bhaviktheslider commited on
Commit
70e7ffe
·
verified ·
1 Parent(s): 78cce86

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -1,7 +1,7 @@
1
  MasterControl
2
  ---
3
 
4
- # MasterControlAIML R1-Qwen2.5-1.5b SFT R1 JSON Unstructured-To-Structured LoRA Model
5
 
6
  [![Unsloth](https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png)](https://github.com/unslothai/unsloth)
7
 
@@ -77,7 +77,7 @@ The Unsloth library allows you to quickly load and run inference with the model.
77
  from unsloth import FastLanguageModel
78
  import torch
79
 
80
- MODEL = "MasterControlAIML/R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured-lora"
81
 
82
  # Load model and tokenizer
83
  model, tokenizer = FastLanguageModel.from_pretrained(
@@ -99,7 +99,7 @@ Below is an instruction that describes a task, paired with an input that provide
99
  """
100
 
101
  # Example instruction and prompt
102
- instruction = "Provide a summary of the Quality Assurance Manual."
103
  prompt = ALPACA_PROMPT.format(instruction, "")
104
  inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
105
  output = model.generate(**inputs, max_new_tokens=2000)
@@ -118,7 +118,7 @@ Alternatively, you can use Hugging Face's Transformers directly:
118
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
119
  import torch
120
 
121
- MODEL = "MasterControlAIML/R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured-lora"
122
 
123
  # Initialize tokenizer and model
124
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
@@ -132,7 +132,7 @@ Below is an instruction that describes a task, paired with an input that provide
132
  {}
133
  """
134
 
135
- TEXT = "Provide a detailed explanation of the QA processes in manufacturing."
136
  prompt = ALPACA_PROMPT.format(TEXT, "")
137
  inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
138
  text_streamer = TextStreamer(tokenizer)
 
1
  MasterControl
2
  ---
3
 
4
+ # MasterControlAIML R1-Qwen2.5-1.5b SFT R1 JSON Unstructured-To-Structured Model
5
 
6
  [![Unsloth](https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png)](https://github.com/unslothai/unsloth)
7
 
 
77
  from unsloth import FastLanguageModel
78
  import torch
79
 
80
+ MODEL = "MasterControlAIML/DeepSeek-R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured"
81
 
82
  # Load model and tokenizer
83
  model, tokenizer = FastLanguageModel.from_pretrained(
 
99
  """
100
 
101
  # Example instruction and prompt
102
+ instruction = "" (see examples below)
103
  prompt = ALPACA_PROMPT.format(instruction, "")
104
  inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
105
  output = model.generate(**inputs, max_new_tokens=2000)
 
118
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
119
  import torch
120
 
121
+ MODEL = "MasterControlAIML/DeepSeek-R1-Qwen2.5-1.5b-SFT-R1-JSON-Unstructured-To-Structured"
122
 
123
  # Initialize tokenizer and model
124
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
 
132
  {}
133
  """
134
 
135
+ TEXT = ""(see examples below)
136
  prompt = ALPACA_PROMPT.format(TEXT, "")
137
  inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
138
  text_streamer = TextStreamer(tokenizer)