Create Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.v0.0.py
Browse files
Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.v0.0.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.py
|
3 |
+
|
4 |
+
This script demonstrates a conceptual Enhanced Business Model for a Collaborative
|
5 |
+
Predictive Supply Chain. It uses a custom Transformer-based model (represented
|
6 |
+
by a placeholder `TransformerModel` class) and a custom tokenizer
|
7 |
+
(`SupplyChainTokenizer` from `tokenizer.py`) with an industry-specific
|
8 |
+
vocabulary loaded from `vocab.json`.
|
9 |
+
|
10 |
+
This is a *demonstration* script and not a fully functional system. It outlines
|
11 |
+
the key steps involved in such a model:
|
12 |
+
|
13 |
+
1. **Loading Custom Vocabulary:** Loads an industry-specific vocabulary from
|
14 |
+
`vocab.json`.
|
15 |
+
2. **Initializing Custom Tokenizer:** Creates a `SupplyChainTokenizer` using
|
16 |
+
the loaded vocabulary.
|
17 |
+
3. **(Optional) Training BPE:** Demonstrates how to train Byte-Pair Encoding
|
18 |
+
(BPE) on a text corpus to handle out-of-vocabulary words.
|
19 |
+
4. **Loading Supply Chain Data:** Loads dummy supply chain data (in Pandas
|
20 |
+
DataFrame format). In a real system, this would come from databases, APIs,
|
21 |
+
etc.
|
22 |
+
5. **Tokenizing Data:** Uses the `SupplyChainTokenizer` to preprocess and
|
23 |
+
tokenize the supply chain data, preparing it for the Transformer model.
|
24 |
+
6. **Placeholder Transformer Model:** Uses a dummy `TransformerModel` class
|
25 |
+
to represent a Transformer-based forecasting model. This class takes
|
26 |
+
tokenized input and attention masks and generates placeholder forecast
|
27 |
+
outputs.
|
28 |
+
7. **Model Prediction:** Feeds the tokenized data to the dummy Transformer
|
29 |
+
model to generate (placeholder) forecasts.
|
30 |
+
8. **Outputting Forecasts:** Prints the (placeholder) forecasts.
|
31 |
+
|
32 |
+
To run this script:
|
33 |
+
|
34 |
+
1. Ensure you have `tokenizer.py`, `vocab.json`, and `training_data.txt`
|
35 |
+
in the same directory as this script (or adjust file paths accordingly).
|
36 |
+
2. Install required libraries: `pip install tokenizers pandas torch`.
|
37 |
+
3. Run from the command line: `python Enhanced_Business_Model_for_Collaborative_Predictive_Supply_Chain_model.py`
|
38 |
+
|
39 |
+
Note: The `TransformerModel` is a simplified placeholder. A real implementation
|
40 |
+
would require a proper Transformer architecture (e.g., using PyTorch or
|
41 |
+
TensorFlow), training data, and a more sophisticated training and prediction
|
42 |
+
pipeline.
|
43 |
+
"""
|
44 |
+
import os
|
45 |
+
import pandas as pd
|
46 |
+
import torch # Import PyTorch (required for dummy Transformer example)
|
47 |
+
|
48 |
+
# Import the custom tokenizer from tokenizer.py (ensure tokenizer.py is in the same directory)
|
49 |
+
from tokenizer import SupplyChainTokenizer
|
50 |
+
|
51 |
+
|
52 |
+
# --- Define a placeholder Transformer Model ---
|
53 |
+
class TransformerModel:
|
54 |
+
"""
|
55 |
+
A placeholder for a real Transformer-based forecasting model.
|
56 |
+
In a real implementation, this would be a PyTorch/TensorFlow model.
|
57 |
+
This dummy model simply returns placeholder forecasts.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, vocab_size, embedding_dim=64, num_heads=2, num_layers=2, output_dim=1):
|
61 |
+
"""
|
62 |
+
Args:
|
63 |
+
vocab_size (int): Vocabulary size of the tokenizer.
|
64 |
+
embedding_dim (int): Dimension of token embeddings.
|
65 |
+
num_heads (int): Number of attention heads.
|
66 |
+
num_layers (int): Number of Transformer layers.
|
67 |
+
output_dim (int): Dimension of the output (e.g., 1 for scalar forecast).
|
68 |
+
"""
|
69 |
+
self.vocab_size = vocab_size
|
70 |
+
self.embedding_dim = embedding_dim
|
71 |
+
self.num_heads = num_heads
|
72 |
+
self.num_layers = num_layers
|
73 |
+
self.output_dim = output_dim
|
74 |
+
|
75 |
+
# In a real model, you would initialize layers here (Embedding, TransformerEncoder, Linear, etc.)
|
76 |
+
print(f"Dummy TransformerModel initialized with vocab_size: {vocab_size}")
|
77 |
+
|
78 |
+
|
79 |
+
def forward(self, input_ids, attention_mask):
|
80 |
+
"""
|
81 |
+
Placeholder forward pass. In a real model, this would perform
|
82 |
+
Transformer encoding and prediction.
|
83 |
+
|
84 |
+
Args:
|
85 |
+
input_ids (torch.Tensor): Token IDs (batch_size, sequence_length).
|
86 |
+
attention_mask (torch.Tensor): Attention mask (batch_size, sequence_length).
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
torch.Tensor: Placeholder forecast output (batch_size, sequence_length, output_dim).
|
90 |
+
"""
|
91 |
+
batch_size, seq_len = input_ids.shape
|
92 |
+
# Dummy output - replace with actual Transformer forward pass
|
93 |
+
dummy_forecasts = torch.randn(batch_size, seq_len, self.output_dim)
|
94 |
+
return dummy_forecasts
|
95 |
+
|
96 |
+
def predict(self, input_ids, attention_mask):
|
97 |
+
"""
|
98 |
+
Generates predictions.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
input_ids (List[List[int]]): Token IDs (list of lists).
|
102 |
+
attention_mask (List[List[int]]): Attention masks (list of lists).
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
torch.Tensor: Placeholder forecast output.
|
106 |
+
"""
|
107 |
+
# Convert lists to PyTorch tensors
|
108 |
+
input_ids_tensor = torch.tensor(input_ids)
|
109 |
+
attention_mask_tensor = torch.tensor(attention_mask)
|
110 |
+
|
111 |
+
# Call the forward method
|
112 |
+
forecasts = self.forward(input_ids_tensor, attention_mask_tensor)
|
113 |
+
return forecasts
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
# --- 0. Prepare Vocabulary and Training Data (if not already present) ---
|
118 |
+
if not os.path.exists("vocab.json"):
|
119 |
+
print("Creating vocab.json...")
|
120 |
+
vocab = {
|
121 |
+
"[UNK]": 0,
|
122 |
+
"[CLS]": 1,
|
123 |
+
"[SEP]": 2,
|
124 |
+
"[PAD]": 3,
|
125 |
+
"[MASK]": 4,
|
126 |
+
"timestamp:": 5,
|
127 |
+
"sku:": 6,
|
128 |
+
"store_id:": 7,
|
129 |
+
"quantity:": 8,
|
130 |
+
"price:": 9,
|
131 |
+
"discount:": 10,
|
132 |
+
"promotion_id:": 11,
|
133 |
+
"product_category:": 12,
|
134 |
+
"SKU123": 13, # Example SKU
|
135 |
+
"SKU123-RED": 14, # Example SKU variant
|
136 |
+
"SKU123-BLUE": 15,
|
137 |
+
"STORE456": 16, # Example store ID
|
138 |
+
"PLANT789": 17, # Example plant ID
|
139 |
+
"WHOLESALER001": 18, # Example Wholesaler
|
140 |
+
"RETAILER002": 19, # Example Retailer
|
141 |
+
"BOGO": 20,
|
142 |
+
"DISCOUNT":21,
|
143 |
+
}
|
144 |
+
with open("vocab.json", "w") as f:
|
145 |
+
json.dump(vocab, f, indent=4)
|
146 |
+
|
147 |
+
if not os.path.exists("training_data.txt"):
|
148 |
+
print("Creating training_data.txt...")
|
149 |
+
with open("training_data.txt", "w", encoding="utf-8") as f:
|
150 |
+
f.write("This is some example text for training the BPE model.\n")
|
151 |
+
f.write("SKU123 is a product. STORE456 is another. plant789 is, too.\n")
|
152 |
+
f.write("This file contains words not in the initial vocabulary.\n")
|
153 |
+
|
154 |
+
# --- 1. Load Vocabulary and Initialize Tokenizer ---
|
155 |
+
print("Loading vocabulary and initializing tokenizer...")
|
156 |
+
tokenizer = SupplyChainTokenizer(vocab_path="vocab.json")
|
157 |
+
|
158 |
+
# --- 2. (Optional) Train BPE ---
|
159 |
+
print("Training BPE tokenizer on training_data.txt...")
|
160 |
+
tokenizer.train_bpe("training_data.txt", vocab_size=50) # Small vocab for example
|
161 |
+
|
162 |
+
# --- 3. Load Dummy Supply Chain Data ---
|
163 |
+
print("Loading dummy supply chain data...")
|
164 |
+
data = {
|
165 |
+
'timestamp': ['2024-07-03 10:00:00', '2024-07-03 11:00:00', '2024-07-03 12:00:00'],
|
166 |
+
'sku': ['SKU123', 'SKU123-RED', 'SKU123-BLUE'],
|
167 |
+
'store_id': ['STORE456', 'STORE456', 'STORE456'],
|
168 |
+
'quantity': [2, 1, 3],
|
169 |
+
'price': [10.99, 12.99, 9.99],
|
170 |
+
'discount': [0.0, 1.0, 0.5],
|
171 |
+
'promotion_id': ['BOGO', None, 'DISCOUNT'],
|
172 |
+
'product_category': ['Electronics', 'Electronics', 'Electronics']
|
173 |
+
}
|
174 |
+
df = pd.DataFrame(data)
|
175 |
+
|
176 |
+
# --- 4. Tokenize the Data ---
|
177 |
+
print("Tokenizing supply chain data...")
|
178 |
+
input_ids, attention_masks = tokenizer.prepare_for_model(df)
|
179 |
+
print("Tokenized Input IDs (first example):", input_ids[0])
|
180 |
+
print("Attention Mask (first example):", attention_masks[0])
|
181 |
+
|
182 |
+
# --- 5. Initialize Dummy Transformer Model ---
|
183 |
+
print("Initializing dummy Transformer model...")
|
184 |
+
vocab_size = tokenizer.get_vocab_size()
|
185 |
+
dummy_model = TransformerModel(vocab_size=vocab_size)
|
186 |
+
|
187 |
+
# --- 6. Make Predictions with Dummy Model ---
|
188 |
+
print("Making predictions with dummy Transformer model...")
|
189 |
+
forecasts = dummy_model.predict(input_ids, attention_masks)
|
190 |
+
|
191 |
+
# --- 7. Output Forecasts (Placeholder Output) ---
|
192 |
+
print("\n--- Placeholder Forecast Outputs ---")
|
193 |
+
for i in range(len(df)):
|
194 |
+
print(f"Data Row {i+1}:")
|
195 |
+
print(df.iloc[i]) # Print the original data row
|
196 |
+
print(f" Placeholder Forecasts: {forecasts[i].tolist()}") # Print dummy forecasts
|
197 |
+
print("-" * 30)
|
198 |
+
|
199 |
+
print("\n--- Script Completed ---")
|
200 |
+
|
201 |
+
# --- (Optional) Clean up example files (comment out if you want to keep them) ---
|
202 |
+
# os.remove("vocab.json")
|
203 |
+
# os.remove("training_data.txt")
|