MartialTerran commited on
Commit
a92c8ec
·
verified ·
1 Parent(s): ec24fd5

Create Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.v0.0.py

Browse files
Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.v0.0.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.py
3
+
4
+ This script demonstrates a conceptual Enhanced Business Model for a Collaborative
5
+ Predictive Supply Chain. It uses a custom Transformer-based model (represented
6
+ by a placeholder `TransformerModel` class) and a custom tokenizer
7
+ (`SupplyChainTokenizer` from `tokenizer.py`) with an industry-specific
8
+ vocabulary loaded from `vocab.json`.
9
+
10
+ This is a *demonstration* script and not a fully functional system. It outlines
11
+ the key steps involved in such a model:
12
+
13
+ 1. **Loading Custom Vocabulary:** Loads an industry-specific vocabulary from
14
+ `vocab.json`.
15
+ 2. **Initializing Custom Tokenizer:** Creates a `SupplyChainTokenizer` using
16
+ the loaded vocabulary.
17
+ 3. **(Optional) Training BPE:** Demonstrates how to train Byte-Pair Encoding
18
+ (BPE) on a text corpus to handle out-of-vocabulary words.
19
+ 4. **Loading Supply Chain Data:** Loads dummy supply chain data (in Pandas
20
+ DataFrame format). In a real system, this would come from databases, APIs,
21
+ etc.
22
+ 5. **Tokenizing Data:** Uses the `SupplyChainTokenizer` to preprocess and
23
+ tokenize the supply chain data, preparing it for the Transformer model.
24
+ 6. **Placeholder Transformer Model:** Uses a dummy `TransformerModel` class
25
+ to represent a Transformer-based forecasting model. This class takes
26
+ tokenized input and attention masks and generates placeholder forecast
27
+ outputs.
28
+ 7. **Model Prediction:** Feeds the tokenized data to the dummy Transformer
29
+ model to generate (placeholder) forecasts.
30
+ 8. **Outputting Forecasts:** Prints the (placeholder) forecasts.
31
+
32
+ To run this script:
33
+
34
+ 1. Ensure you have `tokenizer.py`, `vocab.json`, and `training_data.txt`
35
+ in the same directory as this script (or adjust file paths accordingly).
36
+ 2. Install required libraries: `pip install tokenizers pandas torch`.
37
+ 3. Run from the command line: `python Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.py`
38
+
39
+ Note: The `TransformerModel` is a simplified placeholder. A real implementation
40
+ would require a proper Transformer architecture (e.g., using PyTorch or
41
+ TensorFlow), training data, and a more sophisticated training and prediction
42
+ pipeline.
43
+ """
44
+ import os
45
+ import pandas as pd
46
+ import torch # Import PyTorch (required for dummy Transformer example)
47
+
48
+ # Import the custom tokenizer from tokenizer.py (ensure tokenizer.py is in the same directory)
49
+ from tokenizer import SupplyChainTokenizer
50
+
51
+
52
+ # --- Define a placeholder Transformer Model ---
53
+ class TransformerModel:
54
+ """
55
+ A placeholder for a real Transformer-based forecasting model.
56
+ In a real implementation, this would be a PyTorch/TensorFlow model.
57
+ This dummy model simply returns placeholder forecasts.
58
+ """
59
+
60
+ def __init__(self, vocab_size, embedding_dim=64, num_heads=2, num_layers=2, output_dim=1):
61
+ """
62
+ Args:
63
+ vocab_size (int): Vocabulary size of the tokenizer.
64
+ embedding_dim (int): Dimension of token embeddings.
65
+ num_heads (int): Number of attention heads.
66
+ num_layers (int): Number of Transformer layers.
67
+ output_dim (int): Dimension of the output (e.g., 1 for scalar forecast).
68
+ """
69
+ self.vocab_size = vocab_size
70
+ self.embedding_dim = embedding_dim
71
+ self.num_heads = num_heads
72
+ self.num_layers = num_layers
73
+ self.output_dim = output_dim
74
+
75
+ # In a real model, you would initialize layers here (Embedding, TransformerEncoder, Linear, etc.)
76
+ print(f"Dummy TransformerModel initialized with vocab_size: {vocab_size}")
77
+
78
+
79
+ def forward(self, input_ids, attention_mask):
80
+ """
81
+ Placeholder forward pass. In a real model, this would perform
82
+ Transformer encoding and prediction.
83
+
84
+ Args:
85
+ input_ids (torch.Tensor): Token IDs (batch_size, sequence_length).
86
+ attention_mask (torch.Tensor): Attention mask (batch_size, sequence_length).
87
+
88
+ Returns:
89
+ torch.Tensor: Placeholder forecast output (batch_size, sequence_length, output_dim).
90
+ """
91
+ batch_size, seq_len = input_ids.shape
92
+ # Dummy output - replace with actual Transformer forward pass
93
+ dummy_forecasts = torch.randn(batch_size, seq_len, self.output_dim)
94
+ return dummy_forecasts
95
+
96
+ def predict(self, input_ids, attention_mask):
97
+ """
98
+ Generates predictions.
99
+
100
+ Args:
101
+ input_ids (List[List[int]]): Token IDs (list of lists).
102
+ attention_mask (List[List[int]]): Attention masks (list of lists).
103
+
104
+ Returns:
105
+ torch.Tensor: Placeholder forecast output.
106
+ """
107
+ # Convert lists to PyTorch tensors
108
+ input_ids_tensor = torch.tensor(input_ids)
109
+ attention_mask_tensor = torch.tensor(attention_mask)
110
+
111
+ # Call the forward method
112
+ forecasts = self.forward(input_ids_tensor, attention_mask_tensor)
113
+ return forecasts
114
+
115
+
116
+ if __name__ == "__main__":
117
+ # --- 0. Prepare Vocabulary and Training Data (if not already present) ---
118
+ if not os.path.exists("vocab.json"):
119
+ print("Creating vocab.json...")
120
+ vocab = {
121
+ "[UNK]": 0,
122
+ "[CLS]": 1,
123
+ "[SEP]": 2,
124
+ "[PAD]": 3,
125
+ "[MASK]": 4,
126
+ "timestamp:": 5,
127
+ "sku:": 6,
128
+ "store_id:": 7,
129
+ "quantity:": 8,
130
+ "price:": 9,
131
+ "discount:": 10,
132
+ "promotion_id:": 11,
133
+ "product_category:": 12,
134
+ "SKU123": 13, # Example SKU
135
+ "SKU123-RED": 14, # Example SKU variant
136
+ "SKU123-BLUE": 15,
137
+ "STORE456": 16, # Example store ID
138
+ "PLANT789": 17, # Example plant ID
139
+ "WHOLESALER001": 18, # Example Wholesaler
140
+ "RETAILER002": 19, # Example Retailer
141
+ "BOGO": 20,
142
+ "DISCOUNT":21,
143
+ }
144
+ with open("vocab.json", "w") as f:
145
+ json.dump(vocab, f, indent=4)
146
+
147
+ if not os.path.exists("training_data.txt"):
148
+ print("Creating training_data.txt...")
149
+ with open("training_data.txt", "w", encoding="utf-8") as f:
150
+ f.write("This is some example text for training the BPE model.\n")
151
+ f.write("SKU123 is a product. STORE456 is another. plant789 is, too.\n")
152
+ f.write("This file contains words not in the initial vocabulary.\n")
153
+
154
+ # --- 1. Load Vocabulary and Initialize Tokenizer ---
155
+ print("Loading vocabulary and initializing tokenizer...")
156
+ tokenizer = SupplyChainTokenizer(vocab_path="vocab.json")
157
+
158
+ # --- 2. (Optional) Train BPE ---
159
+ print("Training BPE tokenizer on training_data.txt...")
160
+ tokenizer.train_bpe("training_data.txt", vocab_size=50) # Small vocab for example
161
+
162
+ # --- 3. Load Dummy Supply Chain Data ---
163
+ print("Loading dummy supply chain data...")
164
+ data = {
165
+ 'timestamp': ['2024-07-03 10:00:00', '2024-07-03 11:00:00', '2024-07-03 12:00:00'],
166
+ 'sku': ['SKU123', 'SKU123-RED', 'SKU123-BLUE'],
167
+ 'store_id': ['STORE456', 'STORE456', 'STORE456'],
168
+ 'quantity': [2, 1, 3],
169
+ 'price': [10.99, 12.99, 9.99],
170
+ 'discount': [0.0, 1.0, 0.5],
171
+ 'promotion_id': ['BOGO', None, 'DISCOUNT'],
172
+ 'product_category': ['Electronics', 'Electronics', 'Electronics']
173
+ }
174
+ df = pd.DataFrame(data)
175
+
176
+ # --- 4. Tokenize the Data ---
177
+ print("Tokenizing supply chain data...")
178
+ input_ids, attention_masks = tokenizer.prepare_for_model(df)
179
+ print("Tokenized Input IDs (first example):", input_ids[0])
180
+ print("Attention Mask (first example):", attention_masks[0])
181
+
182
+ # --- 5. Initialize Dummy Transformer Model ---
183
+ print("Initializing dummy Transformer model...")
184
+ vocab_size = tokenizer.get_vocab_size()
185
+ dummy_model = TransformerModel(vocab_size=vocab_size)
186
+
187
+ # --- 6. Make Predictions with Dummy Model ---
188
+ print("Making predictions with dummy Transformer model...")
189
+ forecasts = dummy_model.predict(input_ids, attention_masks)
190
+
191
+ # --- 7. Output Forecasts (Placeholder Output) ---
192
+ print("\n--- Placeholder Forecast Outputs ---")
193
+ for i in range(len(df)):
194
+ print(f"Data Row {i+1}:")
195
+ print(df.iloc[i]) # Print the original data row
196
+ print(f" Placeholder Forecasts: {forecasts[i].tolist()}") # Print dummy forecasts
197
+ print("-" * 30)
198
+
199
+ print("\n--- Script Completed ---")
200
+
201
+ # --- (Optional) Clean up example files (comment out if you want to keep them) ---
202
+ # os.remove("vocab.json")
203
+ # os.remove("training_data.txt")