Prakhar Bhandari
commited on
Commit
·
684e834
1
Parent(s):
f4cb83e
All files added
Browse files
kg_builder/notebooks/kg_creation.ipynb
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import os\n",
|
| 10 |
+
"os.environ['OPENAI_API_KEY'] = \"\"\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"import logging\n",
|
| 13 |
+
"import sys\n",
|
| 14 |
+
"\n",
|
| 15 |
+
"logging.basicConfig(\n",
|
| 16 |
+
" stream=sys.stdout, level=logging.INFO\n",
|
| 17 |
+
") # logging.DEBUG for more verbose output\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"# define LLM\n",
|
| 21 |
+
"from llama_index.llms.openai import OpenAI\n",
|
| 22 |
+
"from llama_index.core import Settings\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"Settings.llm = OpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\")\n",
|
| 25 |
+
"Settings.chunk_size = 512"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": 21,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [
|
| 33 |
+
{
|
| 34 |
+
"name": "stdout",
|
| 35 |
+
"output_type": "stream",
|
| 36 |
+
"text": [
|
| 37 |
+
"Requirement already satisfied: langchain in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.1.16)\n",
|
| 38 |
+
"Requirement already satisfied: neo4j in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (5.19.0)\n",
|
| 39 |
+
"Requirement already satisfied: openai in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (1.23.2)\n",
|
| 40 |
+
"Requirement already satisfied: wikipedia in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (1.4.0)\n",
|
| 41 |
+
"Requirement already satisfied: tiktoken in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.6.0)\n",
|
| 42 |
+
"Requirement already satisfied: langchain_openai in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.1.3)\n",
|
| 43 |
+
"Requirement already satisfied: PyYAML>=5.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (6.0.1)\n",
|
| 44 |
+
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.0.29)\n",
|
| 45 |
+
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (3.9.5)\n",
|
| 46 |
+
"Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (4.0.3)\n",
|
| 47 |
+
"Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.6.4)\n",
|
| 48 |
+
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.33)\n",
|
| 49 |
+
"Requirement already satisfied: langchain-community<0.1,>=0.0.32 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.34)\n",
|
| 50 |
+
"Requirement already satisfied: langchain-core<0.2.0,>=0.1.42 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.45)\n",
|
| 51 |
+
"Requirement already satisfied: langchain-text-splitters<0.1,>=0.0.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.1)\n",
|
| 52 |
+
"Requirement already satisfied: langsmith<0.2.0,>=0.1.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.49)\n",
|
| 53 |
+
"Requirement already satisfied: numpy<2,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.26.4)\n",
|
| 54 |
+
"Requirement already satisfied: pydantic<3,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.7.0)\n",
|
| 55 |
+
"Requirement already satisfied: requests<3,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.31.0)\n",
|
| 56 |
+
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (8.2.3)\n",
|
| 57 |
+
"Requirement already satisfied: pytz in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from neo4j) (2024.1)\n",
|
| 58 |
+
"Requirement already satisfied: anyio<5,>=3.5.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.3.0)\n",
|
| 59 |
+
"Requirement already satisfied: distro<2,>=1.7.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.9.0)\n",
|
| 60 |
+
"Requirement already satisfied: httpx<1,>=0.23.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (0.27.0)\n",
|
| 61 |
+
"Requirement already satisfied: sniffio in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.3.1)\n",
|
| 62 |
+
"Requirement already satisfied: tqdm>4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.66.2)\n",
|
| 63 |
+
"Requirement already satisfied: typing-extensions<5,>=4.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.11.0)\n",
|
| 64 |
+
"Requirement already satisfied: beautifulsoup4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from wikipedia) (4.12.3)\n",
|
| 65 |
+
"Requirement already satisfied: regex>=2022.1.18 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from tiktoken) (2024.4.16)\n",
|
| 66 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)\n",
|
| 67 |
+
"Requirement already satisfied: attrs>=17.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (23.2.0)\n",
|
| 68 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.4.1)\n",
|
| 69 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.0.5)\n",
|
| 70 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.9.4)\n",
|
| 71 |
+
"Requirement already satisfied: idna>=2.8 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (3.7)\n",
|
| 72 |
+
"Requirement already satisfied: exceptiongroup>=1.0.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (1.2.1)\n",
|
| 73 |
+
"Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (3.21.1)\n",
|
| 74 |
+
"Requirement already satisfied: typing-inspect<1,>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (0.9.0)\n",
|
| 75 |
+
"Requirement already satisfied: certifi in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (2024.2.2)\n",
|
| 76 |
+
"Requirement already satisfied: httpcore==1.* in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (1.0.5)\n",
|
| 77 |
+
"Requirement already satisfied: h11<0.15,>=0.13 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai) (0.14.0)\n",
|
| 78 |
+
"Requirement already satisfied: jsonpointer>=1.9 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain) (2.4)\n",
|
| 79 |
+
"Requirement already satisfied: packaging<24.0,>=23.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain-core<0.2.0,>=0.1.42->langchain) (23.2)\n",
|
| 80 |
+
"Requirement already satisfied: orjson<4.0.0,>=3.9.14 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (3.10.1)\n",
|
| 81 |
+
"Requirement already satisfied: annotated-types>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (0.6.0)\n",
|
| 82 |
+
"Requirement already satisfied: pydantic-core==2.18.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (2.18.1)\n",
|
| 83 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (3.3.2)\n",
|
| 84 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (2.2.1)\n",
|
| 85 |
+
"Requirement already satisfied: greenlet!=0.4.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from SQLAlchemy<3,>=1.4->langchain) (3.0.3)\n",
|
| 86 |
+
"Requirement already satisfied: soupsieve>1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from beautifulsoup4->wikipedia) (2.5)\n",
|
| 87 |
+
"Requirement already satisfied: mypy-extensions>=0.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain) (1.0.0)\n"
|
| 88 |
+
]
|
| 89 |
+
}
|
| 90 |
+
],
|
| 91 |
+
"source": [
|
| 92 |
+
"!pip install langchain neo4j openai wikipedia tiktoken langchain_openai"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": 4,
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": [
|
| 101 |
+
"from langchain.graphs import Neo4jGraph\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"url = \"neo4j+s://2f409740.databases.neo4j.io\"\n",
|
| 104 |
+
"username =\"neo4j\"\n",
|
| 105 |
+
"password = \"oe7A9ugxhxcuEtwci8khPIt2TTdz_am9AYDx1r9e9Tw\"\n",
|
| 106 |
+
"graph = Neo4jGraph(\n",
|
| 107 |
+
" url=url,\n",
|
| 108 |
+
" username=username,\n",
|
| 109 |
+
" password=password\n",
|
| 110 |
+
")"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": 5,
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"from langchain_community.graphs.graph_document import (\n",
|
| 120 |
+
" Node as BaseNode,\n",
|
| 121 |
+
" Relationship as BaseRelationship,\n",
|
| 122 |
+
" GraphDocument,\n",
|
| 123 |
+
")\n",
|
| 124 |
+
"from langchain.schema import Document\n",
|
| 125 |
+
"from typing import List, Dict, Any, Optional\n",
|
| 126 |
+
"from langchain.pydantic_v1 import Field, BaseModel\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"class Property(BaseModel):\n",
|
| 129 |
+
" \"\"\"A single property consisting of key and value\"\"\"\n",
|
| 130 |
+
" key: str = Field(..., description=\"key\")\n",
|
| 131 |
+
" value: str = Field(..., description=\"value\")\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"class Node(BaseNode):\n",
|
| 134 |
+
" properties: Optional[List[Property]] = Field(\n",
|
| 135 |
+
" None, description=\"List of node properties\")\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"class Relationship(BaseRelationship):\n",
|
| 138 |
+
" properties: Optional[List[Property]] = Field(\n",
|
| 139 |
+
" None, description=\"List of relationship properties\"\n",
|
| 140 |
+
" )\n",
|
| 141 |
+
"\n",
|
| 142 |
+
"class KnowledgeGraph(BaseModel):\n",
|
| 143 |
+
" \"\"\"Generate a knowledge graph with entities and relationships.\"\"\"\n",
|
| 144 |
+
" nodes: List[Node] = Field(\n",
|
| 145 |
+
" ..., description=\"List of nodes in the knowledge graph\")\n",
|
| 146 |
+
" rels: List[Relationship] = Field(\n",
|
| 147 |
+
" ..., description=\"List of relationships in the knowledge graph\"\n",
|
| 148 |
+
" )"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"cell_type": "code",
|
| 153 |
+
"execution_count": 6,
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"outputs": [],
|
| 156 |
+
"source": [
|
| 157 |
+
"def format_property_key(s: str) -> str:\n",
|
| 158 |
+
" words = s.split()\n",
|
| 159 |
+
" if not words:\n",
|
| 160 |
+
" return s\n",
|
| 161 |
+
" first_word = words[0].lower()\n",
|
| 162 |
+
" capitalized_words = [word.capitalize() for word in words[1:]]\n",
|
| 163 |
+
" return \"\".join([first_word] + capitalized_words)\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"def props_to_dict(props) -> dict:\n",
|
| 166 |
+
" \"\"\"Convert properties to a dictionary.\"\"\"\n",
|
| 167 |
+
" properties = {}\n",
|
| 168 |
+
" if not props:\n",
|
| 169 |
+
" return properties\n",
|
| 170 |
+
" for p in props:\n",
|
| 171 |
+
" properties[format_property_key(p.key)] = p.value\n",
|
| 172 |
+
" return properties\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"def map_to_base_node(node: Node) -> BaseNode:\n",
|
| 175 |
+
" \"\"\"Map the KnowledgeGraph Node to the base Node.\"\"\"\n",
|
| 176 |
+
" properties = props_to_dict(node.properties) if node.properties else {}\n",
|
| 177 |
+
" # Add name property for better Cypher statement generation\n",
|
| 178 |
+
" properties[\"name\"] = node.id.title()\n",
|
| 179 |
+
" return BaseNode(\n",
|
| 180 |
+
" id=node.id.title(), type=node.type.capitalize(), properties=properties\n",
|
| 181 |
+
" )\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"def map_to_base_relationship(rel: Relationship) -> BaseRelationship:\n",
|
| 185 |
+
" \"\"\"Map the KnowledgeGraph Relationship to the base Relationship.\"\"\"\n",
|
| 186 |
+
" source = map_to_base_node(rel.source)\n",
|
| 187 |
+
" target = map_to_base_node(rel.target)\n",
|
| 188 |
+
" properties = props_to_dict(rel.properties) if rel.properties else {}\n",
|
| 189 |
+
" return BaseRelationship(\n",
|
| 190 |
+
" source=source, target=target, type=rel.type, properties=properties\n",
|
| 191 |
+
" )"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"cell_type": "code",
|
| 196 |
+
"execution_count": 11,
|
| 197 |
+
"metadata": {},
|
| 198 |
+
"outputs": [],
|
| 199 |
+
"source": [
|
| 200 |
+
"import os\n",
|
| 201 |
+
"from langchain.chains.openai_functions import (\n",
|
| 202 |
+
" create_openai_fn_chain,\n",
|
| 203 |
+
" create_structured_output_runnable,\n",
|
| 204 |
+
")\n",
|
| 205 |
+
"from langchain_openai import ChatOpenAI\n",
|
| 206 |
+
"from langchain.prompts import ChatPromptTemplate\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
|
| 209 |
+
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-16k\", temperature=0)\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"def get_extraction_chain(\n",
|
| 212 |
+
" allowed_nodes: Optional[List[str]] = None,\n",
|
| 213 |
+
" allowed_rels: Optional[List[str]] = None\n",
|
| 214 |
+
" ):\n",
|
| 215 |
+
" prompt = ChatPromptTemplate.from_messages(\n",
|
| 216 |
+
" [(\n",
|
| 217 |
+
" \"system\",\n",
|
| 218 |
+
" f\"\"\"# Knowledge Graph Instructions for GPT-4\n",
|
| 219 |
+
"## 1. Overview\n",
|
| 220 |
+
"You are a sophisticated algorithm tailored for parsing Wikipedia pages to construct a knowledge graph about chemotherapy and related cancer treatments.\n",
|
| 221 |
+
"- **Nodes** symbolize entities such as medical conditions, drugs, symptoms, treatments, and associated medical concepts.\n",
|
| 222 |
+
"- The goal is to create a precise and comprehensible knowledge graph, serving as a reliable resource for medical practitioners and scholarly research.\n",
|
| 223 |
+
"\n",
|
| 224 |
+
"## 2. Labeling Nodes\n",
|
| 225 |
+
"- **Consistency**: Utilize uniform labels for node types to maintain clarity.\n",
|
| 226 |
+
" - For instance, consistently label drugs as **\"Drug\"**, symptoms as **\"Symptom\"**, and treatments as **\"Treatment\"**.\n",
|
| 227 |
+
"- **Node IDs**: Apply descriptive, legible identifiers for node IDs, sourced directly from the text.\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"{'- **Allowed Node Labels:**' + \", \".join(['Drug', 'Symptom', 'Treatment', 'MedicalCondition', 'ResearchStudy']) if allowed_nodes else \"\"}\n",
|
| 230 |
+
"{'- **Allowed Relationship Types**:' + \", \".join(['Treats', 'Causes', 'Researches', 'Recommends']) if allowed_rels else \"\"}\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"## 3. Handling Numerical Data and Dates\n",
|
| 233 |
+
"- Integrate numerical data and dates as attributes of the corresponding nodes.\n",
|
| 234 |
+
"- **No Isolated Nodes for Dates/Numbers**: Directly associate dates and numerical figures as attributes with pertinent nodes.\n",
|
| 235 |
+
"- **Property Format**: Follow a straightforward key-value pattern for properties, with keys in camelCase, for example, `approvedYear`, `dosageAmount`.\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"## 4. Coreference Resolution\n",
|
| 238 |
+
"- **Entity Consistency**: Guarantee uniform identification of each entity across the graph.\n",
|
| 239 |
+
" - For example, if \"Methotrexate\" and \"MTX\" reference the same medication, uniformly apply \"Methotrexate\" as the node ID.\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"## 5. Relationship Naming Conventions\n",
|
| 242 |
+
"- **Clarity and Standardization**: Utilize clear and standardized relationship names, preferring uppercase with underscores for readability.\n",
|
| 243 |
+
" - For instance, use \"HAS_SIDE_EFFECT\" instead of \"HASSIDEEFFECT\", use \"CAN_RESULT_FROM\" instead of \"CANRESULTFROM\" etc. You keep making the same mistakes of storing the relationships without the \"_\" in between the words. Any further similar errors will lead to termination.\n",
|
| 244 |
+
"- **Relevance and Specificity**: Choose relationship names that accurately reflect the connection between nodes, such as \"INHIBITS\" or \"ACTIVATES\" for interactions between substances.\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"## 6. Strict Compliance\n",
|
| 247 |
+
"Rigorous adherence to these instructions is essential. Failure to comply with the specified formatting and labeling norms will necessitate output revision or discard.\n",
|
| 248 |
+
" \"\"\"),\n",
|
| 249 |
+
" (\"human\", \"Use the given format to extract information from the following input: {input}\"),\n",
|
| 250 |
+
" (\"human\", \"Tip: Precision in the node and relationship creation is vital for the integrity of the knowledge graph.\"),\n",
|
| 251 |
+
" ])\n",
|
| 252 |
+
" return create_structured_output_chain(KnowledgeGraph, llm, prompt)"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"cell_type": "code",
|
| 257 |
+
"execution_count": 12,
|
| 258 |
+
"metadata": {},
|
| 259 |
+
"outputs": [],
|
| 260 |
+
"source": [
|
| 261 |
+
"def extract_and_store_graph(\n",
|
| 262 |
+
" document: Document,\n",
|
| 263 |
+
" nodes:Optional[List[str]] = None,\n",
|
| 264 |
+
" rels:Optional[List[str]]=None) -> None:\n",
|
| 265 |
+
" # Extract graph data using OpenAI functions\n",
|
| 266 |
+
" extract_chain = get_extraction_chain(nodes, rels)\n",
|
| 267 |
+
" data = extract_chain.invoke(document.page_content)['function']\n",
|
| 268 |
+
" # Construct a graph document\n",
|
| 269 |
+
" graph_document = GraphDocument(\n",
|
| 270 |
+
" nodes = [map_to_base_node(node) for node in data.nodes],\n",
|
| 271 |
+
" relationships = [map_to_base_relationship(rel) for rel in data.rels],\n",
|
| 272 |
+
" source = document\n",
|
| 273 |
+
" )\n",
|
| 274 |
+
" # Store information into a graph\n",
|
| 275 |
+
" graph.add_graph_documents([graph_document])"
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"cell_type": "code",
|
| 280 |
+
"execution_count": 13,
|
| 281 |
+
"metadata": {},
|
| 282 |
+
"outputs": [],
|
| 283 |
+
"source": [
|
| 284 |
+
"from langchain.document_loaders import WikipediaLoader\n",
|
| 285 |
+
"from langchain.text_splitter import TokenTextSplitter\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"# Read the wikipedia article\n",
|
| 288 |
+
"raw_documents = WikipediaLoader(query=\"Chemotherapy\").load()\n",
|
| 289 |
+
"# Define chunking strategy\n",
|
| 290 |
+
"text_splitter = TokenTextSplitter(chunk_size=4096, chunk_overlap=96)\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"# Only take the first the raw_documents\n",
|
| 293 |
+
"documents = text_splitter.split_documents(raw_documents[:5])"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": 14,
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"outputs": [
|
| 301 |
+
{
|
| 302 |
+
"name": "stderr",
|
| 303 |
+
"output_type": "stream",
|
| 304 |
+
"text": [
|
| 305 |
+
" 0%| | 0/5 [00:00<?, ?it/s]"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"name": "stdout",
|
| 310 |
+
"output_type": "stream",
|
| 311 |
+
"text": [
|
| 312 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"name": "stderr",
|
| 317 |
+
"output_type": "stream",
|
| 318 |
+
"text": [
|
| 319 |
+
" 0%| | 0/5 [01:25<?, ?it/s]\n"
|
| 320 |
+
]
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"ename": "TypeError",
|
| 324 |
+
"evalue": "'KnowledgeGraph' object is not subscriptable",
|
| 325 |
+
"output_type": "error",
|
| 326 |
+
"traceback": [
|
| 327 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 328 |
+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 329 |
+
"Cell \u001b[0;32mIn[14], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtqdm\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m tqdm\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, d \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[38;5;28menumerate\u001b[39m(documents), total\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mlen\u001b[39m(documents)):\n\u001b[0;32m----> 4\u001b[0m \u001b[43mextract_and_store_graph\u001b[49m\u001b[43m(\u001b[49m\u001b[43md\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 330 |
+
"Cell \u001b[0;32mIn[12], line 7\u001b[0m, in \u001b[0;36mextract_and_store_graph\u001b[0;34m(document, nodes, rels)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mextract_and_store_graph\u001b[39m(\n\u001b[1;32m 2\u001b[0m document: Document,\n\u001b[1;32m 3\u001b[0m nodes:Optional[List[\u001b[38;5;28mstr\u001b[39m]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 4\u001b[0m rels:Optional[List[\u001b[38;5;28mstr\u001b[39m]]\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Extract graph data using OpenAI functions\u001b[39;00m\n\u001b[1;32m 6\u001b[0m extract_chain \u001b[38;5;241m=\u001b[39m get_extraction_chain(nodes, rels)\n\u001b[0;32m----> 7\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mextract_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdocument\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpage_content\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfunction\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# Construct a graph document\u001b[39;00m\n\u001b[1;32m 9\u001b[0m graph_document \u001b[38;5;241m=\u001b[39m GraphDocument(\n\u001b[1;32m 10\u001b[0m nodes \u001b[38;5;241m=\u001b[39m [map_to_base_node(node) \u001b[38;5;28;01mfor\u001b[39;00m node \u001b[38;5;129;01min\u001b[39;00m data\u001b[38;5;241m.\u001b[39mnodes],\n\u001b[1;32m 11\u001b[0m relationships \u001b[38;5;241m=\u001b[39m [map_to_base_relationship(rel) \u001b[38;5;28;01mfor\u001b[39;00m rel \u001b[38;5;129;01min\u001b[39;00m data\u001b[38;5;241m.\u001b[39mrels],\n\u001b[1;32m 12\u001b[0m source \u001b[38;5;241m=\u001b[39m document\n\u001b[1;32m 13\u001b[0m )\n",
|
| 331 |
+
"\u001b[0;31mTypeError\u001b[0m: 'KnowledgeGraph' object is not subscriptable"
|
| 332 |
+
]
|
| 333 |
+
}
|
| 334 |
+
],
|
| 335 |
+
"source": [
|
| 336 |
+
"from tqdm import tqdm\n",
|
| 337 |
+
"\n",
|
| 338 |
+
"for i, d in tqdm(enumerate(documents), total=len(documents)):\n",
|
| 339 |
+
" extract_and_store_graph(d)"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"execution_count": 10,
|
| 345 |
+
"metadata": {},
|
| 346 |
+
"outputs": [],
|
| 347 |
+
"source": [
|
| 348 |
+
"# Query the knowledge graph in a RAG application\n",
|
| 349 |
+
"from langchain.chains import GraphCypherQAChain\n",
|
| 350 |
+
"\n",
|
| 351 |
+
"graph.refresh_schema()\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"cypher_chain = GraphCypherQAChain.from_llm(\n",
|
| 354 |
+
" graph=graph,\n",
|
| 355 |
+
" cypher_llm=ChatOpenAI(temperature=0, model=\"gpt-4\"),\n",
|
| 356 |
+
" qa_llm=ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-16k\"),\n",
|
| 357 |
+
" #validate_cypher=True, # Validate relationship directions\n",
|
| 358 |
+
" verbose=True\n",
|
| 359 |
+
")"
|
| 360 |
+
]
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"cell_type": "code",
|
| 364 |
+
"execution_count": 11,
|
| 365 |
+
"metadata": {},
|
| 366 |
+
"outputs": [
|
| 367 |
+
{
|
| 368 |
+
"name": "stdout",
|
| 369 |
+
"output_type": "stream",
|
| 370 |
+
"text": [
|
| 371 |
+
"\n",
|
| 372 |
+
"\n",
|
| 373 |
+
"\u001b[1m> Entering new GraphCypherQAChain chain...\u001b[0m\n",
|
| 374 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 375 |
+
"Generated Cypher:\n",
|
| 376 |
+
"\u001b[32;1m\u001b[1;3mMATCH (t:Treatment {name: \"Induction Chemotherapy\"})-[:CONTROLS]->(mc) RETURN mc.name\u001b[0m\n",
|
| 377 |
+
"Full Context:\n",
|
| 378 |
+
"\u001b[32;1m\u001b[1;3m[{'mc.name': 'Malignant Lymphomas'}, {'mc.name': 'Head And Neck Squamous Cell Carcinomas'}, {'mc.name': 'Malignant Lymphomas'}, {'mc.name': 'Head And Neck Squamous Cell Carcinomas'}]\u001b[0m\n",
|
| 379 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 380 |
+
"\n",
|
| 381 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
| 382 |
+
]
|
| 383 |
+
},
|
| 384 |
+
{
|
| 385 |
+
"data": {
|
| 386 |
+
"text/plain": [
|
| 387 |
+
"{'query': 'What does Induction Chemotherapy control?',\n",
|
| 388 |
+
" 'result': 'Induction Chemotherapy controls Malignant Lymphomas and Head And Neck Squamous Cell Carcinomas.'}"
|
| 389 |
+
]
|
| 390 |
+
},
|
| 391 |
+
"execution_count": 11,
|
| 392 |
+
"metadata": {},
|
| 393 |
+
"output_type": "execute_result"
|
| 394 |
+
}
|
| 395 |
+
],
|
| 396 |
+
"source": [
|
| 397 |
+
"cypher_chain.invoke({\"query\": \"What does Induction Chemotherapy control?\"})"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": null,
|
| 403 |
+
"metadata": {},
|
| 404 |
+
"outputs": [],
|
| 405 |
+
"source": []
|
| 406 |
+
}
|
| 407 |
+
],
|
| 408 |
+
"metadata": {
|
| 409 |
+
"kernelspec": {
|
| 410 |
+
"display_name": "my_project_env",
|
| 411 |
+
"language": "python",
|
| 412 |
+
"name": "python3"
|
| 413 |
+
},
|
| 414 |
+
"language_info": {
|
| 415 |
+
"codemirror_mode": {
|
| 416 |
+
"name": "ipython",
|
| 417 |
+
"version": 3
|
| 418 |
+
},
|
| 419 |
+
"file_extension": ".py",
|
| 420 |
+
"mimetype": "text/x-python",
|
| 421 |
+
"name": "python",
|
| 422 |
+
"nbconvert_exporter": "python",
|
| 423 |
+
"pygments_lexer": "ipython3",
|
| 424 |
+
"version": "3.9.19"
|
| 425 |
+
}
|
| 426 |
+
},
|
| 427 |
+
"nbformat": 4,
|
| 428 |
+
"nbformat_minor": 2
|
| 429 |
+
}
|