110
+ "content": "<jupyter_output>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "14": {
118
+ "content": "<empty_output>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "15": {
126
+ "content": "<commit_before>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "16": {
134
+ "content": "<commit_msg>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "17": {
142
+ "content": "<commit_after>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "18": {
150
+ "content": "<reponame>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "49152": {
158
+ "content": "<|start_of_role|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "49153": {
166
+ "content": "<|end_of_role|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "49154": {
174
+ "content": "<|tool_call|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|start_of_role|>",
184
+ "<|end_of_role|>",
185
+ "<|tool_call|>"
186
+ ],
187
+ "bos_token": "<|end_of_text|>",
188
+ "chat_template": "{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"Knowledge Cutoff Date: April 2024.\nToday's Date: \" + strftime_now('%B %d, %Y') + \".\nYou are Granite, developed by IBM.\" %}\n {%- if tools and documents %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\n\nWrite the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- elif tools %}\n {%- set system_message = system_message + \" You are a helpful AI assistant with access to the following tools. When a tool is required to answer the user's query, respond with <|tool_call|> followed by a JSON list of tools used. If a tool does not exist in the provided list of tools, notify the user that you do not have the ability to fulfill the request.\" %}\n {%- elif documents %}\n {%- set system_message = system_message + \" Write the response to the user's input by strictly aligning with the facts in the provided documents. If the information needed to answer the question is not available in the documents, inform the user that the question cannot be answered based on the available data.\" %}\n {%- else %}\n {%- set system_message = system_message + \" You are a helpful AI assistant.\" %} \n {%- endif %}\n {%- if 'citations' in controls and documents %}\n {%- set system_message = system_message + '\n\nIn your response, use the symbols <co> and </co> to indicate when a fact comes from a document in the search result, e.g <co>0</co> for a fact from document 0. Afterwards, list all the citations with their corresponding documents in an ordered list.' %}\n {%- endif %}\n {%- if 'hallucinations' in controls and documents %}\n {%- set system_message = system_message + '\n\nFinally, after the response is written, include a numbered list of sentences from the response that are potentially hallucinated and not based in the documents.' %}\n {%- endif %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '<|start_of_role|>system<|end_of_role|>' + system_message + '<|end_of_text|>\n' }}\n{%- if tools %}\n {{- '<|start_of_role|>tools<|end_of_role|>' }}\n {{- tools | tojson(indent=4) }}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- if documents %}\n {{- '<|start_of_role|>documents<|end_of_role|>' }}\n {%- for document in documents %}\n {{- 'Document ' + loop.index0 | string + '\n' }}\n {{- document['text'] }}\n {%- if not loop.last %}\n {{- '\n\n'}}\n {%- endif%}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in loop_messages %}\n {{- '<|start_of_role|>' + message['role'] + '<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant' }}\n {%- if controls %}\n {{- ' ' + controls | tojson()}}\n {%- endif %}\n {{- '<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
189
+ "clean_up_tokenization_spaces": true,
190
+ "eos_token": "<|end_of_text|>",
191
+ "errors": "replace",
192
+ "extra_special_tokens": {},
193
+ "model_max_length": 9223372036854775807,
194
+ "pad_token": "<|end_of_text|>",
195
+ "padding_side": "left",
196
+ "tokenizer_class": "GPT2Tokenizer",
197
+ "unk_token": "<|end_of_text|>",
198
+ "vocab_size": 49152
199
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff