File size: 22,120 Bytes
c8b58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# Filename: PARITY-calculatingNN_Supercoded_V2.0.py
# Description: An advanced, highly configurable PyTorch script to train a neural network on the N-bit parity problem.
#
# Supercoding LLM Recode of PARITY-calculatingNN_Schmidhuber_V1.0.py
#
# This version introduces significant enhancements for robust experimentation and analysis:
#   - Full Hyperparameterization: All key parameters are exposed via command-line arguments for easy tuning.
#   - Flexible Problem Definition: The concept of "parity" can be switched between 'even', 'odd', or 'majority' rule,
#     allowing the network to be tested on different but related logical problems.
#   - Advanced Visualization: Generates a suite of high-quality plots (saved to disk and shown in popups) inspired
#     by analytical scientific scripts, including:
#       - Detailed Training History (Loss & Accuracy)
#       - Confusion Matrix Heatmap
#       - Prediction Margin Distribution Histogram
#       - Raw Output vs. True Label Scatter Plot
#   - Comprehensive Reporting: Automatically generates a run-specific folder containing the plots, a detailed text report,
#     the trained model weights, and a log of hard-to-learn data samples.
#   - Interactive Mode: Allows the user to test the trained model with custom binary inputs.

# ==============================================================================
# === LIBRARY IMPORTS ===
# ==============================================================================
print("Initializing... Loading libraries.")
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix, classification_report
import random
import os
import argparse
import datetime
import json

print("Libraries loaded successfully.\n")

# ==============================================================================
# === CORE FUNCTIONS ===
# ==============================================================================

def setup_directories(args):
    """Creates a unique, timestamped directory for the current run to store all outputs."""
    timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    run_name = f"run_{timestamp}_N{args.n_bits}_L{args.l_layers}_H{args.hidden_size}_{args.parity_type}"
    base_dir = "parity_nn_results"
    run_dir = os.path.join(base_dir, run_name)
    plots_dir = os.path.join(run_dir, "plots")
    os.makedirs(plots_dir, exist_ok=True)
    print(f"Created output directory: {run_dir}")
    return run_dir, plots_dir

def generate_data(num_samples, num_bits, parity_type='even'):
    """

    Generates input data and corresponding labels based on the specified parity rule.



    Args:

        num_samples (int): The number of data samples to generate.

        num_bits (int): The bit-width of each data sample.

        parity_type (str): The rule for calculating the label.

                           'even': Standard even parity bit (1 if odd number of 1s, 0 if even).

                           'odd': Standard odd parity bit (1 if even number of 1s, 0 if odd).

                           'majority': Label is 1 if the count of 1s > N/2, else 0.



    Returns:

        tuple: A tuple containing torch tensors for data and labels.

    """
    data = []
    labels = []
    for _ in range(num_samples):
        bits = [random.randint(0, 1) for _ in range(num_bits)]
        sum_of_bits = sum(bits)

        if parity_type == 'even':
            label = sum_of_bits % 2
        elif parity_type == 'odd':
            label = (sum_of_bits + 1) % 2
        elif parity_type == 'majority':
            label = 1 if sum_of_bits > num_bits / 2 else 0
        else:
            raise ValueError(f"Unknown parity_type: {parity_type}")

        data.append(bits)
        labels.append(label)

    return torch.tensor(data, dtype=torch.float32), torch.tensor(labels, dtype=torch.float32).reshape(-1, 1)

class ParityNet(nn.Module):
    """A flexible feed-forward neural network model."""
    def __init__(self, input_size, hidden_size, num_hidden_layers, output_size, activation_func='relu'):
        super(ParityNet, self).__init__()
        
        if activation_func.lower() == 'relu':
            activation = nn.ReLU()
        elif activation_func.lower() == 'tanh':
            activation = nn.Tanh()
        elif activation_func.lower() == 'leakyrelu':
            activation = nn.LeakyReLU()
        else:
            raise ValueError("Unsupported activation function. Choose 'relu', 'tanh', or 'leakyrelu'.")

        layers = []
        # Input layer
        layers.append(nn.Linear(input_size, hidden_size))
        layers.append(activation)
        # Hidden layers
        for _ in range(num_hidden_layers - 1):
            layers.append(nn.Linear(hidden_size, hidden_size))
            layers.append(activation)
        # Output layer
        layers.append(nn.Linear(hidden_size, output_size))
        layers.append(nn.Sigmoid()) # For binary classification

        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.layers(x)

def train_model(model, train_data, train_labels, test_data, test_labels, args, run_dir):
    """Trains the model and logs performance and difficult samples."""
    criterion = nn.BCELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
    
    history = {'epoch': [], 'train_loss': [], 'val_acc': []}
    hard_samples = {}
    
    print("\n" + "="*50)
    print("=== STARTING TRAINING ===")
    print(f"Epochs: {args.epochs}, LR: {args.learning_rate}, Stop Threshold: {args.min_loss_threshold}")
    print("="*50)

    # Interactive plot setup
    plt.ion()
    fig, ax = plt.subplots(figsize=(10, 6))

    for epoch in range(args.epochs):
        model.train()
        outputs = model(train_data)
        loss = criterion(outputs, train_labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (epoch + 1) % args.plot_update_freq == 0:
            model.eval()
            with torch.no_grad():
                val_outputs = model(test_data)
                predicted = (val_outputs > 0.5).float()
                accuracy = (predicted == test_labels).sum().float() / len(test_labels)
                
                # Log hard samples (misclassified during this validation check)
                misclassified_mask = (predicted != test_labels).flatten()
                for i, is_misclassified in enumerate(misclassified_mask):
                    if is_misclassified:
                        sample_str = ''.join(map(str, test_data[i].int().tolist()))
                        hard_samples[sample_str] = hard_samples.get(sample_str, 0) + 1

            history['epoch'].append(epoch + 1)
            history['train_loss'].append(loss.item())
            history['val_acc'].append(accuracy.item())

            print(f'Epoch [{epoch+1}/{args.epochs}], Loss: {loss.item():.5f}, Validation Accuracy: {accuracy.item():.4f}')
            
            # Update real-time plot
            ax.clear()
            ax.plot(history['epoch'], history['train_loss'], 'r-', label='Training Loss')
            ax.set_xlabel(f"Epoch (x{args.plot_update_freq})")
            ax.set_ylabel("Loss", color='r')
            ax.tick_params(axis='y', labelcolor='r')
            
            ax2 = ax.twinx()
            ax2.plot(history['epoch'], history['val_acc'], 'b-', label='Validation Accuracy')
            ax2.set_ylabel("Accuracy", color='b')
            ax2.tick_params(axis='y', labelcolor='b')
            ax2.set_ylim(0, 1.05)
            
            fig.suptitle("Live Training Progress")
            fig.legend(loc="upper center", bbox_to_anchor=(0.5, 0.95), ncol=2)
            plt.grid(True)
            plt.draw()
            plt.pause(0.01)

        if loss.item() < args.min_loss_threshold:
            print(f"\nReached minimum loss threshold of {args.min_loss_threshold} at epoch {epoch+1}. Stopping training.")
            break
            
    plt.ioff()
    print("\n" + "="*50)
    print("=== TRAINING COMPLETE ===")
    print("="*50 + "\n")

    # Save hard samples log
    if hard_samples:
        hard_samples_path = os.path.join(run_dir, "hard_samples.json")
        sorted_hard_samples = sorted(hard_samples.items(), key=lambda item: item[1], reverse=True)
        with open(hard_samples_path, 'w') as f:
            json.dump(dict(sorted_hard_samples), f, indent=4)
        print(f"Logged {len(hard_samples)} unique hard-to-learn samples to {hard_samples_path}")

    return model, history


def evaluate_model(model, test_data, test_labels):
    """Evaluates the final model and returns a dictionary of metrics."""
    model.eval()
    with torch.no_grad():
        outputs = model(test_data)
        predicted = (outputs > 0.5).float()
        accuracy = (predicted == test_labels).sum().float() / len(test_labels)

        # Separate margins for predictions of 1 and 0
        margins_ones = outputs[predicted == 1] - 0.5
        margins_zeros = 0.5 - outputs[predicted == 0]

    results = {
        "accuracy": accuracy.item(),
        "raw_outputs": outputs.flatten().numpy(),
        "predictions": predicted.flatten().numpy(),
        "labels": test_labels.flatten().numpy(),
        "margins_ones": margins_ones.numpy(),
        "margins_zeros": margins_zeros.numpy(),
        "conf_matrix": confusion_matrix(test_labels.numpy(), predicted.numpy()),
        "class_report": classification_report(test_labels.numpy(), predicted.numpy(), output_dict=True, zero_division=0)
    }
    return results

def generate_plots(history, results, args, plots_dir):
    """Generates and saves a suite of analytical plots."""
    print("Generating and saving analysis plots...")
    plt.style.use('seaborn-v0_8-whitegrid')

    # --- 1. Training History Plot ---
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 6))
    fig.suptitle(f'Training History for N={args.n_bits} {args.parity_type.title()} Parity', fontsize=16)

    ax1.plot(history['epoch'], history['train_loss'], label='Training Loss', color='crimson')
    ax1.set_title('Training Loss over Epochs')
    ax1.set_xlabel('Epoch')
    ax1.set_ylabel('Binary Cross-Entropy Loss')
    ax1.legend()

    ax2.plot(history['epoch'], history['val_acc'], label='Validation Accuracy', color='royalblue')
    ax2.set_title('Validation Accuracy over Epochs')
    ax2.set_xlabel('Epoch')
    ax2.set_ylabel('Accuracy')
    ax2.set_ylim(0, 1.05)
    ax2.legend()
    
    plt.tight_layout(rect=[0, 0.03, 1, 0.95])
    plt.savefig(os.path.join(plots_dir, "01_training_history.png"))
    plt.show()

    # --- 2. Confusion Matrix Heatmap ---
    plt.figure(figsize=(8, 6))
    sns.heatmap(results['conf_matrix'], annot=True, fmt='d', cmap='Blues',
                xticklabels=['Predicted 0', 'Predicted 1'],
                yticklabels=['Actual 0', 'Actual 1'])
    plt.title('Confusion Matrix on Test Set', fontsize=14)
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.savefig(os.path.join(plots_dir, "02_confusion_matrix.png"))
    plt.show()

    # --- 3. Prediction Margin Distribution ---
    plt.figure(figsize=(12, 6))
    plt.hist(results['margins_zeros'], bins=20, alpha=0.7, color='coral', label='Margins for "0" Predictions')
    plt.hist(results['margins_ones'], bins=20, alpha=0.7, color='teal', label='Margins for "1" Predictions')
    plt.title('Distribution of Prediction Margins (Confidence)', fontsize=14)
    plt.xlabel('Margin (Distance from 0.5 threshold)')
    plt.ylabel('Frequency')
    plt.legend()
    plt.savefig(os.path.join(plots_dir, "03_prediction_margins.png"))
    plt.show()

    # --- 4. Raw Outputs vs. Labels ---
    plt.figure(figsize=(10, 7))
    jitter = np.random.normal(0, 0.015, size=len(results['labels'])) # For better visualization
    colors = ['coral' if l == 0 else 'teal' for l in results['labels']]
    plt.scatter(results['labels'] + jitter, results['raw_outputs'], c=colors, alpha=0.6)
    plt.axhline(y=0.5, color='r', linestyle='--', label='Decision Boundary (0.5)')
    plt.title('Model Raw Output vs. True Labels', fontsize=14)
    plt.xlabel('True Label (with jitter)')
    plt.ylabel('Sigmoid Output (Probability)')
    plt.xticks([0, 1], ['Class 0', 'Class 1'])
    plt.legend()
    plt.savefig(os.path.join(plots_dir, "04_outputs_vs_labels.png"))
    plt.show()
    print("All plots saved.")


def generate_report(args, results, run_dir):
    """Generates and saves a comprehensive text report of the run."""
    report_path = os.path.join(run_dir, "report.txt")
    
    # Margin stats
    def get_margin_stats(margins):
        if len(margins) == 0: return "N/A", "N/A", "N/A"
        return f"{np.min(margins):.4f}", f"{np.max(margins):.4f}", f"{np.mean(margins):.4f}"

    min_m0, max_m0, avg_m0 = get_margin_stats(results['margins_zeros'])
    min_m1, max_m1, avg_m1 = get_margin_stats(results['margins_ones'])
    
    tn, fp, fn, tp = results['conf_matrix'].ravel() if results['conf_matrix'].size == 4 else (0,0,0,0)

    report_content = f"""

# ==========================================================

# == PARITY NEURAL NETWORK EXPERIMENT REPORT

# ==========================================================

# Run Directory: {run_dir}

# Report Time: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}

#

# ==========================================================

# == HYPERPARAMETERS

# ==========================================================

# Problem Type:             {args.parity_type.title()}

# Input Bits (N):           {args.n_bits}

# Hidden Layers (L):        {args.l_layers}

# Neurons per Hidden Layer: {args.hidden_size}

# Activation Function:      {args.activation.upper()}

#

# --- Training Configuration ---

# Epochs:                   {args.epochs}

# Learning Rate:            {args.learning_rate}

# Train Samples:            {args.num_train_samples}

# Test Samples:             {args.num_test_samples}

# Loss Stop Threshold:      {args.min_loss_threshold}

#

# ==========================================================

# == EVALUATION RESULTS

# ==========================================================

# Final Test Accuracy:      {results['accuracy']:.4f}

#

# --- Confusion Matrix ---

# True Positives (1->1):    {tp}

# True Negatives (0->0):    {tn}

# False Positives (0->1):   {fp}

# False Negatives (1->0):   {fn}

#

# --- Prediction Margin Analysis (Confidence) ---

#              |   Min   |   Max   |  Average

# ----------------------------------------------------------

# Margin (Zeros): | {min_m0:<7} | {max_m0:<7} | {avg_m0:<7}

# Margin (Ones):  | {min_m1:<7} | {max_m1:<7} | {avg_m1:<7}

#

# ==========================================================

# == CONCLUSION

# ==========================================================

# The model was trained to solve the {args.n_bits}-bit '{args.parity_type}' problem.

# With a final test accuracy of {results['accuracy']:.2%}, the network has demonstrated

# {'a high degree of success' if results['accuracy'] > 0.95 else 'a moderate level of success' if results['accuracy'] > 0.7 else 'difficulty'}

# in learning the underlying logical rule.

#

# The margin analysis indicates the model's confidence. Larger average margins

# suggest a more robust and decisive model. The generated plots provide

# further visual insight into the training process and final performance.

#

# This experiment explores the capability of a simple Feed-Forward Network

# to learn complex, non-linear functions like parity, a task often cited

# as a challenge for non-recurrent architectures but clearly achievable

# with sufficient network capacity and training.

#

"""
    print("\n" + report_content)
    with open(report_path, "w") as f:
        f.write(report_content)
    print(f"Report saved to {report_path}")

def user_inference_loop(model, args):
    """An interactive loop for the user to test the model. replicate the label-calculation logic directly within the user_inference_loop. This isolates the calculation and uses the user's provided bit string, fixing the crash and ensuring the "True Label" is accurate for the given input.  With this correction, the interactive mode will now function as intended, correctly comparing the model's prediction against the true calculated label for your input. System integrity restored."""
    print("\n" + "="*50)
    print("=== INTERACTIVE INFERENCE MODE ===")
    print(f"Enter a {args.n_bits}-bit binary string (e.g., {'10101'[:args.n_bits]}) or 'q' to quit.")
    print("="*50)
    
    model.eval()
    while True:
        user_input = input(f"Input ({args.n_bits} bits) > ")
        if user_input.lower() == 'q':
            break
        
        if len(user_input) != args.n_bits or not all(c in '01' for c in user_input):
            print(f"Error: Please enter exactly {args.n_bits} bits (0s and 1s).")
            continue
            
        bits = [int(c) for c in user_input]
        data_tensor = torch.tensor(bits, dtype=torch.float32).reshape(1, -1)
        
        with torch.no_grad():
            output = model(data_tensor)
            prediction = (output > 0.5).int().item()
            confidence = output.item()
        
        print(f"  Model Output: {confidence:.4f}")
        print(f"  -> Predicted Label: {prediction}")
        
        # --- FIX START ---
        # The original code incorrectly tried to pass the user's data back into
        # the generate_data function. The fix is to calculate the true label
        # directly here using the same logic from the data generation process.
        
        sum_of_bits = sum(bits)
        true_label = -1 # Default/error value

        if args.parity_type == 'even':
            true_label = sum_of_bits % 2
        elif args.parity_type == 'odd':
            true_label = (sum_of_bits + 1) % 2
        elif args.parity_type == 'majority':
            true_label = 1 if sum_of_bits > args.n_bits / 2 else 0
        
        # --- FIX END ---

        print(f"  -> True Label ({args.parity_type}): {true_label} {'(Correct)' if prediction == true_label else '(Incorrect)'}\n")

# ==============================================================================
# === MAIN EXECUTION BLOCK ===
# ==============================================================================

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Train a Neural Network for the N-Bit Parity Problem.")
    
    # --- Model Architecture ---
    parser.add_argument('-n', '--n_bits', type=int, default=5, help="Number of input bits (N).")
    parser.add_argument('-l', '--l_layers', type=int, default=2, help="Number of hidden layers (L).")
    parser.add_argument('-hs', '--hidden_size', type=int, default=10, help="Number of neurons per hidden layer.")
    parser.add_argument('-a', '--activation', type=str, default='relu', choices=['relu', 'tanh', 'leakyrelu'], help="Activation function for hidden layers.")

    # --- Training Parameters ---
    parser.add_argument('-e', '--epochs', type=int, default=10000, help="Maximum number of training epochs.")
    parser.add_argument('-lr', '--learning_rate', type=float, default=0.003, help="Optimizer learning rate.")
    parser.add_argument('-loss', '--min_loss_threshold', type=float, default=0.01, help="Loss threshold to stop training early.")
    parser.add_argument('-puf', '--plot_update_freq', type=int, default=100, help="Frequency (in epochs) to update the live plot.")

    # --- Data and Problem Type ---
    parser.add_argument('-pt', '--parity_type', type=str, default='even', choices=['even', 'odd', 'majority'], help="The logical rule to learn.")
    parser.add_argument('-nts', '--num_train_samples', type=int, default=2000, help="Number of samples for the training dataset.")
    parser.add_argument('-ntests', '--num_test_samples', type=int, default=500, help="Number of samples for the test dataset.")
    
    args = parser.parse_args()

    # 1. Setup
    run_dir, plots_dir = setup_directories(args)
    # Save args for reproducibility
    with open(os.path.join(run_dir, 'hyperparameters.json'), 'w') as f:
        json.dump(vars(args), f, indent=4)

    # 2. Generate Data
    print(f"\nGenerating {args.num_train_samples} training and {args.num_test_samples} test samples for {args.n_bits}-bit '{args.parity_type}' parity...")
    train_data, train_labels = generate_data(args.num_train_samples, args.n_bits, args.parity_type)
    test_data, test_labels = generate_data(args.num_test_samples, args.n_bits, args.parity_type)
    print("Data generation complete.")

    # 3. Create Model
    model = ParityNet(args.n_bits, args.hidden_size, args.l_layers, 1, args.activation)
    print("\nModel Architecture:")
    print(model)

    # 4. Train Model
    trained_model, history = train_model(model, train_data, train_labels, test_data, test_labels, args, run_dir)
    
    # 5. Save Model Weights
    model_path = os.path.join(run_dir, f"parity_nn_N{args.n_bits}_{args.parity_type}.pth")
    torch.save(trained_model.state_dict(), model_path)
    print(f"Trained model weights saved to: {model_path}")

    # 6. Evaluate and Report
    if len(history['epoch']) > 0: # Ensure training ran for at least one update cycle
        final_results = evaluate_model(trained_model, test_data, test_labels)
        generate_report(args, final_results, run_dir)
        generate_plots(history, final_results, args, plots_dir)
    else:
        print("\nTraining was too short to generate a full report and plots.")
    
    # 7. Interactive Mode
    user_inference_loop(trained_model, args)

    print("\nSupercoding LLM task complete. System returning to normal operation.")