File size: 22,120 Bytes
c8b58ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
# Filename: PARITY-calculatingNN_Supercoded_V2.0.py
# Description: An advanced, highly configurable PyTorch script to train a neural network on the N-bit parity problem.
#
# Supercoding LLM Recode of PARITY-calculatingNN_Schmidhuber_V1.0.py
#
# This version introduces significant enhancements for robust experimentation and analysis:
# - Full Hyperparameterization: All key parameters are exposed via command-line arguments for easy tuning.
# - Flexible Problem Definition: The concept of "parity" can be switched between 'even', 'odd', or 'majority' rule,
# allowing the network to be tested on different but related logical problems.
# - Advanced Visualization: Generates a suite of high-quality plots (saved to disk and shown in popups) inspired
# by analytical scientific scripts, including:
# - Detailed Training History (Loss & Accuracy)
# - Confusion Matrix Heatmap
# - Prediction Margin Distribution Histogram
# - Raw Output vs. True Label Scatter Plot
# - Comprehensive Reporting: Automatically generates a run-specific folder containing the plots, a detailed text report,
# the trained model weights, and a log of hard-to-learn data samples.
# - Interactive Mode: Allows the user to test the trained model with custom binary inputs.
# ==============================================================================
# === LIBRARY IMPORTS ===
# ==============================================================================
print("Initializing... Loading libraries.")
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix, classification_report
import random
import os
import argparse
import datetime
import json
print("Libraries loaded successfully.\n")
# ==============================================================================
# === CORE FUNCTIONS ===
# ==============================================================================
def setup_directories(args):
"""Creates a unique, timestamped directory for the current run to store all outputs."""
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
run_name = f"run_{timestamp}_N{args.n_bits}_L{args.l_layers}_H{args.hidden_size}_{args.parity_type}"
base_dir = "parity_nn_results"
run_dir = os.path.join(base_dir, run_name)
plots_dir = os.path.join(run_dir, "plots")
os.makedirs(plots_dir, exist_ok=True)
print(f"Created output directory: {run_dir}")
return run_dir, plots_dir
def generate_data(num_samples, num_bits, parity_type='even'):
"""
Generates input data and corresponding labels based on the specified parity rule.
Args:
num_samples (int): The number of data samples to generate.
num_bits (int): The bit-width of each data sample.
parity_type (str): The rule for calculating the label.
'even': Standard even parity bit (1 if odd number of 1s, 0 if even).
'odd': Standard odd parity bit (1 if even number of 1s, 0 if odd).
'majority': Label is 1 if the count of 1s > N/2, else 0.
Returns:
tuple: A tuple containing torch tensors for data and labels.
"""
data = []
labels = []
for _ in range(num_samples):
bits = [random.randint(0, 1) for _ in range(num_bits)]
sum_of_bits = sum(bits)
if parity_type == 'even':
label = sum_of_bits % 2
elif parity_type == 'odd':
label = (sum_of_bits + 1) % 2
elif parity_type == 'majority':
label = 1 if sum_of_bits > num_bits / 2 else 0
else:
raise ValueError(f"Unknown parity_type: {parity_type}")
data.append(bits)
labels.append(label)
return torch.tensor(data, dtype=torch.float32), torch.tensor(labels, dtype=torch.float32).reshape(-1, 1)
class ParityNet(nn.Module):
"""A flexible feed-forward neural network model."""
def __init__(self, input_size, hidden_size, num_hidden_layers, output_size, activation_func='relu'):
super(ParityNet, self).__init__()
if activation_func.lower() == 'relu':
activation = nn.ReLU()
elif activation_func.lower() == 'tanh':
activation = nn.Tanh()
elif activation_func.lower() == 'leakyrelu':
activation = nn.LeakyReLU()
else:
raise ValueError("Unsupported activation function. Choose 'relu', 'tanh', or 'leakyrelu'.")
layers = []
# Input layer
layers.append(nn.Linear(input_size, hidden_size))
layers.append(activation)
# Hidden layers
for _ in range(num_hidden_layers - 1):
layers.append(nn.Linear(hidden_size, hidden_size))
layers.append(activation)
# Output layer
layers.append(nn.Linear(hidden_size, output_size))
layers.append(nn.Sigmoid()) # For binary classification
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
def train_model(model, train_data, train_labels, test_data, test_labels, args, run_dir):
"""Trains the model and logs performance and difficult samples."""
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
history = {'epoch': [], 'train_loss': [], 'val_acc': []}
hard_samples = {}
print("\n" + "="*50)
print("=== STARTING TRAINING ===")
print(f"Epochs: {args.epochs}, LR: {args.learning_rate}, Stop Threshold: {args.min_loss_threshold}")
print("="*50)
# Interactive plot setup
plt.ion()
fig, ax = plt.subplots(figsize=(10, 6))
for epoch in range(args.epochs):
model.train()
outputs = model(train_data)
loss = criterion(outputs, train_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % args.plot_update_freq == 0:
model.eval()
with torch.no_grad():
val_outputs = model(test_data)
predicted = (val_outputs > 0.5).float()
accuracy = (predicted == test_labels).sum().float() / len(test_labels)
# Log hard samples (misclassified during this validation check)
misclassified_mask = (predicted != test_labels).flatten()
for i, is_misclassified in enumerate(misclassified_mask):
if is_misclassified:
sample_str = ''.join(map(str, test_data[i].int().tolist()))
hard_samples[sample_str] = hard_samples.get(sample_str, 0) + 1
history['epoch'].append(epoch + 1)
history['train_loss'].append(loss.item())
history['val_acc'].append(accuracy.item())
print(f'Epoch [{epoch+1}/{args.epochs}], Loss: {loss.item():.5f}, Validation Accuracy: {accuracy.item():.4f}')
# Update real-time plot
ax.clear()
ax.plot(history['epoch'], history['train_loss'], 'r-', label='Training Loss')
ax.set_xlabel(f"Epoch (x{args.plot_update_freq})")
ax.set_ylabel("Loss", color='r')
ax.tick_params(axis='y', labelcolor='r')
ax2 = ax.twinx()
ax2.plot(history['epoch'], history['val_acc'], 'b-', label='Validation Accuracy')
ax2.set_ylabel("Accuracy", color='b')
ax2.tick_params(axis='y', labelcolor='b')
ax2.set_ylim(0, 1.05)
fig.suptitle("Live Training Progress")
fig.legend(loc="upper center", bbox_to_anchor=(0.5, 0.95), ncol=2)
plt.grid(True)
plt.draw()
plt.pause(0.01)
if loss.item() < args.min_loss_threshold:
print(f"\nReached minimum loss threshold of {args.min_loss_threshold} at epoch {epoch+1}. Stopping training.")
break
plt.ioff()
print("\n" + "="*50)
print("=== TRAINING COMPLETE ===")
print("="*50 + "\n")
# Save hard samples log
if hard_samples:
hard_samples_path = os.path.join(run_dir, "hard_samples.json")
sorted_hard_samples = sorted(hard_samples.items(), key=lambda item: item[1], reverse=True)
with open(hard_samples_path, 'w') as f:
json.dump(dict(sorted_hard_samples), f, indent=4)
print(f"Logged {len(hard_samples)} unique hard-to-learn samples to {hard_samples_path}")
return model, history
def evaluate_model(model, test_data, test_labels):
"""Evaluates the final model and returns a dictionary of metrics."""
model.eval()
with torch.no_grad():
outputs = model(test_data)
predicted = (outputs > 0.5).float()
accuracy = (predicted == test_labels).sum().float() / len(test_labels)
# Separate margins for predictions of 1 and 0
margins_ones = outputs[predicted == 1] - 0.5
margins_zeros = 0.5 - outputs[predicted == 0]
results = {
"accuracy": accuracy.item(),
"raw_outputs": outputs.flatten().numpy(),
"predictions": predicted.flatten().numpy(),
"labels": test_labels.flatten().numpy(),
"margins_ones": margins_ones.numpy(),
"margins_zeros": margins_zeros.numpy(),
"conf_matrix": confusion_matrix(test_labels.numpy(), predicted.numpy()),
"class_report": classification_report(test_labels.numpy(), predicted.numpy(), output_dict=True, zero_division=0)
}
return results
def generate_plots(history, results, args, plots_dir):
"""Generates and saves a suite of analytical plots."""
print("Generating and saving analysis plots...")
plt.style.use('seaborn-v0_8-whitegrid')
# --- 1. Training History Plot ---
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 6))
fig.suptitle(f'Training History for N={args.n_bits} {args.parity_type.title()} Parity', fontsize=16)
ax1.plot(history['epoch'], history['train_loss'], label='Training Loss', color='crimson')
ax1.set_title('Training Loss over Epochs')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Binary Cross-Entropy Loss')
ax1.legend()
ax2.plot(history['epoch'], history['val_acc'], label='Validation Accuracy', color='royalblue')
ax2.set_title('Validation Accuracy over Epochs')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Accuracy')
ax2.set_ylim(0, 1.05)
ax2.legend()
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.savefig(os.path.join(plots_dir, "01_training_history.png"))
plt.show()
# --- 2. Confusion Matrix Heatmap ---
plt.figure(figsize=(8, 6))
sns.heatmap(results['conf_matrix'], annot=True, fmt='d', cmap='Blues',
xticklabels=['Predicted 0', 'Predicted 1'],
yticklabels=['Actual 0', 'Actual 1'])
plt.title('Confusion Matrix on Test Set', fontsize=14)
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.savefig(os.path.join(plots_dir, "02_confusion_matrix.png"))
plt.show()
# --- 3. Prediction Margin Distribution ---
plt.figure(figsize=(12, 6))
plt.hist(results['margins_zeros'], bins=20, alpha=0.7, color='coral', label='Margins for "0" Predictions')
plt.hist(results['margins_ones'], bins=20, alpha=0.7, color='teal', label='Margins for "1" Predictions')
plt.title('Distribution of Prediction Margins (Confidence)', fontsize=14)
plt.xlabel('Margin (Distance from 0.5 threshold)')
plt.ylabel('Frequency')
plt.legend()
plt.savefig(os.path.join(plots_dir, "03_prediction_margins.png"))
plt.show()
# --- 4. Raw Outputs vs. Labels ---
plt.figure(figsize=(10, 7))
jitter = np.random.normal(0, 0.015, size=len(results['labels'])) # For better visualization
colors = ['coral' if l == 0 else 'teal' for l in results['labels']]
plt.scatter(results['labels'] + jitter, results['raw_outputs'], c=colors, alpha=0.6)
plt.axhline(y=0.5, color='r', linestyle='--', label='Decision Boundary (0.5)')
plt.title('Model Raw Output vs. True Labels', fontsize=14)
plt.xlabel('True Label (with jitter)')
plt.ylabel('Sigmoid Output (Probability)')
plt.xticks([0, 1], ['Class 0', 'Class 1'])
plt.legend()
plt.savefig(os.path.join(plots_dir, "04_outputs_vs_labels.png"))
plt.show()
print("All plots saved.")
def generate_report(args, results, run_dir):
"""Generates and saves a comprehensive text report of the run."""
report_path = os.path.join(run_dir, "report.txt")
# Margin stats
def get_margin_stats(margins):
if len(margins) == 0: return "N/A", "N/A", "N/A"
return f"{np.min(margins):.4f}", f"{np.max(margins):.4f}", f"{np.mean(margins):.4f}"
min_m0, max_m0, avg_m0 = get_margin_stats(results['margins_zeros'])
min_m1, max_m1, avg_m1 = get_margin_stats(results['margins_ones'])
tn, fp, fn, tp = results['conf_matrix'].ravel() if results['conf_matrix'].size == 4 else (0,0,0,0)
report_content = f"""
# ==========================================================
# == PARITY NEURAL NETWORK EXPERIMENT REPORT
# ==========================================================
# Run Directory: {run_dir}
# Report Time: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
#
# ==========================================================
# == HYPERPARAMETERS
# ==========================================================
# Problem Type: {args.parity_type.title()}
# Input Bits (N): {args.n_bits}
# Hidden Layers (L): {args.l_layers}
# Neurons per Hidden Layer: {args.hidden_size}
# Activation Function: {args.activation.upper()}
#
# --- Training Configuration ---
# Epochs: {args.epochs}
# Learning Rate: {args.learning_rate}
# Train Samples: {args.num_train_samples}
# Test Samples: {args.num_test_samples}
# Loss Stop Threshold: {args.min_loss_threshold}
#
# ==========================================================
# == EVALUATION RESULTS
# ==========================================================
# Final Test Accuracy: {results['accuracy']:.4f}
#
# --- Confusion Matrix ---
# True Positives (1->1): {tp}
# True Negatives (0->0): {tn}
# False Positives (0->1): {fp}
# False Negatives (1->0): {fn}
#
# --- Prediction Margin Analysis (Confidence) ---
# | Min | Max | Average
# ----------------------------------------------------------
# Margin (Zeros): | {min_m0:<7} | {max_m0:<7} | {avg_m0:<7}
# Margin (Ones): | {min_m1:<7} | {max_m1:<7} | {avg_m1:<7}
#
# ==========================================================
# == CONCLUSION
# ==========================================================
# The model was trained to solve the {args.n_bits}-bit '{args.parity_type}' problem.
# With a final test accuracy of {results['accuracy']:.2%}, the network has demonstrated
# {'a high degree of success' if results['accuracy'] > 0.95 else 'a moderate level of success' if results['accuracy'] > 0.7 else 'difficulty'}
# in learning the underlying logical rule.
#
# The margin analysis indicates the model's confidence. Larger average margins
# suggest a more robust and decisive model. The generated plots provide
# further visual insight into the training process and final performance.
#
# This experiment explores the capability of a simple Feed-Forward Network
# to learn complex, non-linear functions like parity, a task often cited
# as a challenge for non-recurrent architectures but clearly achievable
# with sufficient network capacity and training.
#
"""
print("\n" + report_content)
with open(report_path, "w") as f:
f.write(report_content)
print(f"Report saved to {report_path}")
def user_inference_loop(model, args):
"""An interactive loop for the user to test the model. replicate the label-calculation logic directly within the user_inference_loop. This isolates the calculation and uses the user's provided bit string, fixing the crash and ensuring the "True Label" is accurate for the given input. With this correction, the interactive mode will now function as intended, correctly comparing the model's prediction against the true calculated label for your input. System integrity restored."""
print("\n" + "="*50)
print("=== INTERACTIVE INFERENCE MODE ===")
print(f"Enter a {args.n_bits}-bit binary string (e.g., {'10101'[:args.n_bits]}) or 'q' to quit.")
print("="*50)
model.eval()
while True:
user_input = input(f"Input ({args.n_bits} bits) > ")
if user_input.lower() == 'q':
break
if len(user_input) != args.n_bits or not all(c in '01' for c in user_input):
print(f"Error: Please enter exactly {args.n_bits} bits (0s and 1s).")
continue
bits = [int(c) for c in user_input]
data_tensor = torch.tensor(bits, dtype=torch.float32).reshape(1, -1)
with torch.no_grad():
output = model(data_tensor)
prediction = (output > 0.5).int().item()
confidence = output.item()
print(f" Model Output: {confidence:.4f}")
print(f" -> Predicted Label: {prediction}")
# --- FIX START ---
# The original code incorrectly tried to pass the user's data back into
# the generate_data function. The fix is to calculate the true label
# directly here using the same logic from the data generation process.
sum_of_bits = sum(bits)
true_label = -1 # Default/error value
if args.parity_type == 'even':
true_label = sum_of_bits % 2
elif args.parity_type == 'odd':
true_label = (sum_of_bits + 1) % 2
elif args.parity_type == 'majority':
true_label = 1 if sum_of_bits > args.n_bits / 2 else 0
# --- FIX END ---
print(f" -> True Label ({args.parity_type}): {true_label} {'(Correct)' if prediction == true_label else '(Incorrect)'}\n")
# ==============================================================================
# === MAIN EXECUTION BLOCK ===
# ==============================================================================
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Train a Neural Network for the N-Bit Parity Problem.")
# --- Model Architecture ---
parser.add_argument('-n', '--n_bits', type=int, default=5, help="Number of input bits (N).")
parser.add_argument('-l', '--l_layers', type=int, default=2, help="Number of hidden layers (L).")
parser.add_argument('-hs', '--hidden_size', type=int, default=10, help="Number of neurons per hidden layer.")
parser.add_argument('-a', '--activation', type=str, default='relu', choices=['relu', 'tanh', 'leakyrelu'], help="Activation function for hidden layers.")
# --- Training Parameters ---
parser.add_argument('-e', '--epochs', type=int, default=10000, help="Maximum number of training epochs.")
parser.add_argument('-lr', '--learning_rate', type=float, default=0.003, help="Optimizer learning rate.")
parser.add_argument('-loss', '--min_loss_threshold', type=float, default=0.01, help="Loss threshold to stop training early.")
parser.add_argument('-puf', '--plot_update_freq', type=int, default=100, help="Frequency (in epochs) to update the live plot.")
# --- Data and Problem Type ---
parser.add_argument('-pt', '--parity_type', type=str, default='even', choices=['even', 'odd', 'majority'], help="The logical rule to learn.")
parser.add_argument('-nts', '--num_train_samples', type=int, default=2000, help="Number of samples for the training dataset.")
parser.add_argument('-ntests', '--num_test_samples', type=int, default=500, help="Number of samples for the test dataset.")
args = parser.parse_args()
# 1. Setup
run_dir, plots_dir = setup_directories(args)
# Save args for reproducibility
with open(os.path.join(run_dir, 'hyperparameters.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
# 2. Generate Data
print(f"\nGenerating {args.num_train_samples} training and {args.num_test_samples} test samples for {args.n_bits}-bit '{args.parity_type}' parity...")
train_data, train_labels = generate_data(args.num_train_samples, args.n_bits, args.parity_type)
test_data, test_labels = generate_data(args.num_test_samples, args.n_bits, args.parity_type)
print("Data generation complete.")
# 3. Create Model
model = ParityNet(args.n_bits, args.hidden_size, args.l_layers, 1, args.activation)
print("\nModel Architecture:")
print(model)
# 4. Train Model
trained_model, history = train_model(model, train_data, train_labels, test_data, test_labels, args, run_dir)
# 5. Save Model Weights
model_path = os.path.join(run_dir, f"parity_nn_N{args.n_bits}_{args.parity_type}.pth")
torch.save(trained_model.state_dict(), model_path)
print(f"Trained model weights saved to: {model_path}")
# 6. Evaluate and Report
if len(history['epoch']) > 0: # Ensure training ran for at least one update cycle
final_results = evaluate_model(trained_model, test_data, test_labels)
generate_report(args, final_results, run_dir)
generate_plots(history, final_results, args, plots_dir)
else:
print("\nTraining was too short to generate a full report and plots.")
# 7. Interactive Mode
user_inference_loop(trained_model, args)
print("\nSupercoding LLM task complete. System returning to normal operation.") |