Create Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.v0.0.py
Browse files
Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.v0.0.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.py
|
| 3 |
+
|
| 4 |
+
This script demonstrates a conceptual Enhanced Business Model for a Collaborative
|
| 5 |
+
Predictive Supply Chain. It uses a custom Transformer-based model (represented
|
| 6 |
+
by a placeholder `TransformerModel` class) and a custom tokenizer
|
| 7 |
+
(`SupplyChainTokenizer` from `tokenizer.py`) with an industry-specific
|
| 8 |
+
vocabulary loaded from `vocab.json`.
|
| 9 |
+
|
| 10 |
+
This is a *demonstration* script and not a fully functional system. It outlines
|
| 11 |
+
the key steps involved in such a model:
|
| 12 |
+
|
| 13 |
+
1. **Loading Custom Vocabulary:** Loads an industry-specific vocabulary from
|
| 14 |
+
`vocab.json`.
|
| 15 |
+
2. **Initializing Custom Tokenizer:** Creates a `SupplyChainTokenizer` using
|
| 16 |
+
the loaded vocabulary.
|
| 17 |
+
3. **(Optional) Training BPE:** Demonstrates how to train Byte-Pair Encoding
|
| 18 |
+
(BPE) on a text corpus to handle out-of-vocabulary words.
|
| 19 |
+
4. **Loading Supply Chain Data:** Loads dummy supply chain data (in Pandas
|
| 20 |
+
DataFrame format). In a real system, this would come from databases, APIs,
|
| 21 |
+
etc.
|
| 22 |
+
5. **Tokenizing Data:** Uses the `SupplyChainTokenizer` to preprocess and
|
| 23 |
+
tokenize the supply chain data, preparing it for the Transformer model.
|
| 24 |
+
6. **Placeholder Transformer Model:** Uses a dummy `TransformerModel` class
|
| 25 |
+
to represent a Transformer-based forecasting model. This class takes
|
| 26 |
+
tokenized input and attention masks and generates placeholder forecast
|
| 27 |
+
outputs.
|
| 28 |
+
7. **Model Prediction:** Feeds the tokenized data to the dummy Transformer
|
| 29 |
+
model to generate (placeholder) forecasts.
|
| 30 |
+
8. **Outputting Forecasts:** Prints the (placeholder) forecasts.
|
| 31 |
+
|
| 32 |
+
To run this script:
|
| 33 |
+
|
| 34 |
+
1. Ensure you have `tokenizer.py`, `vocab.json`, and `training_data.txt`
|
| 35 |
+
in the same directory as this script (or adjust file paths accordingly).
|
| 36 |
+
2. Install required libraries: `pip install tokenizers pandas torch`.
|
| 37 |
+
3. Run from the command line: `python Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.py`
|
| 38 |
+
|
| 39 |
+
Note: The `TransformerModel` is a simplified placeholder. A real implementation
|
| 40 |
+
would require a proper Transformer architecture (e.g., using PyTorch or
|
| 41 |
+
TensorFlow), training data, and a more sophisticated training and prediction
|
| 42 |
+
pipeline.
|
| 43 |
+
"""
|
| 44 |
+
import os
|
| 45 |
+
import pandas as pd
|
| 46 |
+
import torch # Import PyTorch (required for dummy Transformer example)
|
| 47 |
+
|
| 48 |
+
# Import the custom tokenizer from tokenizer.py (ensure tokenizer.py is in the same directory)
|
| 49 |
+
from tokenizer import SupplyChainTokenizer
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# --- Define a placeholder Transformer Model ---
|
| 53 |
+
class TransformerModel:
|
| 54 |
+
"""
|
| 55 |
+
A placeholder for a real Transformer-based forecasting model.
|
| 56 |
+
In a real implementation, this would be a PyTorch/TensorFlow model.
|
| 57 |
+
This dummy model simply returns placeholder forecasts.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
def __init__(self, vocab_size, embedding_dim=64, num_heads=2, num_layers=2, output_dim=1):
|
| 61 |
+
"""
|
| 62 |
+
Args:
|
| 63 |
+
vocab_size (int): Vocabulary size of the tokenizer.
|
| 64 |
+
embedding_dim (int): Dimension of token embeddings.
|
| 65 |
+
num_heads (int): Number of attention heads.
|
| 66 |
+
num_layers (int): Number of Transformer layers.
|
| 67 |
+
output_dim (int): Dimension of the output (e.g., 1 for scalar forecast).
|
| 68 |
+
"""
|
| 69 |
+
self.vocab_size = vocab_size
|
| 70 |
+
self.embedding_dim = embedding_dim
|
| 71 |
+
self.num_heads = num_heads
|
| 72 |
+
self.num_layers = num_layers
|
| 73 |
+
self.output_dim = output_dim
|
| 74 |
+
|
| 75 |
+
# In a real model, you would initialize layers here (Embedding, TransformerEncoder, Linear, etc.)
|
| 76 |
+
print(f"Dummy TransformerModel initialized with vocab_size: {vocab_size}")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def forward(self, input_ids, attention_mask):
|
| 80 |
+
"""
|
| 81 |
+
Placeholder forward pass. In a real model, this would perform
|
| 82 |
+
Transformer encoding and prediction.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
input_ids (torch.Tensor): Token IDs (batch_size, sequence_length).
|
| 86 |
+
attention_mask (torch.Tensor): Attention mask (batch_size, sequence_length).
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
torch.Tensor: Placeholder forecast output (batch_size, sequence_length, output_dim).
|
| 90 |
+
"""
|
| 91 |
+
batch_size, seq_len = input_ids.shape
|
| 92 |
+
# Dummy output - replace with actual Transformer forward pass
|
| 93 |
+
dummy_forecasts = torch.randn(batch_size, seq_len, self.output_dim)
|
| 94 |
+
return dummy_forecasts
|
| 95 |
+
|
| 96 |
+
def predict(self, input_ids, attention_mask):
|
| 97 |
+
"""
|
| 98 |
+
Generates predictions.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
input_ids (List[List[int]]): Token IDs (list of lists).
|
| 102 |
+
attention_mask (List[List[int]]): Attention masks (list of lists).
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
torch.Tensor: Placeholder forecast output.
|
| 106 |
+
"""
|
| 107 |
+
# Convert lists to PyTorch tensors
|
| 108 |
+
input_ids_tensor = torch.tensor(input_ids)
|
| 109 |
+
attention_mask_tensor = torch.tensor(attention_mask)
|
| 110 |
+
|
| 111 |
+
# Call the forward method
|
| 112 |
+
forecasts = self.forward(input_ids_tensor, attention_mask_tensor)
|
| 113 |
+
return forecasts
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
# --- 0. Prepare Vocabulary and Training Data (if not already present) ---
|
| 118 |
+
if not os.path.exists("vocab.json"):
|
| 119 |
+
print("Creating vocab.json...")
|
| 120 |
+
vocab = {
|
| 121 |
+
"[UNK]": 0,
|
| 122 |
+
"[CLS]": 1,
|
| 123 |
+
"[SEP]": 2,
|
| 124 |
+
"[PAD]": 3,
|
| 125 |
+
"[MASK]": 4,
|
| 126 |
+
"timestamp:": 5,
|
| 127 |
+
"sku:": 6,
|
| 128 |
+
"store_id:": 7,
|
| 129 |
+
"quantity:": 8,
|
| 130 |
+
"price:": 9,
|
| 131 |
+
"discount:": 10,
|
| 132 |
+
"promotion_id:": 11,
|
| 133 |
+
"product_category:": 12,
|
| 134 |
+
"SKU123": 13, # Example SKU
|
| 135 |
+
"SKU123-RED": 14, # Example SKU variant
|
| 136 |
+
"SKU123-BLUE": 15,
|
| 137 |
+
"STORE456": 16, # Example store ID
|
| 138 |
+
"PLANT789": 17, # Example plant ID
|
| 139 |
+
"WHOLESALER001": 18, # Example Wholesaler
|
| 140 |
+
"RETAILER002": 19, # Example Retailer
|
| 141 |
+
"BOGO": 20,
|
| 142 |
+
"DISCOUNT":21,
|
| 143 |
+
}
|
| 144 |
+
with open("vocab.json", "w") as f:
|
| 145 |
+
json.dump(vocab, f, indent=4)
|
| 146 |
+
|
| 147 |
+
if not os.path.exists("training_data.txt"):
|
| 148 |
+
print("Creating training_data.txt...")
|
| 149 |
+
with open("training_data.txt", "w", encoding="utf-8") as f:
|
| 150 |
+
f.write("This is some example text for training the BPE model.\n")
|
| 151 |
+
f.write("SKU123 is a product. STORE456 is another. plant789 is, too.\n")
|
| 152 |
+
f.write("This file contains words not in the initial vocabulary.\n")
|
| 153 |
+
|
| 154 |
+
# --- 1. Load Vocabulary and Initialize Tokenizer ---
|
| 155 |
+
print("Loading vocabulary and initializing tokenizer...")
|
| 156 |
+
tokenizer = SupplyChainTokenizer(vocab_path="vocab.json")
|
| 157 |
+
|
| 158 |
+
# --- 2. (Optional) Train BPE ---
|
| 159 |
+
print("Training BPE tokenizer on training_data.txt...")
|
| 160 |
+
tokenizer.train_bpe("training_data.txt", vocab_size=50) # Small vocab for example
|
| 161 |
+
|
| 162 |
+
# --- 3. Load Dummy Supply Chain Data ---
|
| 163 |
+
print("Loading dummy supply chain data...")
|
| 164 |
+
data = {
|
| 165 |
+
'timestamp': ['2024-07-03 10:00:00', '2024-07-03 11:00:00', '2024-07-03 12:00:00'],
|
| 166 |
+
'sku': ['SKU123', 'SKU123-RED', 'SKU123-BLUE'],
|
| 167 |
+
'store_id': ['STORE456', 'STORE456', 'STORE456'],
|
| 168 |
+
'quantity': [2, 1, 3],
|
| 169 |
+
'price': [10.99, 12.99, 9.99],
|
| 170 |
+
'discount': [0.0, 1.0, 0.5],
|
| 171 |
+
'promotion_id': ['BOGO', None, 'DISCOUNT'],
|
| 172 |
+
'product_category': ['Electronics', 'Electronics', 'Electronics']
|
| 173 |
+
}
|
| 174 |
+
df = pd.DataFrame(data)
|
| 175 |
+
|
| 176 |
+
# --- 4. Tokenize the Data ---
|
| 177 |
+
print("Tokenizing supply chain data...")
|
| 178 |
+
input_ids, attention_masks = tokenizer.prepare_for_model(df)
|
| 179 |
+
print("Tokenized Input IDs (first example):", input_ids[0])
|
| 180 |
+
print("Attention Mask (first example):", attention_masks[0])
|
| 181 |
+
|
| 182 |
+
# --- 5. Initialize Dummy Transformer Model ---
|
| 183 |
+
print("Initializing dummy Transformer model...")
|
| 184 |
+
vocab_size = tokenizer.get_vocab_size()
|
| 185 |
+
dummy_model = TransformerModel(vocab_size=vocab_size)
|
| 186 |
+
|
| 187 |
+
# --- 6. Make Predictions with Dummy Model ---
|
| 188 |
+
print("Making predictions with dummy Transformer model...")
|
| 189 |
+
forecasts = dummy_model.predict(input_ids, attention_masks)
|
| 190 |
+
|
| 191 |
+
# --- 7. Output Forecasts (Placeholder Output) ---
|
| 192 |
+
print("\n--- Placeholder Forecast Outputs ---")
|
| 193 |
+
for i in range(len(df)):
|
| 194 |
+
print(f"Data Row {i+1}:")
|
| 195 |
+
print(df.iloc[i]) # Print the original data row
|
| 196 |
+
print(f" Placeholder Forecasts: {forecasts[i].tolist()}") # Print dummy forecasts
|
| 197 |
+
print("-" * 30)
|
| 198 |
+
|
| 199 |
+
print("\n--- Script Completed ---")
|
| 200 |
+
|
| 201 |
+
# --- (Optional) Clean up example files (comment out if you want to keep them) ---
|
| 202 |
+
# os.remove("vocab.json")
|
| 203 |
+
# os.remove("training_data.txt")
|