File size: 2,469 Bytes
0fb7e03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_feniks
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_feniks

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5319

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.4478        | 3.0418  | 100  | 0.4543          |
| 0.4534        | 6.0837  | 200  | 0.4621          |
| 0.4373        | 9.1255  | 300  | 0.4543          |
| 0.4224        | 12.1673 | 400  | 0.4494          |
| 0.4127        | 15.2091 | 500  | 0.4657          |
| 0.4134        | 18.2510 | 600  | 0.4529          |
| 0.4047        | 21.2928 | 700  | 0.4724          |
| 0.3932        | 24.3346 | 800  | 0.4777          |
| 0.3907        | 27.3764 | 900  | 0.4942          |
| 0.3855        | 30.4183 | 1000 | 0.4870          |
| 0.3783        | 33.4601 | 1100 | 0.4860          |
| 0.3794        | 36.5019 | 1200 | 0.4867          |
| 0.3704        | 39.5437 | 1300 | 0.4965          |
| 0.3687        | 42.5856 | 1400 | 0.5151          |
| 0.3674        | 45.6274 | 1500 | 0.5165          |
| 0.3618        | 48.6692 | 1600 | 0.5377          |
| 0.3536        | 51.7110 | 1700 | 0.5206          |
| 0.3621        | 54.7529 | 1800 | 0.5419          |
| 0.3533        | 57.7947 | 1900 | 0.5337          |
| 0.3513        | 60.8365 | 2000 | 0.5319          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1